Estimations of the Jensen Gap and Their Applications Based on 6-Convexity
Abstract
:1. Introduction
- Section 2 provide estimates for the Jensen gap.
- Section 3 gives numerical estimations for the Jensen gap and their comparisons with other results.
- Section 4 provides applications for the Hölder inequality.
- Section 5 presents applications for the power and quasi-arithmetic means.
- Section 6 provides applications for information theory.
- Section 7 gives applications for the Zipf–Mandelbrot entropy.
2. Main Results
- .
- .
3. Numerical Estimations for the Jensen Gap
4. Applications for the Hölder Inequality
- (i)
- If , then
- (ii)
- If , then reverses.
- (ii)
- Obviously, the function is 6-concave on for . Therefore, the reverse of follows the technique utilized in .
- (i)
- If , then
- (ii)
- If , then (21) is positive in the opposite sense.
- (ii)
- Clearly, is a 6-concave function with the given conditions. Therefore, to deduce the reverse inequality in , we follow the procedure of .
- (i)
- If , then
- (ii)
- If , then (23)is is valid in the reverse path.
5. Application for the Power and Quasi-Arithmetic Means
- (ii)
- For the aforementioned conditions on and , the function is 6-convex on Therefore, by following the procedure , we receive (24).
- (iii)
- For the said values of and , the function is 6-concave on Therefore, the inequality (24) can easily be deduced by adopting the procedure of proof of
- (iv)
- Surely, the function is 6-concave on for the given values of and . Therefore, to acquire inequality (24), we proceed in the same way as in the proof of .
6. Applications in Information Theory
- TheRényi divergenceis defined by:
- TheShannon Entropyis defined as follows:
- TheKullback –Leibler Divergenceis given by:
- TheBhattacharyya Coefficientis defined as:
7. Applications for the Zipf–Mandelbrot Entropy
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anikin, A.S.; Gasnikov, A.V.; Dvurechensky, P.E.; Tyurin, A.I.; Chernov, A.V. Dual approaches to the minimization of strongly convex functionals with a simple structure under affine constraints. Comput. Math. Math. Phys. 2017, 57, 1262–1276. [Google Scholar] [CrossRef]
- Ghadimi, S.; Lan, G.; Zhang, H. Generalized uniformly optimal methods for non-linear programming. J. Sci. Comput. 2019, 79, 1854–1881. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Generalized convexity and integral inequalities. Appl. Math. Inf. Sci. 2015, 9, 233–243. [Google Scholar] [CrossRef]
- Niculescu, C.P.; Persson, L.E. Convex Functions and Their Applications, A Contemporary Approach, CMS Books in Mathematics; Springer: New York, NY, USA, 2006. [Google Scholar]
- Pečarić, J.; Persson, L.E.; Tong, Y.L. Convex Functions, Partial Ordering and Statistical Applications; Academic Press: New York, NY, USA, 1992. [Google Scholar]
- Chu, Y.-M.; Zhao, T.-H. Concavity of the error function with respect to Hölder means. Math. Inequal. Appl. 2016, 19, 589–595. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Pearce, E.E.M. Selected Topics on Hermite–Hadamard Inequalities and Applications; Victoria University: Victoria, Australia, 2000. [Google Scholar]
- Horváth, L.; Pečarić, Đ.; Pečarić, J. Estimations of f-and Rényi divergences by using a cyclic refinement of the Jensen’s inequality. Bull. Malays. Math. Sci. Soc. 2019, 42, 933–946. [Google Scholar] [CrossRef]
