Digital Twin Simulation Tools, Spatial Cognition Algorithms, and Multi-Sensor Fusion Technology in Sustainable Urban Governance Networks
Abstract
:1. Introduction
- Research Problem 1: Does data-driven smart sustainable urbanism require visual recognition tools, monitoring and sensing technologies, and simulation-based digital twins?
- Research Problem 2: Do deep-learning-based sensing technologies, spatial cognition algorithms, and environment perception mechanisms configure digital twin cities?
- Research Problem 3: Do digital twin simulation modeling, deep-learning-based sensing technologies, and urban data fusion optimize Internet-of-Things-based smart city environments?
2. Methodology
3. Digital Twin Simulation Tools in Sustainable Urban Governance Networks
4. Spatial Cognition Algorithms in Sustainable Urban Governance Networks
5. Multi-Sensor Fusion Technology in Sustainable Urban Governance Networks
6. Discussion
7. Conclusions
8. Specific Contributions to the Literature
9. Limitations and Further Directions of Research
10. Practical Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anshari, M.; Hamdan, M. Enhancing E-Government with a Digital Twin for Innovation Management. J. Sci. Technol. Policy Manag. 2022. [Google Scholar] [CrossRef]
- Azfar, T.; Weidner, J.; Raheem, A.; Ke, R.; Cheu, R.L. Efficient Procedure of Building University Campus Models for Digital Twin Simulation. IEEE J. Radio Freq. Identif. 2022, 6, 769–773. [Google Scholar] [CrossRef]
- Charitonidou, M. Urban Scale Digital Twins in Data-driven Society: Challenging Digital Universalism in Urban Planning Decision-Making. Int. J. Archit. Comput. 2022, 20, 238–253. [Google Scholar] [CrossRef]
- Correia, D.; Teixeira, L.; Marques, J.L. Study and Analysis of the Relationship between Smart Cities and Industry 4.0: A Systematic Literature Review. Int. J. Technol. Manag. Sustain. Dev. 2022, 21, 37–66. [Google Scholar] [CrossRef]
- Deng, T.; Zhang, K.; Shen, Z.-J. A Systematic Review of a Digital Twin City: A New Pattern of Urban Governance toward Smart Cities. J. Manag. Sci. Eng. 2021, 6, 125–134. [Google Scholar] [CrossRef]
- De Sanctis, M.; Iovino, L.; Rossi, M.T.; Wimmer, M. MIKADO: A Smart City KPIs Assessment Modeling Framework. Softw. Syst. Model. 2022, 21, 281–309. [Google Scholar] [CrossRef]
- Eom, S.-J. The Emerging Digital Twin Bureaucracy in the 21st Century. Perspect. Public Manag. Gov. 2022, 5, 174–186. [Google Scholar] [CrossRef]
- Ferré-Bigorra, J.; Casals, M.; Gangolells, M. The Adoption of Urban Digital Twins. Cities 2022, 131, 103905. [Google Scholar] [CrossRef]
- Guo, J.; Lv, Z. Application of Digital Twins in Multiple Fields. Multimed. Tools Appl. 2022, 81, 26941–26967. [Google Scholar] [CrossRef] [PubMed]
- Hämäläinen, M. Urban Development with Dynamic Digital Twins in Helsinki City. IET Smart Cities 2021, 3, 201–210. [Google Scholar] [CrossRef]
- Hao, H.; Wang, Y. Smart Curb Digital Twin: Inventorying Curb Environments using Computer Vision and Street Imagery. IEEE J. Radio Freq. Identif. 2022. [Google Scholar] [CrossRef]
- He, X.; Ai, Q.; Wang, J.; Tao, F.; Pan, B.; Qiu, R.; Yang, B. Situation Awareness of Energy Internet of Thing in Smart City Based on Digital Twin: From Digitization to Informatization. IEEE Internet Things J. 2022. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, Y.; Zeng, W. Development and Application of Digital Twin Technology for Integrated Regional Energy Systems in Smart Cities. Sustain. Comput. Inform. Syst. 2022, 36, 100781. [Google Scholar] [CrossRef]
- Huang, Y.; Peng, H.; Sofi, M.; Zhou, Z.; Xing, T.; Ma, G.; Zhong, A. The City Management Based on Smart Information System Using Digital Technologies in China. IET Smart Cities 2022, 4, 160–174. [Google Scholar] [CrossRef]
