The Heat Equation on Submanifolds in Lie Groups and Random Motions on Spheres
Abstract
:1. Introduction
Set up and Main Result
2. Motivation and Literature Review
3. The Heat Kernel in
3.1. The Lie Group
3.2. Euler Parametrization and Haar Measure on
3.3. Brownian Motion on a Riemannian Manifold
3.4. The Density Probability of the Brownian Motion in
3.5. Root Decomposition of the Lie Algebra of a Compact Lie Group
3.6. Computation of the Characters
3.7. Solution of the Heat Equation for Compact Lie Groups
3.8. Solution of the Heat Equation for SO(3)
4. The Brownian Motion on the Support of
4.1. The Support of f
4.2. The Support Seen as Submanifold Embedded in
Tangent Space of the Submanifold
4.3. Laplace–Beltrami Operator on
4.4. The Heat Kernel on
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brillinger, D.R. A particle migrating randomly on a sphere. J. Theor. Probab. 1997, 10, 429–443. [Google Scholar] [CrossRef]
- Yosida, K. Brownian motion on the surface of the 3-sphere. Ann. Math. Stat. 1949, 20, 292–296. [Google Scholar] [CrossRef]
- Liao, M. Random motion of a rigid body. J. Theor. Probab. 1997, 10, 201–1211. [Google Scholar] [CrossRef]
- Albeverio, S.; Gordina, M. Lévy processes and their subordination in matrix Lie groups. Bull. Sci. Math. 2007, 131, 738–760. [Google Scholar] [CrossRef]
- Furry, W.H. Isotropic Rotational Brownian Motion. Phys. Rev. 1957, 107, 7. [Google Scholar] [CrossRef]
- Favro, L.D. Theory of Rotational Brownian Motion of a Free Rigid Body. Phys. Rev. 1960, 119, 53. [Google Scholar] [CrossRef]
- Ivanov, E.N. Theory of Rotational Brownian Motion. Sov. Phys. JETP 1964, 18, 1041–1045. [Google Scholar]
- Hubbard, P.S. Rotational Brownian Motion. Phys. Rev. A 1972, 6, 2421. [Google Scholar] [CrossRef]
- Valiev, K.A.; Ivanov, E.N. Rotational Brownian Motion. Sov. Phys. Uspekhi 1973, 16, 1. [Google Scholar] [CrossRef]
- McClung, R.E.D. The Fokker–Planck-Langevin model for Rotational Brownian motion I. General Theory. J. Chem. Phys. 1980, 73, 2435–2442. [Google Scholar] [CrossRef]
- Graham, R. Covariant formulation of non-equibrilium statistical Thermodynamics. Z. Phys. B Cond. Matter 1977, 26, 397–405. [Google Scholar]
- Van Kampen, N.G. Brownian motion on a manifold. J. Stat. Phys. 1986, 44, 1–24. [Google Scholar] [CrossRef]
- Risken, H. The Fokker Planck Equation; Springer Series in Synergetics; Springer: Berlin/Heidelberg, Germany, 1989; Volume 18. [Google Scholar]
- Elworthy, K.D. Stochastic Differential Equation on MANIFOLDS; Cambridge University Press: Cambridge, UK, 1982; p. 70. [Google Scholar]
- Castro-Villarreal, P.; Villada-Balbuena, A.; Méndez-Alcaraz, J.M.; Castañeda-Priego, R.; Estrada-Jiménez, S. A Brownian dynamics algorithms for colloids in curved manifolds. J. Chem. Phys. 2014, 14, 214115. [Google Scholar] [CrossRef] [PubMed]
- Castro-Villarreal, P.; Sevilla, F. Active motion on curved surfaces. Phys. Rev. E 2018, 97, 052605. [Google Scholar] [CrossRef]
- Novikov, A.; Kuzmin, D.; Ahmadi, O. Random walk methods for Monte Carlo simulations of Brownian diffusion on a sphere. Appl. Math. Comput. 2020, 364, 124670. [Google Scholar]
- Gomez, A.V.; Sevilla, F.J. A geometric method for the Smoluchowski equation on the sphere. J. Stat. Mech. Theory Exp. 2021, 8, 083210. [Google Scholar] [CrossRef]
- Yang, Y.; Li, B. A simulation algorithm for Brownian dynamics on complex curved surfaces. J. Chem. Phys. 2019, 151, 164901. [Google Scholar] [CrossRef]
- Faraut, J. Analysis on Lie groups, An introduction. Camb. Stud. Adv. Math. 2008, 110. [Google Scholar] [CrossRef]
- Grigor’yan, A. Heat Kernel and Analysis on Manifolds; Yau, S.-T., Ed.; AMS/IP Studies in Advanced Mathematics; American Mathematical Society: Providence, RI, USA, 2009; Volume 47. [Google Scholar]
- Liao, M. Levy processes and Fourier analysis on compact Lie groups. Ann. Prob. 2004, 32, 1553–1573. [Google Scholar] [CrossRef]
- Liao, M. Invariant Markov Processes under Lie Group Actions; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Ito, K. Brownian motion in a Lie groups. Proc. Jpn. Acad. 1950, 26, 4–10. [Google Scholar]
- Milnor, J. Curvature of left invariants metrics on Lie groups. Adv. Math. 1976, 21, 293–329. [Google Scholar] [CrossRef]
- Lee, J.M. Introduction to Smooth Manifolds, 2nd ed.; GTM 218; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Choe, J.; Gulliver, R. Isoperimetric inequalities on minimal submanifolds of space forms. Manuscr. Math. 1992, 77, 169–189. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Dayel, I.; Deshmukh, S. The Heat Equation on Submanifolds in Lie Groups and Random Motions on Spheres. Mathematics 2023, 11, 1958. https://doi.org/10.3390/math11081958
Al-Dayel I, Deshmukh S. The Heat Equation on Submanifolds in Lie Groups and Random Motions on Spheres. Mathematics. 2023; 11(8):1958. https://doi.org/10.3390/math11081958
Chicago/Turabian StyleAl-Dayel, Ibrahim, and Sharief Deshmukh. 2023. "The Heat Equation on Submanifolds in Lie Groups and Random Motions on Spheres" Mathematics 11, no. 8: 1958. https://doi.org/10.3390/math11081958
APA StyleAl-Dayel, I., & Deshmukh, S. (2023). The Heat Equation on Submanifolds in Lie Groups and Random Motions on Spheres. Mathematics, 11(8), 1958. https://doi.org/10.3390/math11081958