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Abstract: We consider a non-standard class of Markovian time: varying infinite capacity queues with
possibly heterogeneous servers and impatience. We assume that during service time, a customer
may switch to the faster server (with no delay), when such a server becomes available and no other
customers are waiting. As a result, customers in the queue may become impatient and leave it. Under
this setting and with certain restrictions on the intensity functions, the quantity of interest, the total
number of customers in the system, is the level-dependent birth-and-death process (BPD). In this
paper, for the first time in the literature, explicit upper bounds for the distance between two probability
distributions of this BDP are obtained. Using the obtained ergodicity bounds in combination with the
sensitivity bounds, we assess the stability of BDP under perturbations. Truncation bounds are also
given, which allow for numerical solutions with guaranteed truncation errors. Finally, we provide
numerical results to support the findings.

Keywords: nonstationary queuing system; impatience; birth-death process; ergodicity; bounds;
limiting characteristics

MSC: 60J27; 60J28; 60K25

1. Introduction

In this paper, consideration is given to certain aspects of the performance evaluation
of one particular class of Markovian time: varying queues with heterogeneous servers and
customer impatience. Both single- and multiple-class multiserver queues, either with or
without impatience, have been the subjects of extensive research for many decades and
remain so. Therefore, substantial literature on the topic exists. For the current state of art
from various points of view, both theoretical and practical, one can refer, for example, to the
introduction sections of [1–13].

The class of queues, investigated in this paper, consists solely of Mt/Mt/S/∞ queues
with customer impatience. All service times are exponential, and the service intensity of
server i is µi(t). Therefore, servers are allowed to be heterogeneous. Moreover, they are
assumed to be numbered as 1, 2, . . . , S without repetition by decreasing service speed. To
make the latter possible we assume that µi(t) is of the form µi(t) = f (t)µi, where f (t) is
a locally integrable (non necessarily continuous) bounded positive function and 0 < µi < ∞.
Customers arrive one by one with the intensity λ(t) and either occupy one server, if there
is one idle, or one place in the queue. The basic quantities under consideration will be X(t)
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: the total number of customer in the system at the instant t, and its distributions. Thus, the
queuing discipline is irrelevant as long as it remains work-conserving and non-preemptive
(for example, FIFO, LIFO, or RANDOM).

The state space of X(t) is {0, 1, 2 . . . } and, from the description given above, it is clear
that X(t) is the level-dependent BDP. Let us denote its time-dependent intensity matrix
(generator) by A(t) = (aij(t))∞

i,j=0 (its form is given in Section 2). The distribution of X(t)

can be represented as a probability vector p(t) = (p0(t), p1(t), p2(t), . . . )T.
There exist various techniques to calculate performance measures for time-varying

queues (see, for example, Introduction in [14–17]). Probably the most widely applicable
(or at least most popular nowadays, due to increasing computer power) set of techniques
consists of numerical methods for systems of ordinary differential equations (ODEs). When-
ever the queues’ capacities are infinite, the following two questions usually arise, when one
attempts to compute stationary (or limiting) performance characteristics of queues using
an ODE technique: (i) how to solve the Kolmogorov system d

dt p(t) = A(t)p(t), p(t)T1 = 1,
having infinitely many equations? (ii) how to understand that the limiting regime is
reached? Traditionally, (i) is circumvented using truncation. Yet, there is no “rule of thumb”
for choosing the truncation threshold, except for “the larger the better”. With respect to (ii),
stationary (or limiting) characteristics are usually considered to be identical to the solution
of the ODEs at some distant time interval. However, usually it cannot be specified in
advance how to choose the position and the length of the “distant time interval”, on which
the solution of the system must be found. It can happen that the steady-state is detected
prematurely (see [18]).