- Marshall, A.W.; Olkin, I.; Arnold, B. Inequalities: Theory of Majorization and Its Applications, 2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 2011. [Google Scholar]
- Ali, S.; Saif, M.; Khan, K.A.; Shah, N.A.; Weera, W. A note on varying G and L in Chern–Simons modified gravity. Symmetry 2022, 14, 1430. [Google Scholar] [CrossRef]
- Butt, S.I.; Yousaf, S.; Khan, K.A.; Mabela, R.M.; Alsharif, A.M. Fejer–Pachpatte–Mercer–type inequalities for harmonically convex functions involving exponential function in kernel. Math. Probl. Eng. 2022, 2022, 7269033. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequal. 2021, 15, 701–724. [Google Scholar] [CrossRef]
- Butt, S.I.; Rashid, S.; Javed, I.; Khan, K.A.; Mabela, R.M. New fractional estimates of Simpson–Mercer type for twice differentiable mappings pertaining to Mittag–Leffler kernel. J. Funct. Space 2022, 2022, 4842344. [Google Scholar] [CrossRef]
- Chu, Y.-M.; Zhao, T.-H. Convexity and concavity of the complete elliptic integrals with respect to Lehmer mean. J. Inequal. Appl. 2015, 396, 1–6. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. Monotonicity and convexity involving generalized elliptic integral of the first kind. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas 2021, 115, 46. [Google Scholar] [CrossRef]
- Dragomir, S.S. Some Slater’s type inequalities for convex functions defined on linear spaces and applications. Abstr. Appl. Anal. 2012, 2012, 168405. [Google Scholar] [CrossRef]
- Adeel, M.; Khan, K.A.; Pečarić, Đ.; Pečarić, J. Levinson type inequalities for higher order convex functions via Abel–Gontscharoff interpolation. Adv. Differ. Equ. 2019, 430, 1–13. [Google Scholar] [CrossRef]
- Adeel, M.; Khan, K.A.; Pečarić, Đ.; Pečarić, J. Estimation of f–divergence and Shannon entropy by Levinson type inequalities for higher–order convex functions via Taylor polynomial. J. Math. Comput. Sci. 2020, 21, 322–334. [Google Scholar] [CrossRef]
- Sezer, S.; Eken, Z.; Tinaztepe, G.; Adilov, G. p-convex functions and some of their properties. Numer. Funct. Anal. Optim. 2021, 42, 443–459. [Google Scholar] [CrossRef]
- Hudzik, H.; Maligranda, L. Some remarks on s–convex functions. Aequationes Math. 1994, 48, 100–111. [Google Scholar] [CrossRef]
- Adil Khan, M.; Wu, S.-H.; Ullah, H.; Chu, Y.-M. Discrete majorization type inequalities for convex functions on rectangles. J. Inequal. Appl. 2019, 16, 1–18. [Google Scholar] [CrossRef]
- Varošanec, S. On h-convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [Google Scholar] [CrossRef]
- You, X.; Khan, M.A.; Ullah, H.; Saeed, T. Improvements of Slater’s inequality by means of 4-convexity and its applications. Matheatics 2022, 10, 1274. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Agarwal, R.P.; Cerone, P. On Simpson’s inequality and applications. J. Inequal. Appl. 2000, 5, 533–579. [Google Scholar] [CrossRef]
- Ullah, H.; Adil Khan, M.; Saeed, T.; Sayed, Z.M.M.M. Some improvements of Jensen’s inequality via 4–convexity and applications. J. Funct. Space 2022, 2022, 2157375. [Google Scholar] [CrossRef]
- Youness, E.A. E–convex sets, E–convex functions, and E-convex programming. J. Optim. Theory Appl. 1999, 102, 439–450. [Google Scholar] [CrossRef]
- Zhao, C.-J.; Cheung, W.-S. On improvements of the Rozanova’s inequality. J. Inequal. Appl. 2011, 33, 1–7. [Google Scholar] [CrossRef]
