A Comprehensive Review of the Hermite–Hadamard Inequality Pertaining to Fractional Integral Operators
Abstract
:1. Introduction
2. H-H-Type Inequalities via R-L Fractional Integrals
2.1. Fractional H-H-Type Inequalities for Convex Functions
2.2. Fractional H-H-Type Inequalities for m-Convex Functions
2.3. Fractional H-H-Type Inequalities for r-Convex Functions
2.4. Fractional H-H-Type Inequalities for -Convex Functions
2.5. Fractional H-H-Type Inequalities for -Geometrically Convex Functions
2.6. Fractional H-H-Type Inequalities for Harmonically Convex Functions
2.7. Fractional H-H-Type Inequalities for Harmonically Symmetric Functions
2.8. Fractional H-H-Type Inequalities for Harmonically -Convex Functions
2.9. Fractional H-H-Type Inequalities for M-Harmonic Harmonically Convex Functions
2.10. Fractional H-H-Type Inequalities for -Convex Functions
2.11. Fractional H-H-Type Inequalities for Arithmetic–Geometric Convex (Or -Convex) Functions
2.12. H-H-Type Inequalities for Logarithmically Convex Functions
2.13. Fractional H-H-Type Inequalities for -Logarithmically Convex Functions
2.14. Fractional H-H-Type Inequalities for Geometric–Arithmetically s-Convex Functions (GA-s-Convex Functions)
2.15. Fractional H-H-Type Inequalities for s-Convex Functions
2.16. Fractional H-H-Type Inequalities for Godunova–Levin-Convex Functions
2.17. Fractional H-H-Type Inequalities for Differentiable -Convex Functions
2.18. Fractional H-H-Type Inequalities for Symmetric Functions
2.19. Fractional H-H-Type Inequalities for -Convex Functions
2.20. Fractional H-H-Type Inequalities for -Convex Functions
2.21. Fractional H-H-Type Inequalities via Green Functions
- (i)
- If is an increasing function, then
- (ii)
- If is a decreasing function, then
- (iii)
- If is a convex function, then
- (i)
- If is an increasing function, then
- (ii)
- If is a decreasing function, then
- (iii)
- If is a convex function, then
- (i)
- If is an increasing function, then
- (ii)
- If is a decreasing function, then
- (iii)
- If is a convex function, then
2.22. H-H-Type Inequalities for p-Convex Functions
2.23. Fractional H-H-Type Inequalities for h-Convex Functions
2.24. H-H-Type Inequalities for Modified -Convex Functions
2.25. Fractional H-H-Type Inequalities for -Convex Functions
2.26. Fractional H-H-Type Inequalities for Exponential-Convex Functions
2.27. Fractional H-H-Type Inequalities for Refined Exponential-Type Convex Functions
2.28. Fractional H-H-Type Inequalities for -Convex Functions
2.29. Fractional H-H-Type Inequalities for Co-Ordinated-Convex Functions
2.30. Fractional H-H-Type Inequalities for Relative-Convex Functions
- (i)
- A set is said to be relative convex with respect to an arbitrary function such that
- (ii)
- A function is said to be relative convex, if there exists an arbitrary function such that
- (iii)
- A function is said to be relative logarithmic convex, if there exists an arbitrary function such that
- (iv)
- A function is said to be relative quasi convex, if there exists an arbitrary function such that
2.31. Fractional H-H-Type Inequalities for Quasi-Convex Functions
2.32. Fractional H-H-Type Inequalities for -Convex Functions
2.33. Fractional H-H-Type Inequalities for Preinvex Functions
3. H-H-Type Inequalities via Katugampola Fractional Integral
4. H-H-Type Inequalities via -R-L Fractional Integral
- (i)
- If is an increasing function, then
- (ii)
- If is a decreasing function, then
- (iii)
- If is a convex function, then
5. H-H-Type Inequalities via -R-L Fractional Integral
6. H-H-Type Inequalities via C-F Fractional Integral
7. H-H–Mercer (H-H-M)-Type Inequalities via R-L Fractional Integrals
8. H-H-Type Inequalities via R-L Fractional Integrals of a Function with Respect to Another Function
9. Fractional H-H Inequalities via Weighted Symmetric Function
10. H-H-Type Inequalities via Hadamard Fractional Integral
11. H-H-Type Inequalities via Proportional Fractional Integral
12. H-H-Type Inequalities via Raina Integral Operator
13. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
-convex | arithmetic–geometric convex |
C-F | Caputo–Fabrizio |
GA-convex | geometric–arithmetically convex |
GA-s-convex | geometric–arithmetically s-convex |
GG-convex | multiplicatively convex function |
G-L | Godunova–Levin |
H-H | Hermite–Hadamard |
H-H-M | Hermite–Hadamard–Mercer |
m-HH convex | m-harmonic harmonically convex |
R-L | Riemann–Liouville |
References
- Hardy, G.H.; Littlewood, J.E.; Polya, G. Inequalities; Cambridge University Press, Cambridge Mathematical Library: Cambridge, UK, 1952. [Google Scholar]
- Fóllmer, A.; Schied, A. Convex measures of risk and trading constraints. Financ. Stoch. 2002, 6, 429–447. [Google Scholar] [CrossRef]
- Luo, Z.Q.; Yu, W. An introduction to convex optimization for communications and signal processing. IEEE J. Sel. Areas Commun. 2006, 24, 1426–1438. [Google Scholar]
- Boyd, S.; Crusius, C.; Hansson, A. New advances in convex optimization and control applications. IFAC Proc. 1997, 30, 365–393. [Google Scholar] [CrossRef]
- Pelczynśki, J. Application of the theory of convex sets for engineering structures with uncertain parameters. Appl. Sci. 2020, 10, 6864. [Google Scholar] [CrossRef]
- Chandrasekarana, V.; Jordan, M.I. Computational and statistical tradeoffs via convex relaxation. Proc. Natl. Acad. Sci. USA 2013, 110, 1181–1190. [Google Scholar] [CrossRef]