There are methods in the literature that can solve (i) and (ii) for certain continuous-
time Markov chains (see [19–23]). In those cases where the stationary distribution of the
Markov chain can be efficiently calculated in advance, solution techniques equipped with
the steady-state detection exist (see, for example, [24]). However, in any case, an ODE
technique, used to compute the distribution of the queue size or its moments, benefits
from the answer to question (ii). This answer follows from the convergence (ergodic)
properties of Markov chains. In addition, even though those properties have been the
subject of many research papers, it remains difficult to obtain practically useful general
ergodicity bounds. In this paper, we show that one well-known method, which is based
on the notion of the logarithmic norm of a linear operator and utilizes the properties of
linear systems of differential equations, may yield explicit ergodicity bounds for certain
time-varying multi-server queues with impatience. Using these bounds, both questions
(i) and (ii) can be answered. It must be noticed that the ergodicity results available in the
literature for level-(in)dependent nonhomogeneous BDP (and X(t) is such a Markov chain)
can do the job as well (see, for example, [25,26]). However, being usually quite general, and
requiring guessing or estimation of certain quantities, it can prove unclear how to apply
them in specific use cases. The novel explicit ergodicity bounds provided in this paper
constitute its main contribution. As an additional utility of these bounds, we show that,
in combination with the sensitivity bounds, they allow assessment of the stability of X(t)
under perturbations.

In the description of the class of queues under investigation given above, two ingredi-
ents are missed: a server selection rule for the newly arriving customers and the impatience
mechanism. When the servers are not identical and an arriving customer sees more than
one idle server, they need a rule to select a server. Various selection rules can be found
in the literature. Probably the most popular (since [27]) is random selection, according to
which arrivals choose randomly any of the idle servers. When arriving customers choose
the first idle server,this is the ordered entry rule (see [28–31]). Assuming the servers are
numbered, if a customer occupies the idle server with the lowest number, then this is an
ordered hunt rule (see [32]). General selection rules, where arrivals select one of the idle
servers with a certain probability, have also been considered (see [33,34]). In this paper, we
assume that the ordered hunt rule is adopted. Moreover, in order to avoid the state space
collapse, being the main obstacle in the analysis of multi-server heterogeneous queues,
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we additionally assume that the following service mechanism (known in the literature;
see, for example, [10]) is implemented in the system: during the service time, a customer
switches to the fastest server (without any delay) when such a server becomes available
and there are no other customers waiting. The choice of the impatience mechanism is
dictated by the limitations of the method used to obtain the ergodicity bounds. As will be
seen, the method heavily relies on the notion of the logarithmic norm of a linear operator,
which in the considered case is equal to supi

{
aii(t) + ∑j 6=i |aji(t)|

}
. For it to be finite, the

generator A(t) has to be bounded (element-wise) for any t. This condition conflicts with
the classic impatience mechanism, according to which the impatience intensity grows as
the queue-size increases. Therefore, in this paper we assume that the probability that
exactly one customer leaves the queue during the interval (t, t + ∆), given that there are i
customers in the system, is ζi(t)∆ + o(∆), i > S, and ζS+1(t), ζS+2(t), . . . with a single finite
upper bound.

In what follows, by ‖ · ‖ we denote the l1-norm, i.e., if x is an (l + 1)-dimensional
column vector then ‖x‖ = ∑l

k=0 |xk|. If x is a probability vector, and then ‖x‖ = 1.
The choice of operator norms will be the one induced by the l1-norm in column vectors,
i.e., ‖A‖ = sup0≤j≤l ∑l

i=0 |aij| for a linear operator A.

2. Model Description

Let X(t) denote the total number of customers in the model at time t ≥ 0. Then X(t)
is the continuous-time BDP with the state space {0, 1, 2 . . . }. Denote the birth intensity
by λ(t) and the death intensity by νk(t) if k customers are in the model at the instant t. We
assume that νk(t) can be represented in the form

νk(t) =

{
f (t)∑k

i=1 µk, if 1 ≤ k ≤ S,
f (t)∑S

i=1 µk + ζ(t)θk, if k > S,
(1)

where µ1 ≥ · · · ≥ µS > 0 and {θk, k ≥ S + 1} is a bounded monotonically non-decreasing
sequence of positive numbers i.e., θk ≤ θk+1 and there exists some M ∈ (0, ∞) such that
θk ≤ M for all k. Another restriction imposed on the intensities λ(t) and {νk(t), k ≥ 1} is
that they are locally integrable on [0, ∞) (not necessarily continuous) functions and bounded
in the following sense: there exists some L ∈ (0, ∞) such that supk≥1 |λ(t) + νk(t)| ≤ L for
almost all t ≥ 0.

Since X(t) is the BDP, then its transposed generator, further denoted by
A(t) = (aij(t))∞

i,j=0, has the form:

A(t) =


−λ(t) ν1(t) 0 0 . . .
λ(t) −(λ(t) + ν1(t)) ν2(t) 0 . . .