- Furuichi, S.; Moradi, H.R.; Zardadi, A. Some new Karamata type inequalities and their applications to some entropies. Rep. Math. Phys. 2019, 84, 201–214. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Yang, Z.-H.; Chu, Y.-M. Monotonicity properties of a function involving the psi function with applications. J. Inequal. Appl. 2015, 193, 1–10. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Shi, L.; Chu, Y.-M. Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas 2020, 114, 96. [Google Scholar] [CrossRef]
- Adil Khan, M.; Ullah, H.; Saeed, T.; Alsulami, H.H.; Sayed, Z.M.M.M.; Alshehri, A.M. Estimations of the Slater gap via convexity and its applications in information theory. Math. Probl. Eng. 2022, 2022, 1750331. [Google Scholar] [CrossRef]
- Mercer, A.M. A variant of Jensen’s inequality. J. Inequal. Pure Appl. Math. 2003, 4, 73. [Google Scholar]
- Latif, M.A.; Dragomir, S.S.; Momoniat, E. Some Fejer type integral inequalities for geometrically–arithmetically–convex functions with applications. Filomat 2018, 32, 2193–2206. [Google Scholar] [CrossRef]
- Mihai, M.V.; Noor, M.A.; Noor, K.I.; Awan, M.U. Some integral inequalities for harmonic h–convex functions involving hypergeometric functions. Appl. Math. Comput. 2015, 252, 257–262. [Google Scholar] [CrossRef]
- Zhao, T.-H.; He, Z.-Y.; Chu, Y.-M. On some renfements for inequalities involving zero–balanced hypergeometric function. AIMS Math. 2020, 5, 6479–6495. [Google Scholar] [CrossRef]
- Wang, M.-K.; Hong, M.-Y.; Xu, Y.-F.; Shen, Z.-H.; Chu, Y.-M. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal. 2020, 14, 1–21. [Google Scholar] [CrossRef]
- Liu, W.; Shi, F.; Ye, G.; Zhao, D. The properties of harmonically cr-h-convex function and its applications. Mathematics 2022, 10, 2089. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 2020, 5, 4512–4528. [Google Scholar] [CrossRef]
- Davis, C. A Schwarz inequality for convex operator functions. Proc. Am. Math. Soc. 1957, 8, 42–44. [Google Scholar] [CrossRef]
- Shor, N. Minimization Methods for Non-Differentiable Functions; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Ullah, H.; Adil Khan, M.; Saeed, T. Determination of bounds for the Jensen gap and its applications. Mathematics 2021, 9, 3132. [Google Scholar] [CrossRef]
- Dragomir, S.S. A converse result for Jensen’s discrete inequality via Gruss inequality and applications in Information Theory. An. Univ. Oradea Fasc. Mat 1999, 7, 178–189. [Google Scholar]
- Cloud, M.J.; Drachman, B.C.; Lebedev, L.P. Inequalities with Applications to Engineering; Springer: Cham, Switzerland; Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- White, C.C.; Harrington, D.P. Application of Jensen’s inequality to adaptive suboptimal design. J. Optim. Theory Appl. 1980, 32, 89–99. [Google Scholar] [CrossRef]
- Mukhopadhyay, N. On sharp Jensen’s inequality and some unusual applications, communications in statistics. Theor. Methods 2011, 40, 1283–1297. [Google Scholar] [CrossRef]
- Azar, S.A. Jensen’s inequality in finance. Int. Adv. Econ. Res. 2008, 14, 433–440. [Google Scholar] [CrossRef]
- Ullah, H.; Adil Khan, M.; Pečarić, J. New bounds for soft margin estimator via concavity of Gaussian weighting function. Adv. Differ. Equ. 2020, 644, 1–10. [Google Scholar] [CrossRef]
- Tapus, N.; Popescu, P.G. A new entropy upper bound. Appl. Math. Lett. 2012, 25, 1887–1890. [Google Scholar] [CrossRef]