- Song, H.; Dai, R.; Raskutti, G.; Barber, R.F. Convex and non-Convex approaches for statistical inference with class-conditional noisy labels. J. Mach. Learn. Res. 2020, 21, 1–58. [Google Scholar]
- Mordukhovich, B.S.; Nam, N.M. An easy path to convex analysis and applications. Synth. Lect. Math. Stat. 2013, 6, 1–218. [Google Scholar]
- Zhang, W.; Lu, X.; Li, X. Similarity constrained convex nonnegative matrix factorization for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2009, 57, 10–22. [Google Scholar] [CrossRef]
- Cingano, F. Trends in Income Inequality and Its Impact on Economic Growth, OECD Social, Employment and Migration Working Papers; No. 163; OECD Publishing: Berlin, Germany, 2014. [Google Scholar]
- Cloud, M.J.; Drachman, B.C.; Lebedev, L.P. Inequalities with Applications to Engineering; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Duvaut, G.; Lions, J.L. Inequalities in mechanics and physics. J. Appl. Mech. 1977, 44, 364. [Google Scholar] [CrossRef]
- El Shaed, M.A. Fractional Calculus Model of Semilunar Heart Valve Vibrations; International Mathematica Symposium: London, UK, 2003. [Google Scholar]
- Hoan, L.V.C.; Akinlar, M.A.; Inc, M.; Gomez-Aguilar, J.F.; Chu, Y.M.; Almohsen, B. A new fractional-order compartmental disease model. Alex. Eng. J. 2020, 59, 3187–3196. [Google Scholar] [CrossRef]
- Atangana, A. Application of Fractional Calculus to Epidemiology; Fractional Dynamics; De Gruyter Open Poland: Warsaw, Poland, 2016; pp. 174–190. [Google Scholar]
- Kulish, V.V.; Lage, J.L. Application of fractional calculus to fluid mechanics. J. Fluids Eng. 2002, 124, 803–806. [Google Scholar] [CrossRef]
- Hermite, C. Sur deux limites d’une intégrale dé finie. Mathesis 1883, 3, 82. [Google Scholar]
- Hadamard, J. Etude sur les propriétés des fonctions entiéres et en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl. 1893, 9, 171–216. [Google Scholar]
- Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef]
- Wang, J.-R.; Fečkan, M. Fractional Hermite-Hadamard Inequalities; Fractional Calculus in Applied Sciences and Engineering 5; De Gruyter: Berlin, Germany, 2018. [Google Scholar]
- Almutairi, O.; Kiliçman, A. A Review of Hermite-Hadamard inequality for α-type real-valued convex functions. Symmetry 2022, 14, 840. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Compu. Modelling. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Özdemir, M.E.; Dragomir, S.S.; Yildiz, C. The Hadamard inequality for convex function via fractional integrals. Acta Math. Sci. 2013, 33B, 1293–1299. [Google Scholar] [CrossRef]
- Kunt, M.; Karapinar, D.; Turhan, S.; İşcan, I. The left Riemann-Liouville fractional Hermite-Hadamard type inequalities for convex functions. Math. Slovaca 2019, 69, 773–784. [Google Scholar] [CrossRef]
- Kunt, M.; Karapinar, D.; Turhan, S.; İşcan, I. The right Riemann-Liouville fractional Hermite-Hadamard type inequalities for convex functions. J. Inequal. Spec. Funct. 2018, 9, 45–57. [Google Scholar]
- Xiang, R. Refinements of Hermite-Hadamard type inequalities for convex functions via fractional integrals. J. Appl. Math. Inform. 2015, 33, 119–125. [Google Scholar] [CrossRef]
- Budak, H. On refinements of Hermite-Hadamard type inequalities for Riemann-Liouville fractional integral operators. Int. J. Optim. Control. Theor. Appl. 2019, 9, 41–48. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Yildirim, H. On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Math. Notes 2016, 17, 1049–1059. [Google Scholar] [CrossRef]
- Mihai, M.V.; Mitroi, F.C. Hermite-Hadamard type inequalities obtained via Riemann-Liouville fractional calculus. Acta Math. Univ. Comen. 2014, 83, 209–215. [Google Scholar]
- Sarikaya, M.Z.; Budak, H. Generalized Hermite-Hadamard type integral inequalities for fractional integrals. Filomat 2016, 30, 1315–1326. [Google Scholar] [CrossRef]
- Qiu, K.; Wang, J. A fractional integral identity and its application to fractional Hermite-Hadamard type inequalities. J. Interdiscip. Math. 2018, 21, 1–16. [Google Scholar] [CrossRef]
- Iqbal, M.; Bhatti, M.I.; Nazeer, K. Generalization of inequalities analogous to Hermite–Hadamard inequality via fractional integrals. Bull. Korean Math. Soc. 2015, 52, 707–716. [Google Scholar] [CrossRef]
- Budak, H.; Agarwal, P. New generalized midpoint type inequalities for fractional integrals. Miskolc Math. Notes 2019, 20, 781–793. [Google Scholar] [CrossRef]
- Set, E.; İşcan, I.; Sarikaya, M.Z.; Özdemir, M.E. On new inequalities of Hermite-Hadamard-Fejér type for convex functions via fractional integrals. Appl. Math. Comput. 2015, 259, 875–881. [Google Scholar]
- Budak, H.; Kara, H.; Sarikaya, M.Z.; Kiris, M.E. New extensions of the Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals. Miskolc Math. Notes 2020, 21, 665–678. [Google Scholar] [CrossRef]
- Park, J. On some integral inequalities for twice differentiable quasi-convex and convex functions via fractional integrals. Appl. Math. Sci. 2015, 9, 3057–3069. [Google Scholar] [CrossRef]
- Tomar, M.; Set, E.; Sarıkaya, M.Z. Hermite-Hadamard type Riemann-Liouville fractional integral inequalities for convex functions. AIP Conf. Proc. 2016, 1726, 020035. [Google Scholar]