- Kikuchi, N.; Fukuda, T.; Yabuki, N. Future Landscape Visualization Using a City Digital Twin: Integration of Augmented Reality and Drones with Implementation of 3D Model-based Occlusion Handling. J. Comput. Des. Eng. 2022, 9, 837–856. [Google Scholar] [CrossRef]
- Kim, H.; Ben-Othman, J. Eco-Friendly Low Resource Security Surveillance Framework toward Green AI Digital Twin. IEEE Commun. Lett. 2023, 27, 377–380. [Google Scholar] [CrossRef]
- Kliestik, T.; Poliak, M.; Popescu, G.H. Digital Twin Simulation and Modeling Tools, Computer Vision Algorithms, and Urban Sensing Technologies in Immersive 3D Environments. Geopolit. Hist. Int. Relat. 2022, 14, 9–25. [Google Scholar] [CrossRef]
- Kovacova, M.; Novak, A.; Machova, V.; Carey, B. 3D Virtual Simulation Technology, Digital Twin Modeling, and Geospatial Data Mining in Smart Sustainable City Governance and Management. Geopolit. Hist. Int. Relat. 2022, 14, 43–58. [Google Scholar] [CrossRef]
- Lehtola, V.V.; Koeva, M.; Elberink, S.O.; Raposo, P.; Virtanen, J.P.; Vahdatikhaki, F.; Borsci, S. Digital Twin of a City: Review of Technology Serving City Needs. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 102915. [Google Scholar] [CrossRef]
- Li, X.; Luo, J.; Li, Y.; Wang, W.; Hong, W.; Liu, M.; Li, X.; Lv, Z. Application of Effective Water–Energy Management Based on Digital Twins Technology in Sustainable Cities Construction. Sustain. Cities Soc. 2022, 87, 104241. [Google Scholar] [CrossRef]
- Liao, S.; Wu, J.; Bashir, A.K.; Yang, W.; Li, J.; Tariq, U. Digital Twin Consensus for Blockchain-Enabled Intelligent Transportation Systems in Smart Cities. IEEE Trans. Intell. Transp. Syst. 2022, 23, 22619–22629. [Google Scholar] [CrossRef]
- Lv, Z.; Chen, D.; Feng, H.; Singh, A.K.; Wei, W.; Lv, H. Computational Intelligence in Security of Digital Twins Big Graphic Data in Cyber-physical Systems of Smart Cities. ACM Trans. Manag. Inf. Syst. 2022, 13, 39. [Google Scholar] [CrossRef]
- Major, P.; Li, G.; Hildre, H.P.; Zhang, H. The Use of a Data-Driven Digital Twin of a Smart City: A Case Study of Ålesund, Norway. IEEE Instrum. Meas. Mag. 2021, 24, 39–49. [Google Scholar] [CrossRef]
- Meta, I.; Serra-Burriel, F.; Carrasco-Jiménez, J.C.; Cucchietti, F.M.; Diví-Cuesta, C.; Calatrava, C.G.; García, D.; Graells-Garrido, E.; Navarro, G.; Làzaro, Q.; et al. The Camp Nou Stadium as a Testbed for City Physiology: A Modular Framework for Urban Digital Twins. Complexity 2021, 2021, 9731180. [Google Scholar] [CrossRef]
- Michalik, D.; Kohl, P.; Kummert, A. Smart Cities and Innovations: Addressing User Acceptance with Virtual Reality and Digital Twin City. IET Smart Cities 2022, 4, 292–307. [Google Scholar] [CrossRef]
- Mylonas, G.; Kalogeras, A.; Kalogeras, G.; Anagnostopoulos, C.; Alexakos, C.; Muñoz, L. Digital Twins from Smart Manufacturing to Smart Cities: A Survey. IEEE Access 2021, 9, 143222–143249. [Google Scholar] [CrossRef]
- Naserentin, V.; Somanath, S.; Eleftheriou, O.; Logg, A. Combining Open Source and Commercial Tools in Digital Twin for Cities Generation. IFAC-PapersOnLine 2022, 55, 185–189. [Google Scholar] [CrossRef]
- Nochta, T.; Wan, L.; Schooling, J.M.; Parlikad, A.K. A Socio-Technical Perspective on Urban Analytics: The Case of City-Scale Digital Twins. J. Urban Technol. 2021, 28, 263–287. [Google Scholar] [CrossRef]
- Omrany, H.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Clements-Croome, D.J. The Uptake of City Information Modelling (CIM): A Comprehensive Review of Current Implementations, Challenges and Future Outlook. Smart Sustain. Built Environ. 2022. [Google Scholar] [CrossRef]
- Pang, J.; Huang, Y.; Xie, Z.; Li, J.; Cai, Z. Collaborative City Digital Twin for the COVID-19 Pandemic: A Federated Learning Solution. Tsinghua Sci. Technol. 2021, 26, 759–771. [Google Scholar] [CrossRef]