- Bakula, M.K.; Pečarić, J. On the Jensen’s inequality for convex functions on the co–ordinates in a rectangle from the plane. Taiwan. J. Math. 2006, 10, 1271–1292. [Google Scholar] [CrossRef]
- Dragomir, S.S. A further improvement of Jensen’s inequality. Tamkang J. Math. 1994, 25, 29–36. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Ionescu, N.M. Some converse of Jensen’s inequality and applications. Rev. Anal. Numér. Théor. Approx. 1994, 23, 71–78. [Google Scholar]
- Bakula, M.K.; Nikodem, K. On the converse Jensen inequality for strongly convex functions. J. Math. Anal. Appl. 2016, 434, 516–522. [Google Scholar] [CrossRef]
- Dragomir, S.S. Some refinements of Jensen’s inequality. J. Math. Anal. Appl. 1992, 168, 518–522. [Google Scholar] [CrossRef]
- Dragomir, S.S. Two mappings associated with Jensen’s inequality. Extr. Math. 1993, 8, 102–105. [Google Scholar]
- Micić, J.; Pečarić, J.; Jurica, P. Refined Jensen’s operator inequality with condition on spectra. Oper. Matrices 2013, 7, 293–308. [Google Scholar]
- Vasić, P.M.; Mijalković, Ž. On an index set function connected with Jensen inequality. Publikacije Elektrotehničkog Fakulteta Serija Matematika i Fizika 1976, 544/576, 110–112. [Google Scholar]
- Kian, M. Operator Jensen inequality for superquadratic functions. Linear Algebra Appl. 2014, 456, 82–87. [Google Scholar] [CrossRef]
- Matković, A.; Pečarić, J.; Perić, I. A variant of Jensen’s inequality of Mercer’s type for operators with applications. Linear Algebra Appl. 2006, 418, 551–564. [Google Scholar] [CrossRef]
- Deng, Y.; Ullah, H.; Adil Khan, M.; Iqbal, S.; Wu, S. Refinements of Jensen’s inequality via majorization results with applications in the information theory. J. Math. 2021, 2021, 1951799. [Google Scholar] [CrossRef]
- Saeed, T.; Adil Khan, M.; Ullah, H. Refinements of Jensen’s inequality and applications. AIMS Math. 2022, 7, 5328–5346. [Google Scholar] [CrossRef]
- Adil Khan, M.; Ullah, H.; Saeed, T. Some estimations of the Jensen difference andapplications. Math. Meth. Appl. Sci. 2022, 46, 5863–5892. [Google Scholar] [CrossRef]
- Costarelli, D.; Spigler, R. How sharp is the Jensen inequality? J. Inequal. Appl. 2015, 69, 1–10. [Google Scholar] [CrossRef]
- Zhu, X.L.; Yang, G.H. Jensen inequality approach to stability analysis of discrete-time systems with time-varying delay. Proc. Amer. Control Conf. 2008, 1644–1649. [Google Scholar]
- Adil Khan, M.; Khan, S.; Chu, Y. A new bound for the Jensen gap with applications in information theory. IEEE Access 2020, 18, 98001–98008. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adil Khan, M.; Sohail, A.; Ullah, H.; Saeed, T. Estimations of the Jensen Gap and Their Applications Based on 6-Convexity. Mathematics 2023, 11, 1957. https://doi.org/10.3390/math11081957
Adil Khan M, Sohail A, Ullah H, Saeed T. Estimations of the Jensen Gap and Their Applications Based on 6-Convexity. Mathematics. 2023; 11(8):1957. https://doi.org/10.3390/math11081957
Chicago/Turabian StyleAdil Khan, Muhammad, Asadullah Sohail, Hidayat Ullah, and Tareq Saeed. 2023. "Estimations of the Jensen Gap and Their Applications Based on 6-Convexity" Mathematics 11, no. 8: 1957. https://doi.org/10.3390/math11081957
APA StyleAdil Khan, M., Sohail, A., Ullah, H., & Saeed, T. (2023). Estimations of the Jensen Gap and Their Applications Based on 6-Convexity. Mathematics, 11(8), 1957. https://doi.org/10.3390/math11081957