0 λ(t) −(λ(t) + ν2(t)) ν3(t) . . .
0 0 λ(t) −(λ(t) + ν3(t)) . . .
...

...
...

...
. . .

.

Given an appropriate initial condition, the Kolmogorov forward equations for the
distribution p(t) = (p0(t), p1(t), p2(t), . . . )T of X(t) can be written as

d
dt

p(t) = A(t)p(t). (2)

Since ‖A(t)‖ = 2 supk(λ(t) + νk(t)) ≤ 2L < ∞ for almost all t ≥ 0, the linear operator A(t)
is bounded and locally integrable for t ∈ [0, ∞). Therefore (2) is the system of differential
equations in the space l1 with the bounded linear operator and thus it has a unique solution
for arbitrary initial conditions.

3. Ergodicity Bounds

All the ergodicity bounds, as shown in this section, are obtained through the appli-
cation of the same method, known as the “logarithmic norm” method. It based on the
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notion of the logarithmic norm (see, for example, [14,35]) and utilizes the properties of
linear systems of differential equations and thus is directly applicable to (2).

3.1. Null Ergodicity

Fix any ε ∈ (0, 1) and define the decreasing sequence of positive numbers
{dk, k ≥ 0} by dk = (1− ε)k. Let D = diag(d0, d1, d2, . . . ). Since the inverse D−1 always
exists, the system of Equation (2) can be rewritten in the following equivalent form:

d
dt
(Dp(t)) =

(
DA(t)D−1

)
Dp(t), (3)

where

DA(t)D−1 =



−λ(t) ν1(t)
1−ε 0 0 . . .

(1− ε)λ(t) −(λ(t) + ν1(t))
ν2(t)
1−ε 0 . . .

0 (1− ε)λ(t) −(λ(t) + ν2(t))
ν3(t)
1−ε . . .

0 0 (1− ε)λ(t) −(λ(t) + ν3(t)) . . .
...

...
...

...
. . .


.

Denote by −αk(t) the sum of all elements in the kth column of this matrix. By direct
inspection, it can be seen that α0(t) = λ(t)ε and αk(t) = ε

(
λ(t)− νk(t)

1−ε

)
for k ≥ 1. Since for

a fixed t ≥ 0 the sequence of transition rates νk(t) is non-decreasing in k and bounded, then
ν∞(t) = limk→∞ νk(t) exists. Therefore, αk(t) ≥ αk+1(t) and

α∗(t) = inf
k≥0

αk(t) = ε

(
λ(t)− ν∞(t)

1− ε

)
, t ≥ 0.

Theorem 1. If
∫ ∞

0 α∗(t)dt = +∞ for some ε ∈ (0, 1), then the process {X(t), t ≥ 0} is null
ergodic, and for any non-negative integer N it holds that

P(X(t) ≤ N) ≤ min

1, e
−

t∫
0

α∗(u)du ∞

∑
k=0

(1− ε)k−N pk(0)

, t ≥ 0. (4)

Proof. Recall, that D = diag(d1, d2, . . . ), where dk = (1− ε)k. From the logarithmic norm

method, it follows that ‖Dp(t)‖ ≤ e−
∫ t

0 α∗(u)du‖Dp(0)‖ for any initial condition p(0). Fix
any non-negative integer N. Since dk+1 < dk < 1 for k ≥ 1, then

dN

N

∑
k=0

pk(t) ≤
N

∑
k=0

dk pk(t) ≤ ‖Dp(t)‖.

In the homogeneous case, i.e., when λ(t) = λ and νk(t) = νk for all k ≥ 1, the null
ergodicity condition of the Theorem 1 is reduced to λ/ν∞ > 1, i.e., to the natural condition
where the offered load exceeds 1. The right part of (4) takes a simpler form, once the initial
probability distribution {pk(0), k ≥ 0} has finite support. Under the conditions of the
Theorem 1 it is clearly seen that the probability that the process X(t) is concentrated in
a finite set of states [a, b] ∈ (0, ∞) is equal to

P(a ≤ X(t) ≤ b) = e
−

t∫
0

α∗(u)du (1− ε)a−1 − (1− ε)b

(1− ε)a+b−1

∞

∑
k=0

(1− ε)k pk(0),

and gradually diffuses, i.e., approaches 0 as the time increases indefinitely. Concentra-
tion inequalities can be used to construct bounds on the moments of X(t); for example,
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the Markov inequality gives the following lower bound for the expected number E(X(t))
of customers in the model at a time t ≥ 0:

E(X(t)) ≥ N max

0, 1− e
−

t∫
0

α∗(u)du ∞

∑
k=0

(1− ε)k−N+1 pk(0)

.