- Mohammed, P.O. Inequalities of type Hermite-Hadamard for fractional integrals via differentiable convex functions. Turkish J. Anal. Number Theory 2016, 4, 135–139. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Fractional Hermite-Hadmard inequalities for convex functions and applications. Tbilisi Math. J. 2015, 8, 103–113. [Google Scholar] [CrossRef]
- Toader, G.H. Some generalizations of the convexity. In Colloquium on Approximation and Optimization; University Cluj-Napoca: Cluj-Napoca, Romania, 1985; pp. 329–338. [Google Scholar]
- Wang, J.; Li, X.; Fečkan, M.; Zhou, Y. Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity. Appl. Anal. 2013, 92, 2241–2253. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.R. On some new Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals. J. Inequal. Appl. 2013, 2013, 220. [Google Scholar] [CrossRef]
- Pearce, C.E.M.; Pečarić, J.; Simic, V. Stolarsky means and Hadamard’s inequality. J. Math. Anal. Appl. 1998, 220, 99–109. [Google Scholar] [CrossRef]
- Wang, J.; Deng, J.; Fečkan, M. Hermite-Hadamard-type inequalities for r-convex functions based on the use of Riemann-Liouville fractional integrals. Ukrainian Math. J. 2013, 65, 175–191. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, J.; Wei, W. Fractional Hermite-Hadamard inequalities through r-convex functions via power means. Facta Univ. Ser. Math. Inform. 2015, 30, 129–145. [Google Scholar]
- Mihesan, V.G. A Generalization of the Convexity. In Seminar of Functional Equations, Approximation and Convexity; University Cluj-Napoca: Cluj- Napoca, Romania, 1993. [Google Scholar]
- Shi, D.P.; Xi, B.Y.; Qi, F. Hermite-Hadamard type inequalities for Reimann-Liouville fractional integrals of (α,m) convex functions. Fract. Differ. Calc. 2014, 4, 31–43. [Google Scholar]
- Set, E.; Özdemir, M.E.; Sarikaya, M.Z.; Karakoc, F. Hermite-Hadamard type inequalities for (α,m)-convex functions via fractional integrals. Moroccan J. Pure Appl. Anal. 2017, 3, 15–21. [Google Scholar] [CrossRef]
- Önalan, H.K. Hermite-Hadamard type inequalities for (α,m)-geometrically convex functions. Aequ. Math. 2012, 84, 261–269. [Google Scholar]
- İşcan, I. Hermite-Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
- İşcan, I.; Wu, S. Hermite–Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2014, 238, 237–244. [Google Scholar] [CrossRef]
- Sanli, S.; Kunt, M.; Koroglu, T. New Riemann–Liouville fractional Hermite–Hadamard type inequalities for harmonically convex functions. Arab. J. Math. 2020, 9, 431–441. [Google Scholar] [CrossRef]
- Butt, S.I.; Yousaf, S.; Asghar, A.; Khan, K.A. New fractional Hermite-Hadamard-Mercer inequalities for harmonically convex function. J. Funct. Spaces 2021, 2021, 5868326. [Google Scholar] [CrossRef]
- Chen, F. Extensions of the Hermite-Hadamard inequality for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2015, 268, 121–128. [Google Scholar] [CrossRef]
- Latif, M.A.; Dragomir, S.S.; Momoniat, E. Some Fejér type inequalities for harmonically-convex functions with applications to special means. Inter. J. Anal. Appl. 2017, 13, 1–14. [Google Scholar]
- İşcan, I.; Kunt, M.; Yazici, N. Hermite-Hadamard-Fejér type inequalities for harmonically convex functions via fractional integrals. New Trends Math. Sci. 2016, 3, 239–253. [Google Scholar] [CrossRef]
- İşcan, I. Hermite-Hadamard type inequalities for harmonically (α,m)-convex functions. Hacet. J. Math. Stat. 2016, 45, 381–390. [Google Scholar] [CrossRef]
- Kunt, M.; İşcan, I. Hermite-Hadamard type inequalities for harmonically (α,m)-convex functions by using fractional integrals. Konuralp J. Math. 2017, 5, 201–213. [Google Scholar]
- Wang, W.; İşcan, I.; Zhou, H. Fractional integral inequalities of Hermite-Hadamard type for m-HH convex functions with applications. Adv. Stud. Contemp. Math. 2016, 26, 501–512. [Google Scholar]
- Boukerrioua, K.; Chiheb, T.; Meftah, B. Fractional Hermite-Hadamard type inequalities for functions whose second derivative are (s,r)-convex in the second sense. Kragujevac J. Math. 2016, 40, 172–191. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, J. Fractional type Hermite-Hadamard inequalities for convex and AG(Log)-convex functions. Facta Univ. Ser. Math. Inform. 2015, 30, 649–662. [Google Scholar]
- Pečarić, J.; Proschan, F.; Tong, Y.L. Convex Functions, Partial Orderings, and Statistical Applications; Mathematics in Science and Engineering; Academic Press, Inc.: Boston, MA, USA, 1992; p. 187. [Google Scholar]
- Ouanasa, N.; Meftahb, B.; Merad, M. Fractional Hermite-Hadamard type inequalities for n-times ln-convex functions. Int. J. Nonlinear Anal. Appl. 2018, 9, 211–221. [Google Scholar]
- Bai, R.; Qi, F.; Xi, B. Hermite-Hadamard typei nequalities for the m and (α,m)-logarithmically convex functions. Filomat 2013, 27, 1–7. [Google Scholar] [CrossRef]
- Liao, Y.; Deng, J.; Wang, J. On the fractional Hermite-Hadamard type inequalities for (α,m)-logarithmically convex functions. Filomat 2015, 29, 1565–1580. [Google Scholar]
- Deng, J.; Wang, J.R. Fractional Hermite-Hadamard inequalities for (α,m)-logarithmically convex functions. J. Inequal. Appl. 2013, 2013, 364. [Google Scholar] [CrossRef]
- Shuang, Y.; Yin, H.P.; Qi, F. Hermite-Hadamard type integral inequalities for geometric-arithmetically s-convex functions. Analysis 2013, 33, 197–208. [Google Scholar] [CrossRef]