3.2. Weak Ergodicity

Put p0(t) = 1−∑i≥1 pi(t). Consider now the reduced forward Kolmogorov system (2)
in the form

dz(t)
dt

= B(t)z(t) + f(t), t ≥ 0, (5)

where f(t) = (λ(t), 0, 0, . . . )T , z(t) = (p1(t), p2(t), . . . )T and

B(t) =


−(2λ(t) + ν1(t)) ν2(t)− λ(t) −λ(t) −λ(t) . . .

λ(t) −(λ(t) + ν2(t)) ν3(t) 0 . . .
0 λ(t) −(λ(t) + ν3(t)) ν4(t) . . .
...

...
...

...
. . .

.

If instead of the sequence {dk = (1− ε)k, k ≥ 0} used in the previous section, one
considers an arbitrary sequence of positive numbers {dk, k ≥ 0} and the triangular (instead
of the diagonal) matrix

D =


d0 d0 d0 · · ·
0 d1 d1 · · ·
0 0 d2 · · ·
...

...
...

. . .

,

then for d0 = 1 (as shown in ([25], Section 3)) the sum −αk(t) of all elements in the kth
column of the matrix DA(t)D−1 is equal to

αk(t) = λ(t) + νk+1(t)−
dk+1

dk
λ(t)− dk−1

dk
νk(t), k ≥ 0, d−1 = 1. (6)

According to the definition of weak ergodicity (see, for example, [14]), the process
{X(t), t ≥ 0} will be weakly ergodic, if ‖p∗(t)− p∗∗(t)‖ → 0 as t→ ∞ for any initial
conditions p∗(0) and p∗∗(0), where p∗(t) and p∗∗(t) are the corresponding solutions of (2).
As shown in ([25] Theorem 3.1), the quantity ‖p∗(t)− p∗∗(t)‖ for any regular birth and
death process (and thus for X(t) as well) can be upper bounded by applying the logarithmic
norm method; specifically, the relation (3.11) gives the explicit form of the bound:

‖p∗(t)− p∗∗(t)‖ ≤ e
−

t∫
0

α∗(u)du ∞

∑
i=1

4 ∑i−1
k=0 dk

infk≥1 dk
|p∗i (0)− p∗∗i (0)|, (7)

where α∗(t) = infk≥0 αk(t). The next theorem gives the sequence {dk, k ≥ 0} and the
sufficient condition, under which the right part of the inequality (7) tends to 0 as time
increases indefinitely, and therefore X(t) is weakly ergodic.

Theorem 2. If
∫ ∞

0 (νS(t)− dλ(t))dt = +∞ for a d ∈ (1, 1 + 1 + µS/∑S−1
i=1 µi], then the process

{X(t), t ≥ 0} is weakly ergodic and for any initial conditions p∗(0) and p∗∗(0) it holds that

‖p∗(t)− p∗∗(t)‖ ≤ 4e
− d−1

d

t∫
0
(νS(u)−dλ(u))du ∞

∑
i=1

(
1+

di−1−1
d−1

)
|p∗i (0)−p∗∗i (0)|, t ≥ 0. (8)

Proof. Assume that
∫ ∞

0 (νS(t)− dλ(t)) dt = +∞ and d ∈ (1, 1 + 1 + µS/∑S−1
i=1 µi]. Define

the increasing sequence of positive numbers {dk, k ≥ 0} by d0 = 1, dk = dk−1 for k ≥ 1.
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Then the expression for αk(t) given by (6) is reduced to αk(t) = νk+1(t)−d−1νk(t)−(d−1)λ(t).
Now, depending on whether k < S or k ≥ S, the values of αk(t) can be lower bounded.
Indeed, from the exact form of νk(t), given by (1), and the assumption θk ≤ θk+1, it
follows that

αk(t) ≥


[(

1− d−1) k
∑

i=1
µi + µk+1

]
f (t)− (d− 1)λ(t), if 0 ≤ k ≤ S− 1,(

1− d−1) S
∑

i=1
µi f (t)− (d− 1)λ(t), if k ≥ S.

Consider the following two functions on (1, ∞):

ζ1(x) = min

(
µ1, µ2 + (1− x−1)

1

∑
i=1

µi, . . . , µS + (1− x−1)
S−1

∑
i=1

µi

)
,

ζ2(x) =
(

1− x−1
) S

∑
i=1

µi.

Both are increasing and bounded, that is µS < ζ1(x) < µ1 and 0 < ζ2(x) < ∑S
i=1 µi. More-

over ζ2(x) < µS as long as x ∈ (1, 1 + µS/∑S−1
i=1 µi]. Therefore, as long as x varies in this

region, we have ζ1(x) > ζ2(x) and, therefore, infk≥0 αk(t) ≥ αS(t). Now the statement of
the theorem follows from (7).

Corollary 1. Under the conditions of Theorem 2 the process X(t) has the limiting mean and if
infi≥1

di

i > 0 then

|
∞

∑
i=0

ipi(t)−m∗(t)| ≤ 1

infi≥1
di−1

i

‖D(p(t)− p∗(t))‖. (9)

where p∗(t) =
(

p∗0(t), p∗1(t), p∗2(t), . . .
)T is the limiting distribution of X(t).

Proof. Since in Theorem 2 di = di−1, i ≥ 1 and thus ‖Dp∗(t)‖ < ∞ for any t ≥ 0 we can
see that the limiting mean

∞

∑
i=1

ip∗i (t) =
∞

∑
i=1

di
1
di
i

p∗i (t) ≤
1

infi≥1
di
i

‖Dp∗(t)‖

exists. Now for any fixed X(0) we find that

|
∞

∑
i=0

i(pi(t)−m(t))| ≤ 1

infi≥1
di−1

i

∞

∑
i=1

di|pi(t)− p∗i (t)|

which is identical to the right part of (9).

Note that if all the intensity functions are periodic and the smallest common multiple
of the periods is T, then the sufficient weak ergodicity condition of Theorem 2 is reduced
to
∫ T

0 (νS(t)− dλ(t))dt > 0, and from the Corollary 1 it follows that the limiting mean will
have a period equal to T.

Corollary 2. Assume λ(t) = λ and νk(t) = νk for all k ≥ 1. If λ < ν∞, then X(t) is
exponentially ergodic. If π = (π0, π1, . . . )T is its stationary distribution, then

‖p(t)− π‖ ≤ 4e−αt
∞

∑
i=1

i−1

∑
k=0

dk|pi(0)− πi|, t ≥ 0, (10)
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where the sequence {dk, k ≥ 0} and the parameter α > 0 can be given explicitly.

Proof. Put d0 = 1 and dk = ∏k
i=1(1 + εi−1), k ≥ 1, for some positive sequence of real

numbers ε0, ε1, . . . . Then from (6) it follows that

αk ≥ νk
εk−1

1 + εk−1
− λεk.

Let λ < ν∞. Then, there must exist a positive ε such that (1 + ε)λ < ν∞ or, equivalently,
ν∞

ε
1+ε − λε > 0. Since νk is a non-decreasing sequence, then one can find the smallest k∗

for which simultaneously

νk∗+1
ε

1 + ε
− λε > 0 and νk∗

ε

1 + ε
− λε ≤ 0.

Put εk = ε for k ≥ k∗. Then

inf
k≥k∗+1

αk ≥ νk∗+1
ε

1 + ε
− λε︸ ︷︷ ︸

=α

.

It can be shown that if ε and εk∗−1, . . . , ε1 are chosen consecutively from the following
intervals:

ε ∈

0,
∏k∗

i=1 νi

∑k∗
i=1 λi ∏k∗−i

j=1 νi

, εk ∈

 λεk+1
νk+1 − λεk+1

,
∏k

i=1 νi

∑k
i=1 λi ∏k−i

j=1 νi

,

then it is guaranteed that αk ≥ α for all 1 ≤ k ≤ k∗ − 1. Hence, infk≥1 αk ≥ α, and thus (10)
follows from (7).

4. Perturbation and Truncation Bounds

Since X(t) is the BDP, the results regarding perturbation and truncation bounds,
obtained for quite a general setting in [36–38]), are applicable.