- Liao, Y.M.; Deng, J.H.; Wang, J.R. Riemann-Liouville fractional Hermite-Hadamard inequalities. Part I: For once differentiable geometric-arithmetically s-convex functions. J. Inequal. Appl. 2013, 2013, 443. [Google Scholar] [CrossRef]
- Liao, Y.M.; Deng, J.H.; Wang, J.R. Riemann-Liouville fractional Hermite-Hadamard inequalities. Part II: For twice differentiable geometric-arithmetically s-convex functions. J. Inequal. Appl. 2013, 2013, 517. [Google Scholar] [CrossRef]
- Hudzik, H.; Maligranda, L. Some remarks on s-convex functions. Aequationes Math. 1994, 48, 100–111. [Google Scholar] [CrossRef]
- Set, E.; Sarikaya, M.Z.; Özdemir, M.E.; Yildirim, H. The Hermite-Hadamard’s inequality for some convex functions via fractional integrals and related results. J. Appl. Math. Statis. Inform. 2014, 10, 69–83. [Google Scholar] [CrossRef]
- İşcan, I. On generalization of different type integral inequalities for s-convex functions via fractional integrals. Math. Sci. Appl. E-Notes 2014, 2, 55–67. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.; Wei, W. Some fractional Hermite-Hadamard inequalities for convex and Godunova-Levin functions. Facta Univ. Ser. Math. Inform. 2015, 30, 195–208. [Google Scholar]
- Ozdemir, M.E.; Avci, M.; Kavurmaci, H. Hermite-Hadamard type inequalities for s-convex and s-concave functions via fractional integrals. arXiv 2012, arXiv:1202.0380v1. [Google Scholar]
- Set, E.; İşcan, I.; Kara, H.H. Hermite-Hadamard-Fejér type inequalities for s-convex function in the second sense via fractional integrals. Filomat 2016, 30, 3131–3138. [Google Scholar] [CrossRef]
- İşcan, I. Generalization of different type integral inequalities for s-convex functions via fractional integrals. Appl. Anal. 2014, 93, 1846–1862. [Google Scholar] [CrossRef]
- Wang, S.; Qi, F. Hermite-Hadamard type inequalities for s-convex functions via Riemann-Liouville fractional integrals. J. Comput. Anal. Appl. 2017, 22, 1124–1134. [Google Scholar]
- Godunova, E.K.; Levin, V.I. Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions. (Russian) Numerical mathematics and mathematical physics (Russian). Moskov. Gos. Ped. Inst. 1985, 166, 138–142. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Awan, M.U.; Khan, S. Fractional Hermite-Hadamard inequalities for some new classes of Godunova-Levin functions. Appl. Math. Inf. Sci. 2014, 8, 2865–2872. [Google Scholar] [CrossRef]
- Awan, M.U.; Noor, M.A.; Mihai, M.V.; Noor, K.I. Fractional Hermite-Hadamard inequalities for differentiable s-Godunova-Levin functions. Filomat 2016, 30, 3235–3241. [Google Scholar] [CrossRef]
- Gao, Z.; Li, M.; Wang, J. On some fractional Hermite-Hadamard inequalities via s-convex and s-Godunova-Levin functions and their applications. Bol. Soc. Mat. Mexicana 2017, 23, 691–711. [Google Scholar] [CrossRef]
- Park, J. Hermite-Hadamard-like type inequalities for s-convex functions and s-Godunova-Levin functions of two kinds. Appl. Math. Sci. 2015, 9, 3431–3447. [Google Scholar] [CrossRef]
- Özdemir, M.E. Some inequalities for the s-Godunova–Levin type functions. Math. Sci. 2015, 9, 27–32. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Yaldiz, H. On Hermite-Hadamard type inequalities for Π-convex functions via fractional integrals. Malays. J. Math. Sci. 2015, 9, 243–258. [Google Scholar]
- Macdonald, I.G. Symmetric Functions and Orthogonal Polynomials; American Mathematical Society: New York, NY, USA, 1997. [Google Scholar]
- İşcan, I. Hermite-Hadamard-Fejer type inequalities for convex functions via fractional integrals. Stud. Univ. Babes-Bolyai Math. 2015, 60, 355–366. [Google Scholar]
- Chen, F. Extension of the Hermite-Hadamard inequality or convex functions via fractional integrals. J. Math. Inequal. 2016, 10, 75–81. [Google Scholar] [CrossRef]
- Tunc, M.; Subas, Y.; Karabayir, I. On some Hadamard type inequalities for MT-convex functions. Int. J. Open Probl. Comput. Sci. Math. 2013, 6, 102–113. [Google Scholar]
- Liu, W.; Wen, W.; Park, J. Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals. J. Nonlinear Sci. Appl. 2016, 9, 766–777. [Google Scholar] [CrossRef]
- Chu, Y.; Khan, M.A.; Khan, T.U.; Alib, T. Generalizations of Hermite-Hadamard type inequalities for MT-convex functions. J. Nonlinear Sci. Appl. 2016, 9, 4305–4316. [Google Scholar] [CrossRef]
- Eftekhari, N. Some remarks on (s,m)-convexity in the second sense. J. Math. Inequal. 2014, 8, 489–495. [Google Scholar] [CrossRef]
- Lian, T.; Tang, W.; Zhou, R. Fractional Hermite–Hadamard inequalities for (s,m)-convex or s-concave functions. J. Inequal. Appl. 2018, 2018, 240. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, A.; Khan, M.A.; Suleman, M.; Chu, Y.M. The right Riemann–Liouville fractional Hermite–Hadamard type inequalities derived from Green’s function. AIP Adv. 2020, 10, 045032. [Google Scholar] [CrossRef]
- Iqbal, A.; Khan, M.A.; Mohammad, N.; Nwaeze, E.R.; Chu, Y.-M. Revisiting the Hermite-Hadamard fractional integral inequality via a Green function. AIMS Math. 2020, 5, 6087–6107. [Google Scholar] [CrossRef]
- Khan, M.A.; Iqbal, A.; Suleman, M.; Chu, Y.-M. Hermite-Hadamard type inequalities for fractional integrals via Green’s function. J. Ineq. Appl. 2018, 2018, 161. [Google Scholar] [CrossRef]
- İşcan, I. Hermite–Hadamard and Simpson-like type inequalities for differentiable p-quasi-convex functions. Filomat 2017, 31, 5945–5953. [Google Scholar] [CrossRef]
- Kunt, M.; İşcan, I. Hermite-Hadamard type inequalities for p-convex functions via fractional integrals. Moroccan J. Pure Appl. Anal. 2017, 3, 22–35. [Google Scholar] [CrossRef]
- Kunt, M.; İşcan, I. Hermite-Hadamard-Fejér type inequalities for p-convex functions via fractional integrals. Iran. J. Sci. Technol. Trans. Sci. 2018, 42, 2079–2089. [Google Scholar] [CrossRef]
- Barsam, H.; Sattarzadeh, A.R. Some results on Hermite-Hadamard inequalities. J. Mahani Math. Res. Cent. 2020, 9, 79–86. [Google Scholar]
- Barsam, H.; Ramezani, S.M. Some results on Hermite-Hadamard type inequalities for fractional integrals. Caspian J. Math. Sci. 2021, 10, 104–111. [Google Scholar]
- Varosanec, S. On h-convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. New fractional estimates of Hermite-Hadamard inequalities and applications to means. Stud. Univ. Babes-Bolyai Math. 2016, 61, 3–15. [Google Scholar]
- Tunc, M. On new inequalities for h-convex functions via Riemmann-Liouville fractional integration. Filomat 2013, 4, 559–565. [Google Scholar] [CrossRef]
- Feng, B.; Ghafoor, M.; Chu, Y.M.; Qureshi, M.I.; Feng, X.; Yao, C.; Qiao, X. Hermite-Hadamard and Jensen’s type inequalities for modified (p, h)-convex functions. AIMS Math 2020, 5, 6959–6971. [Google Scholar] [CrossRef]
- Wu, S.; Awan, M.U.; Noor, M.A.; Noor, K.I.; Iftikhar, S. On a new class of convex functions and integral inequalities. J. Inequal. Appl. 2019, 2019, 131. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T.; Zeng, S.; Kashuri, A. Fractional Hermite-Hadamard integral inequalities for a new class of convex functions. Symmetry 2020, 12, 1485. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Gomm, I. Some Hermite-Hadamard type inequalities for functions whose exponentials are convex. Stud. Univ. Babes-Bolyai Math. 2015, 60, 527–534. [Google Scholar]
- Ma, L.; Yang, G. Hadamard type inequalities via fractional calculus in the space of exp-convex functions and applications. Electron. J. Diff. Equat. 2021, 2021, 1–18. [Google Scholar]
- Kodamasingh, B.; Sahoo, S.K.; Shaikh, W.A.; Nonlaopon, K.; Ntouyas, S.K.; Tariq, M. Some new integral inequalities involving fractional operator with applications to probability density functions and special means. Axioms 2022, 11, 602. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Tariq, M.; Ahmad, H.; Kodamasingh, B.; Shaikh, A.A.; Botmart, T.; El-Shorbagy, M.A. Some novel fractional integral inequalities over a new class of generalized convex function. Fractal Fract. 2022, 6, 42. [Google Scholar] [CrossRef]
- Dragomir, S.S. On Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwanese J. Math. 2001, 5, 775–788. [Google Scholar] [CrossRef]
- Sarikaya, M.Z. On the Hermite–Hadamard-type inequalities for co-ordinated convex function via fractional integrals. Integral Transform. Spec. Funct. 2014, 25, 134–147. [Google Scholar] [CrossRef]
- Yaldıza, H.; Sarikaya, M.Z.; Dahmani, Z. On the Hermite-Hadamard-Fejer-type inequalities for co-ordinated convex functions via fractional integrals. Int. J. Optim. Control. Theor. Appl. 2017, 7, 205–215. [Google Scholar] [CrossRef]
- Zhao, D.; Ali, M.A.; Murtaza, G.; Zhang, Z. On the Hermite-Hadamard inequalities for interval-valued co-ordinated convex functions. Adv. Differ. Equ. 2020, 2020, 570. [Google Scholar] [CrossRef]
- Budak, H.; Kara, H.; Ali, M.A.; Khan, S.; Chu, Y. Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex functions. Open Math. 2021, 19, 1081–1097. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Generalized convexity and integral inequalities. Appl. Math. Inf. Sci. 2015, 9, 233–243. [Google Scholar] [CrossRef]
- Özdemir, M.E.; Yildiz, C. The Hadamard’s inequality for quasi-convex functions via fractional integrals. Ann. Univ. Craiova Math. Comp. Sci. 2013, 40, 167–173. [Google Scholar]
- Set, E.; Celik, B. Fractional Hermite-Hadamard type inequalities for quasi-convex functions. Ordu Univ. J. Sci. Tech. 2016, 6, 137–149. [Google Scholar]
- Zhang, T.Y.; Ji, A.P.; Qi, F. Integral inequalities of Hermite-Hadamard type for harmonically quasi-convex functions. Proc. Jangjeon Math. Soc. 2013, 16, 399–407. [Google Scholar]
- İşcan, I. Hermite-Hadamard-Fejér type inequalities for harmonically quasi-convex functions via fractional integrals. Kyungpook Math. J. 2016, 56, 845–859. [Google Scholar] [CrossRef]
- Jia, W.; Yussouf, M.; Farid, G.; Khan, K.A. Hadamard and Fejér-Hadamard inequalities for (α,h-m)-p-convex functions via Riemann–Liouville fractional integrals. Math. Probl. Engin. 2021, 2021, 9945114. [Google Scholar] [CrossRef]
- Weir, T.; Mond, B. Pre-invex functions in multiple objective optimizations. J. Math. Anal. Appl. 1988, 136, 29–38. [Google Scholar] [CrossRef]
- Li, J.-Y. On Hadamard-type inequalities for s-preinvex functions. J. Chongqing Norm. Univ. (Nat. Sci.) 2010, 27, 003. [Google Scholar]
- Meftah, B.; Souahi, A. Fractional Hermite-Hadamard type inequalities for functions whose derivatives are s-preinvex. Math. Sci. Appl. E-Notes 2019, 7, 128–138. [Google Scholar] [CrossRef]