We start with the perturbation bounds. Consider a Markov chain, say X̄(t), with a
state space identical to X(t) and with such a generator, say Ā(t) =

(
āij(t)

)∞
i,j=0, that

Ā(t) = A(t)+ Â(t) holds to all t ≥ 0. Here Â(t) =
(
âij(t)

)∞
i,j=0 is such a matrix that is small

or Â(t)→ 0 as t increases. Denote the state probabilities of the “perturbed” chain by p̄i(t).
Using the normalization condition p̄0(t) = 1−∑i≥1 p̄i(t), the system corresponding X̄(t)
can be written as follows:

d
dt

z̄(t) = B̄(t)z̄(t) + f̄(t). (11)

Here the matrix B̄(t) with the elements b̄ij(t) = āij(t)− āi0(t). Let the perturbed intensities
λ̄(t) and ν̄k(t) be such that |λ(t)− λ̄(t)| ≤ ε̂, |νk(t)− ν̄k(t)| ≤ ε̂ for t ≥ 0. Then for all t ≥ 0
we have the upper bounds:

‖B(t)‖1D ≤ (1 + d)|λ(t)|+ 1 + d
d
|νk(t)| ≤ (1 + d)L,

‖ f (t)‖1D = |λ(t)| ≤ Λ,

‖B(t)− B̄(t)‖1D ≤ (1 + d)|λ(t)− λ̄(t)|+ 1 + d
d
|νk(t)− ν̄k(t)| ≤

(1 + d)2

d
ε̂,

‖ f (t)− f̄ (t)‖1D ≤ |λ(t)− λ̄(t)| ≤ ε̂.

In the article in [37], the following theorem was proven.
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Theorem 3. If a Markov chain X(t) is 1D-exponentially weakly ergodic

e
− d−1

d

t∫
0
(νS(u)−dλ(u))du

≤ Me−a(t−s) (12)

for all 0 ≤ s ≤ t, then X̄(t) is also 1D-exponentially weakly ergodic and the following perturbation
estimate in the 1D-norm holds:

lim sup
t→∞

‖p(t)− p̄(t)‖1D ≤
Mε̂
(

M(1 + d)2Λ + ad
)

a(ad−M(1 + d)2ε̂)
. (13)

If W = infi≥1
di
i > 0, then both chains X(t) and X̄(t) have limiting means and

lim sup
t→∞

|φ(t)− φ̄(t)| ≤
Mε̂
(

M(1 + d)2Λ + ad
)

Wa(ad−M(1 + d)2ε̂)
. (14)

Assume that the conditions of the theorem are fulfilled, i.e.,

‖B(t)− B̄(t)‖1D ≤ χ(t), ‖f(t)− f̄(t)‖1D ≤ χ(t), (15)

where χ(t)→ 0 as t→ ∞. Then the bound from [36]

‖ẑ(t)‖ ≤ Me−at‖ẑ(0)‖+ M
(

e−a(t−t∗) ε0

a
+

ε

a

)(
1 + M‖z̄(0)‖+ M(F + ε0)

a− ε0

)
, (16)

where
‖f(t)‖1D ≤ F, χ(0) = ε0, ε ∈ (0, ε0), χ(t∗) = ε, (17)

yields the perturbation bound for the considered X(t).
Let us consider the truncation bound. Consider the copy of the process X(t) but with

the finite state space {0, 1, 2 . . . , N} (denote it by X∗(t)). Let its birth intensity λ∗(t) = λ(t)
and death intensity by ν∗k (t) = νk(t), when there are, in total, k customers in the model.
Denote its transposed generator by A∗(t) and its probability vector by p∗(t). For the
Markov chain X∗(t), instead of (2), we have

d
dt

p∗(t) = A∗(t)p∗(t). (18)

Assume that for t ≥ 0

λ(t) ≤ Λ ≤ L < ∞, νn(t) ≤ ∆n ≤ L < ∞. (19)

In order to obtain a truncation bound, one needs to find proper sequences {dk} and {d∗k}.
Assume that for the sequence {dk} there exist positive numbers M and α, such that

e
−

t∫
s

α(τ) dτ
≤ Me−α(t−s), (20)

for all 0 ≤ s ≤ t, where α(t) = infk≥1 αk(t) and

αk(t) =

{
λ(t) + ν1(t)− d2

d1
λ(t)(t), k = 1,

λ(t) + νk+1(t)−
dk+2
dk+1

λ(t)− dk
dk+1

νk(t), k > 1.

Assume that for the sequence {d∗k} there exist positive numbers M∗ and α∗, such that

e
−

t∫
s

α∗(τ) dτ
≤ M∗e−α∗(t−s) (21)
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for all 0 ≤ s ≤ t, where α∗(t) = min α∗k (t) and

α∗k (t) =

λ(t) + ν1(t)−
d∗2
d∗1

λ(t)(t), k = 1,

λ(t) + νk+1(t)−
d∗k+2
d∗k+1

λ(t)− d∗k
d∗k+1

νk(t), k > 1.

Denote

Gk =
k

∑
j=1

dj, G∗k =
k

∑
j=1

d∗j , d = d1, W = inf
k>0

(
Gk
k

)
.

The following theorem holds.

Theorem 4. Assume the Markov chains X(t) and X∗(t) satisfy (20) and (21) and
X(0) = X∗(0) = 0. Then the following bounds of truncations hold:

‖p(t)− p∗(t)‖ ≤
4M M∗Λ d∗i+1

dα α∗
GN+1Λ

G∗N
, (22)

‖p(t)− p∗(t)‖1E ≤
4M M∗Λ d∗i+1

Wα α∗
GN+1Λ

G∗N
. (23)

5. Examples

In this section, we will consider three different examples, demonstrating the ap-
plicability of the obtained results. The values of the parameters used do not follow
any real data but were chosen for illustration purposes only. As Example 1, let us con-
sider the homogeneous system with three servers (i.e., S = 3), periodic service intensity
µ1(t) = µ2(t) = µ3(t) = µ(t) = 2 + cos 2πt, and periodic arrival intensity
λ(t) = 3 + sin 2πt. Assume that the impatience intensity is time-independent and has
the form ζk(t) = 0.4(1− k−1), k > S. Thus, ζ = 0.1 and θk = 4(1− k−1). Then from (6) it
follows that αk(t) = µ(t) +

(
1− d−1)kµ(t)− (d− 1)λ(t). The conditions of Theorem 2 are

satisfied if d = 3/2 and the function α∗(t) in (7) is equal to

α∗(t) = α0(t) = α3(t) = µ(t)− 0.5λ(t) = 0.5 + cos 2πt− 0.5 sin 2πt.

In Figure 1, it is shown how the probabilities p0(t), p1(t), p2(t), p3(t), and p4(t) behave
as t increases, if initially the system was empty. In this case, the functions quite quickly
approach their limiting values. Convergence to the limiting value of the empty system
probability p0(t) is shown in Figure 2. It can be seen that starting from approximately
t = 40 = t∗ the system “forgets” its initial state and the distribution of X(t) for t > t∗ can
be regarded as limiting. Moreover, since the limiting distribution of X(t) is periodic, it is
sufficient to solve (numerically) the system of ODEs only in the interval [0, t∗ + T], where T
is the smallest common multiple of the periods of λ(t) and µ(t) i.e., T = 1. The probability
distribution of X(t) in the interval [t∗, t∗ + T] is the estimate of the limiting probability
distribution of X(t). Convergence of the conditional mean number of customers in the
system is shown in Figure 3. Starting from the instant t = t∗, the system “forgets” its initial
state and the value of ∑∞

i=0 ipi(t) can be regarded as the limiting value of the mean number
of customers.
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Figure 1. Example 1. Behavior of the probabilities p0(t), p1(t), p2(t), p3(t), and p4(t) given that
initially the system was empty (i.e., p0(0) = 1).

Figure 2. Example 1. Convergence and the limiting value of the empty system probability p0(t) given
two different initial conditions: p0(0) = 1 (blue line), p99(0) = 1 (orange line).

Figure 3. Example 1. Convergence of the conditional mean ∑∞
i=0 ipi(t) number of customers in the

system given two different initial conditions: p0(0) = 1 (blue line), p99(0) = 1 (orange line).

If one increases (some of) the service intensities, then the rate of convergence is not
expected to slow. This is illustrated by the Example 2 (see Figures 4–6), in which the service
intensities are changed to

µ1(t) = 1.5(2 + cos 2πt), µ2(t) = 2 + cos 2πt, µ3(t) = 0.5(2 + cos 2πt). (24)

The conditions of the Theorem 2 are still satisfied if d = 3/2, but the function α∗(t) in (7) is
now equal to

α∗(t) = 0.5 + cos 2πt− 0.5 sin 2πt.
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Figure 4. Example 2. Behavior of the probabilities p0(t), p1(t), p2(t), p3(t) and p4(t), given that
initially the system was empty (i.e., p0(0) = 1).