- İşcan, I. Hermite-Hadamard’s inequalities for preinvex function via fractional integrals and related fractional inequalities. Am. J. Math. Anal. 2013, 1, 33–38. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Fractional Hermite-Hadamard inequalities for two kinds of s-preinvex functions. Nonlinear Sci. Lett. A 2017, 8, 11–24. [Google Scholar]
- Mehmood, S.; Zafar, F.; Yasmin, N. Hermite-Hadamard-Fejér type inequalities for preinvex functions using fractional integrals. Turkish J. Inequal. 2020, 4, 31–41. [Google Scholar] [CrossRef]
- Du, T.S.; Liao, J.; Chen, L.; Awan, M.U. Properties and Riemann-Liouville fractional Hermite-Hadamard inequalities for the generalized (α,m)-preinvex functions. J. Inequal. Appl. 2016, 2016, 1–24. [Google Scholar] [CrossRef]
- Katugampola, U.N. New approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1–15. [Google Scholar]
- Sanli, Z.; Kunt, M.; Koroglou, T. Improved Hermite-Hadamard type inequalities for convex functions via Katugampola fractional integrals. Sigma J. Eng. Nat. Sci. 2019, 37, 461–474. [Google Scholar]
- Hai, X.-R.; Wang, S.-H. Hermite-Hadamard type inequalities based on the Erdelyi-Kober fractional integrals. AIMS Math. 2021, 6, 11494–11507. [Google Scholar] [CrossRef]
- Jleli, M.; O’Regan, D.; Samet, B. On Hermite–Hadamard type inequalities via generalized fractional integrals. Turk. J. Math. 2016, 40, 1221–1230. [Google Scholar] [CrossRef]
- Chen, H.; Katugampola, U.N. Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef]
- Set, E.; Mumcu, I. Hermite-Hadamard type inequalities for quasi-convex functions via Katugampola fractional integrals. Int. J. Anal. Appl. 2018, 16, 605–613. [Google Scholar]
- Polyak, B.T. Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Sov. Math. Dokl. 1966, 7, 72–75. [Google Scholar]
- Awan, M.U.; Noor, M.A.; Du, T.-S.; Noor, K.I. New refinements of fractional Hermite–Hadamard inequality. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. Mat. Vol. 2019, 113, 21–29. [Google Scholar] [CrossRef]
- Mumcu, I.; Set, E.; Akdemir, A.O. Hermite-Hadamard type inequalities for harmonically convex functions via Katugampola fractional integrals. Miskolc Math. Notes 2019, 20, 409–424. [Google Scholar] [CrossRef]
- Mubeen, S.; Habibullah, G.M. k-Fractional integrals and applications. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
- Iqbal, S.; Aamir, M.; Samraiz, M.; Kashuri, A.; Asif, M. Fractional Hermite-Hadamard inequalities for twice differentiable geometric-arithmetically s-convex functions. J. Math. Anal. 2020, 11, 13–31. [Google Scholar]
- Wu, S.; Iqbal, S.; Aamir, M.; Samraiz, M.; Younus, A. On some Hermite–Hadamard inequalities involving k-fractional operators. J. Inequal. Appl. 2021, 2021, 32. [Google Scholar] [CrossRef]
- Ozdemir, M.E.; Akdemri, A.O.; Set, E. On (h,m)-convexity and Hadamard-type inequalities. Transylv. J. Math. Mech. 2016, 8, 51–58. [Google Scholar]
- Sahoo, S.K.; Ahmad, H.; Tariq, M.; Kodamasingh, B.; Hassen Aydi, H.; De la Sen, M. Hermite-Hadamard type inequalities involving k-fractional operator for (h,m)-convex functions. Symmetry 2021, 13, 1686. [Google Scholar] [CrossRef]
- Ozdemir, M.E. New refinements of Hadamard integral inequality via k-fractional integrals for p-convex function. Turkish J. Sci. 2021, 6, 1–5. [Google Scholar]
- Ali, A.; Gulshan, G.; Hussain, R.; Latif, A. Generalized inequalities of the type of Hermite-Hadamard-Fejer with quasi-convex functions by way of k-fractional derivatives. J. Comput. Appl. Math. 2017, 22, 1208–1219. [Google Scholar]
- Sahoo, S.K.; Tariq, M.; Ahmad, H.; Aly, A.A.; Felemban, B.F.; Thounthong, P. Some Hermite-Hadamard-type fractional integral inequalities involving twice-differentiable mappings. Symmetry 2021, 13, 2209. [Google Scholar] [CrossRef]
- Kadakal, M.; İşcan, I. Exponential type convexity and some related inequalities. J. Inequal. Appl. 2020, 2020, 82. [Google Scholar] [CrossRef]
- Tariq, M.; Sahoo, S.K.; Ntouyas, S.K.; Alsalami, O.M.; Shaikh, A.A.; Nonlaopon, K. Some new refinements of trapezium-type integral inequalities in connection with generalized fractional integrals. Axioms 2022, 11, 508. [Google Scholar] [CrossRef]
- Farid, G.; Rehman, A.U.; Zahra, M. On Hadamard inequalities for relative convex functions via fractional integrals. Nonlinear Anal. Forum. 2016, 21, 77–86. [Google Scholar]
- Yildiz, C.; Cotirla, L.-I. Examining the Hermite-Hadamard inequalities for k-fractional operators using the Green function. Fractal Fract. 2023, 7, 161. [Google Scholar] [CrossRef]
- Li, Y.; Samraiz, M.; Gul, A.; Vivas-Cortez, M.; Rahman, G. Hermite-Hadamard fractional integral inequalities via Abel-Gontscharoff Green’s function. Fractal Fract. 2022, 6, 126. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Dahmani, Z.; Kiris, M.E.; Ahmad, F. (k,s)-Riemann-Liouville fractional integral and applications. Hacet. J. Math. Stat. 2016, 45, 77–89. [Google Scholar] [CrossRef]
- Agarwal, P.; Jleli, M.; Tomar, M. Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals. J. Inequal. Appl. 2017, 2017, 55. [Google Scholar] [CrossRef] [PubMed]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Gürbüz, M.; Akdemir, A.O.; Rashid, S.; Set, E. Hermite–Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities. J. Inequal. Appl. 2020, 2020, 172. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Mohammed, P.O.; Kodamasingh, B.; Tariq, M.; Hamed, Y.S. New fractional integral inequalities for convex functions pertaining to Caputo-Fabrizio operator. Fractal Fract. 2022, 6, 171. [Google Scholar] [CrossRef]