Figure 5. Example 2. Convergence and the limiting value of the empty system probability p0(t),
given two different initial conditions: p0(0) = 1 (blue line), p99(0) = 1 (orange line).

Figure 6. Example 2. Convergence of the conditional mean ∑∞
i=0 ipi(t) number of customers in the

system, given two different initial conditions: p0(0) = 1 (blue line), p99(0) = 1 (orange line).

As the last example, let us consider a heterogeneous system with three servers, periodic
arrival intensity λ(t) = 3 + sin 2πt, and periodic service intensities (24). Let kmax be a
positive integer, η > 0 and q ∈ (0, 1]. If we put ζ = ηqkmax and

θk =

{
k−S
kmax

, k = S + 1, S + 2, . . . , S + kmax,

1, k > S + kmax

then, as long as k < S + kmax, the time-independent impatience intensity ζk(t) = ζθk is
equal to (kη)q. In other words, the adopted impatience mechanism mimics the classic
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one (with impatience intensity kη and probability of successful impatience q), as long
as the queue size stays below S + kmax. Figures 6 and 7 show the convergence and the
limiting value of the empty system probability p0(t) for q = 0.2 and various values
of kmax = 2, 3, 10, 200. The limiting values of the conditional mean are shown in the
Figures 8 and 9. For kmax > 10 the results are almost indistinguishable from the case
kmax = 10. The rate of convergence here is identical to in Example 2, and for d = 1.9
we have

α∗(t) =
9

19
(0.3 + 3 cos 2πt− 1.9 sin 2πt).

Figure 7. Example 3. The perturbation bounds (green lines) for the limiting values of p0(t) for
k = 200.

Figure 8. Example 3. Behavior of the limiting values of p0(t), given that initially the system was
empty (i.e., p0(0) = 1) for various values of kmax.

Figure 9. Example 3. Behavior of the limiting conditional mean ∑∞
i=0 ipi(t) number of customers in

the system for various values of kmax.
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By fixing α = 0.142 and M = 3, we obtain the following bound on the rate of
convergence:

‖p∗(t)− p∗∗(t)‖ ≤ 12e−0.142t
∞

∑
i=1

(
1+

1.9i−1−1
0.9

)
|p∗i (0)−p∗∗i (0)|, t ≥ 0. (25)

The perturbation bound

lim sup
t→∞

‖p(t)− p̄(t)‖1D ≤
1126ε̂

0.142− 13.3ε̂
. (26)

and thus, if ε̂ = 0.000001, we have that lim supt→∞ ‖p(t)− p̄(t)‖1D ≤ 0.02.
In order to obtain a truncation bound, let us consider the sequence {d∗} with d = 100

99 .
Then

α∗(t) =
49

1650
+

3
100

cos(2πt)− 1
99

sin(2πt)

By putting α∗ = 49
1650 , M∗ = exp( 3/100+1/99

π ), Λ = 4, we have that G∗200 ≥ 6× 1055 and
G200 ≈ 639. Therefore

‖p(t)− p∗(t)‖ ≤ 4× 3 × 2 × 4
0.14(49/1650)

639× 4
6× 1055 ≤ 10−50.

6. Conclusions

It is well known that numerical solution techniques for the computation of time-
dependent probialbity distributions of Markovian systems can benefit from methods pro-
viding ergodicity bounds, because the latter can indicate how to choose the position and
the length of the “distant time interval” (in the periodic case) on which the solution has
to be computed. They are also helpful whenever state space truncation is required, since
they allow for guaranteed truncation error. In this paper, explicit ergodicity, perturba-
tion, and truncation bounds for a particular class of Markovian time-varying queue with
heterogeneous servers and customer impatience were obtained. Further research in this
area could concentrate on the relaxation of the assumptions made about the transition
intensities. For example, for the presented solution, the monotonicity of θk is crucial (it
guarantees the existence of the limk→∞ νk(t)). If, in addition, the transition intensities are
time-independent, the condition λ 6= limk→∞ νk gives exponential/weak/null ergodicity.
If the monotonicity assumption is dropped, other justifications need to be found.
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