- Abbasi, A.M.K.; Anwar, A. Hermite-Hadamard inequality involving Caputo-Fabrizio fractional integrals and related inequalities via s-convex functions in the second sense. AIMS Math. 2022, 7, 18565–18575. [Google Scholar] [CrossRef]
- Rashid, S.; İşcan, İ.; Baleanu, D.; Chu, Y.M. Generation of new fractional inequalities via n–polynomials s–type convexity with applications. Adv. Differ. Equ. 2020, 2020, 264. [Google Scholar] [CrossRef]
- Tariq, M.; Alsalami, O.M.; Sahoo, S.K.; Nonlaopon, K.; Ntouyas, S.K. New fractional integral inequalities pertaining to Caputo-Fabrizio and generalized Riemann-Liouville fractional integral operators. Axioms 2022, 11, 618. [Google Scholar] [CrossRef]
- Tariq, M.; Ahmad, H.; Shaikh, A.G.; Sahoo, S.K.; Khedher, K.M.; Gia, T.N. New fractional integral inequalities for preinvex functions involving Caputo-Fabrizio operator. AIMS Math 2021, 7, 3440–3455. [Google Scholar] [CrossRef]
- Tariq, M.; Khan, K.A.; Shah, N.A.; Chung, J.D. On Caputo fractional derivatives and Caputo-Fabrizio integral operators via (s,m)-convex functions. Fractal Fract. 2023, 7, 187. [Google Scholar]
- İşcan, I. Weighted Hermite-Hadamard-Mercer type inequalities for convex functions. Numer. Methods Partial. Differ. Equ. 2021, 37, 118–130. [Google Scholar] [CrossRef]
- Khan, M.A.; Anwar, S.; Khalid, S.; Sayed, Z.M.M.M. Inequalities of the type Hermite-Hadamard-Jensen-Mercer for strong convexity. Math. Probl. Eng. 2021, 2021, 5386488. [Google Scholar]
- Kang, Q.; Butt, S.I.; Nazeer, W.; Nadeem, M.; Nasir, J.; Yang, H. New variant of Hermite-Jensen-Mercer inequalities via Riemann-Liouville fractional integral operators. J. Math. 2020, 2020, 4303727. [Google Scholar] [CrossRef]
- Ogulmus, H.; Sarikaya, M. Hermite-Hadamard-Mecer type inequalities for fractional integrals. Filomat 2021, 35, 2425–2436. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Ali, M.A.; Mohammed, P.O.; Kashuri, A. On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals. AIMS Math. 2020, 6, 712–725. [Google Scholar] [CrossRef]
- Alia, M.A.; Hussain, T.; Iqbal, M.Z.; Ejaz, F. Inequalities of Hermite-Hadamard-Mercer type for convex functions via k-fractional integrals. Int. J. Math. Modelling Comp. 2020, 10, 227–238. [Google Scholar]
- Sahoo, S.K.; Hamed, Y.S.; Mohammed, P.O.; Kodamasingh, B.; Nonlaopon, K. New midpoint type Hermite-Hadamard-Mercer inequalities pertaining to Caputo-Fabrizio fractional operators. Alex. Eng. J. 2023, 65, 689–698. [Google Scholar] [CrossRef]
- Chu, H.-H.; Rashid, S.; Hammouch, Z.; Chu, Y.-M. New fractional estimates for Hermite-Hadamard-Mercer’s type inequalities. Alex. Eng. J. 2020, 59, 3079–3089. [Google Scholar] [CrossRef]
- Wang, H.; Khan, J.; Khan, M.A.; Sadia Khalid, S. The Hermite–Hadamard–Jensen–Mercer type inequalities for Riemann–Liouville fractional integral. J. Math. 2021, 2021, 5516987. [Google Scholar]
- Sousa, J.V.C.; Oliveira, E.C. On the Π-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Budak, H.; Sarikaya, M.Z. On Hermite-Hadamard type inequalities for s-convex mappings via fractional integrals of a function with respect to another function. Fasc. Math. 2016, 57, 25–36. [Google Scholar] [CrossRef]
- Liu, K.; Wang, J.-R.; O’Regan, D. On the Hermite-Hadamard type inequality for Π-Riemann–Liouville fractional integrals via convex functions. J. Inequal. Appl. 2019, 2019, 27. [Google Scholar] [CrossRef]
- Mohammed, P.O. Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function. Math. Meth. Appl. Sci. 2019, 44, 1–11. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. On Hermite-Hadamard type inequalities via fractional integrals of a function with respect to another function. J. Nonlinear Sci. Appl. 2016, 9, 1252–1260. [Google Scholar] [CrossRef]
- Butt, S.I.; Umar, M.; Khan, K.A.; Kashuri, A.; Emadifar, H. Fractional Hermite-Jensen-Mercer integral inequalities with respect to another function and application. Complexity 2021, 2021, 9260828. [Google Scholar] [CrossRef]
- Sharma, N.; Mishra, S.K.; Hamdi, A. Hermite-Hadamard type inequality for Π-Riemann-Liouville fractional integrals via preinvex functions. Int. J. Nonlinear Anal. Appl. 2022, 13, 3333–3345. [Google Scholar]
- Mohammed, P.O.; Abdeljawad, T.; Kashuri, A. Fractional Hermite–Hadamard–Fejer inequalities for a convex function with respect to an increasing function involving a positive weighted symmetric function. Symmetry 2020, 12, 1503. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Aydi, H.; Kashuri, A.; Hamed, Y.S.; Abualnaja, K.M. Midpoint inequalities in fractional calculus defined using positive weighted symmetry function kernels. Symmetry 2021, 13, 550. [Google Scholar] [CrossRef]
- Tian, W.; Wang, J. On some Hermite-Hadamard type inequalities for convex functions via Hadamard fractional integrals. Progr. Fract. Differ. Appl. 2015, 1, 103–110. [Google Scholar]
- Peng, S.; Wei, W.; Wang, J. On the Hermite-Hadamard inequalities for convex functions via Hadamard fractional integrals. Facta Univ. Ser. Math. Inform. 2014, 29, 55–75. [Google Scholar]
- Wang, J.-R.; Li, X.; Zhu, C. Refinements of Hermite-Hadamard type inequalities involving fractional integrals. Bull. Belg. Math. Soc. Simon Stevin 2013, 20, 655–666. [Google Scholar] [CrossRef]
- Niculescu, C.P. Convexity according to the geometric mean. Math. Inequal. Appl. 2000, 2, 155–167. [Google Scholar] [CrossRef]
- Zhang, Z.; Wei, W.; Wang, J. Generalization of Hermite-Hadamard inequalities involving Hadamard fractional integrals. Filomat 2015, 29, 1515–1524. [Google Scholar] [CrossRef]
- Liu, S.; Wang, J. Hermite-Hadamard type fractional integral inequalities for geometric-geometric convex functions. Matematiche 2015, LXX, 3–20. [Google Scholar]
- İşcan, I. New general integral inequalities for quasi-geometrically convex functions via fractional integrals. J. Inequal. Appl. 2013, 2013, 491. [Google Scholar] [CrossRef]
- Kunt, M.; İşcan, I. Fractional Hermite-Hadamard-Fejér type inequalities for GA-convex functions. Turkish J. Inequal. 2018, 2, 1–20. [Google Scholar]
- Jarad, F.; Abdeljawad, T.; Alzabut, J. Generalized fractional derivatives generated by a class of local proportional derivatives. Eur. Phys. J. Spec. Top. 2017, 226, 3457–3471. [Google Scholar] [CrossRef]
- Mumcu, I.; Set, E.; Akdemir, A.O.; Jarad, F. New extensions of Hermite-Hadamard inequalities via generalized proportional fractional integral. Numer. Methods Partial. Differ. Equ. 2021, 1–12. [Google Scholar] [CrossRef]
- Aljaaidi, T.A.; Pachpatte, D.B. The Hermite-Hadamard-Mercer type inequalities via generalized proportional fractional integral concerning another function. Int. J. Math. Math. Sci. 2022, 2022, 6716830. [Google Scholar] [CrossRef]
- Aljaaidi, T.A.; Pachpatte, D.B.; Abdo, M.S.; Botmart, T.; Ahmad, H.; Almalahi, M.A.; Redhwan, S.S. (k,Π)-Proportional fractional integral Pólya–Szegö and Grüss-type inequalities. Fractal Fract. 2021, 5, 172. [Google Scholar] [CrossRef]
- Desta, H.D.; Nwaeze, E.R.; Abdi, T.; Mijena, J.B. New generalized Hermite–Hadamard–Mercer’s type inequalities using (k,Π)-proportional fractional integral operator. Foundations 2023, 3, 49–62. [Google Scholar] [CrossRef]
- Raina, R.K. On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 2005, 21, 191–203. [Google Scholar]
- Agarwal, R.P.; Luo, M.-J.; Raina, R.K. On Ostrowski type inequalities. Fasc. Math. 2016, 204, 5–27. [Google Scholar] [CrossRef]
- Set, E.; Noor, M.A.; Awan, M.U.; Gözpinar, A. Generalized Hermite-Hadamard type inequalities involving fractional integral operators. J. Inequal. Appl. 2017, 2017, 169. [Google Scholar] [CrossRef] [PubMed]
- Kavurmacı-Önalan, H.; Set, E.; Gözpınar, A. General inequalities related Hermite-Hadamard inequality for generalized fractional integrals. Stud. Univ. Babes-Bolyai Math. 2019, 64, 453–465. [Google Scholar] [CrossRef]
- Yaldiz, H.; Sarikaya, M.Z. On the Hermite-Hadamard type inequalities for the fractional integral operator. Kragujevac J. Math. 2020, 44, 369–378. [Google Scholar] [CrossRef]
- Budak, H.; Sarikaya, M.Z. On refinements of Hermite-Hadamard type inequalities with generalized fractional integral operators. Frac. Differ. Calc. 2021, 11, 121–132. [Google Scholar] [CrossRef]
- Set, E.; Celik, B.; Özdemir, M.E.; Aslan, M. Some new results on Hermite-Hadamard-Mercer-type inequalities using a general family of fractional integral operators. Fractal Fract. 2021, 5, 68. [Google Scholar] [CrossRef]
- Set, E.; Choi, J.; Celik, B. Certain Hermite-Hadamard type inequalities involving generalized fractional integral operators. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. Racsam 2018, 112, 1539–1547. [Google Scholar] [CrossRef]
- Gordji, M.E.; Dragomir, S.S.; Delavar, M.R. An inequality related to η-convex functions (II). Int. J. Nonlinear Anal. Appl. 2015, 6, 27–33. [Google Scholar]
- Hernandez, J.; Vivas-Cortez, M. Hermite-Hadamard inequalities type for Raina’s fractional integral operator using η convex functions. Rev. Mat. Teor. Apl. 2019, 26, 1–20. [Google Scholar]
- Ali, T.; Khan, M.A.; Khurshidi, Y. Hermite-Hadamard inequality for fractional integrals via η-convex functions. Acta Math. Univ. Comen. 2017, 86, 153–164. [Google Scholar]
- Tunc, T.; Budak, H.; Usta, F.; Sarıkaya, M.Z. On new generalized fractional integral operators and related inequalities. Konuralp J. Math. 2020, 8, 268–278. [Google Scholar]
- Set, E.; Choi, J.; Gözpinar, A. Hermite-Hadamard type inequalities for the generalized k-fractional integral operators. J. Inequal. Appl. 2017, 2017, 206. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tariq, M.; Ntouyas, S.K.; Shaikh, A.A. A Comprehensive Review of the Hermite–Hadamard Inequality Pertaining to Fractional Integral Operators. Mathematics 2023, 11, 1953. https://doi.org/10.3390/math11081953
Tariq M, Ntouyas SK, Shaikh AA. A Comprehensive Review of the Hermite–Hadamard Inequality Pertaining to Fractional Integral Operators. Mathematics. 2023; 11(8):1953. https://doi.org/10.3390/math11081953
Chicago/Turabian StyleTariq, Muhammad, Sotiris K. Ntouyas, and Asif Ali Shaikh. 2023. "A Comprehensive Review of the Hermite–Hadamard Inequality Pertaining to Fractional Integral Operators" Mathematics 11, no. 8: 1953. https://doi.org/10.3390/math11081953
APA StyleTariq, M., Ntouyas, S. K., & Shaikh, A. A. (2023). A Comprehensive Review of the Hermite–Hadamard Inequality Pertaining to Fractional Integral Operators. Mathematics, 11(8), 1953. https://doi.org/10.3390/math11081953