- Pesantez, J.E.; Alghamdi, F.; Sabu, S.; Mahinthakumar, G.; Zechman Berglund, E. Using a Digital Twin to Explore Water Infrastructure Impacts during the COVID-19 Pandemic. Sustain. Cities Soc. 2022, 77, 103520. [Google Scholar] [CrossRef] [PubMed]
- Raes, L.; Michiels, P.; Adolphi, T.; Tampere, C.; Dalianis, A.; McAleer, S.; Kogut, P. DUET: A Framework for Building Interoperable and Trusted Digital Twins of Smart Cities. IEEE Internet Comput. 2022, 26, 43–50. [Google Scholar] [CrossRef]
- Ricci, A.; Croatti, A.; Mariani, S.; Montagna, S.; Picone, M. Web of Digital Twins. ACM Trans. Internet Technol. 2022, 22, 101. [Google Scholar] [CrossRef]
- Rowland, Z.; Cug, J.; Nica, E. The Geopolitics of Smart City Digital Twins: Urban Sensing and Immersive Virtual Technologies, Spatio-Temporal Fusion Algorithms, and Visualization Modeling Tools. Geopolit. Hist. Int. Relat. 2022, 14, 56–71. [Google Scholar] [CrossRef]
- Torisson, F. Strategies of Visibility in the Smart City. City Territ. Archit. 2022, 9, 15. [Google Scholar] [CrossRef]
- Tzachor, A.; Sabri, S.; Richards, C.E.; Rajabifard, A.; Acuto, M. Potential and Limitations of Digital Twins to Achieve the Sustainable Development Goals. Nat. Sustain. 2022, 5, 822–829. [Google Scholar] [CrossRef]
- Vaezi, M.; Noroozi, K.; Todd, T.D.; Zhao, D.; Karakostas, G.; Wu, H.; Shen, X. Digital Twins from a Networking Perspective. IEEE Internet Things J. 2022, 9, 23525–23544. [Google Scholar] [CrossRef]
- Valaskova, E.; Oláh, J.; Popp, J.; Lăzăroiu, G. Virtual Modeling and Remote Sensing Technologies, Spatial Cognition and Neural Network Algorithms, and Visual Analytics Tools in Urban Geopolitics and Digital Twin Cities. Geopolit. Hist. Int. Relat. 2022, 14, 9–24. [Google Scholar] [CrossRef]
- Van de Vyvere, B.; Colpaert, P. Using ANPR Data to Create an Anonymized Linked Open Dataset on Urban Bustle. Eur. Transp. Res. Rev. 2022, 14, 17. [Google Scholar] [CrossRef]
- von Richthofen, A.; Herthogs, P.; Kraft, M.; Cairns, S. Semantic City Planning Systems (SCPS): A Literature Review. J. Plan. Lit. 2022, 37, 415–432. [Google Scholar] [CrossRef]
- Wang, W.; Guo, H.; Li, X.; Tang, S.; Xia, J.; Lv, Z. Deep Learning for Assessment of Environmental Satisfaction Using BIM Big Data in Energy Efficient Building Digital Twins. Sustain. Energy Technol. Assess. 2022, 50, 101897. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J.; Han, J.; Wang, W.; Wang, F.-Y. Metaverses and DeMetaverses: From Digital Twins in CPS to Parallel Intelligence in CPSS. IEEE Intell. Syst. 2022, 37, 97–102. [Google Scholar] [CrossRef]
- White, G.; Zink, A.; Codecá, L.; Clarke, S. A Digital Twin Smart City for Citizen Feedback. Cities 2021, 110, 103064. [Google Scholar] [CrossRef]
- Wolf, K.; Dawson, R.J.; Mills, J.P.; Blythe, P.; Morley, J. Towards a Digital Twin for Supporting Multi-Agency Incident Management in a Smart City. Sci. Rep. 2022, 12, 16221. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Cao, H.; Yang, G.; Lu, T.; Wan, S. Digital Twin of Intelligent Small Surface Defect Detection with Cyber-Manufacturing Systems. ACM Trans. Internet Technol. 2022. [Google Scholar] [CrossRef]
- Yossef Ravid, B.; Aharon-Gutman, M. The Social Digital Twin: The Social Turn in the Field of Smart Cities. Environ. Plan. B Urban Anal. City Sci. 2022. [Google Scholar] [CrossRef]
- Ye, X.; Du, J.; Han, Y.; Newman, G.; Retchless, D.; Zou, L.; Ham, Y.; Cai, Z. Developing Human-Centered Urban Digital Twins for Community Infrastructure Resilience: A Research Agenda. J. Plan. Lit. 2022, 38, 187–199. [Google Scholar] [CrossRef]
- Lăzăroiu, G.; Harrison, A. Internet of Things Sensing Infrastructures and Data-driven Planning Technologies in Smart Sustainable City Governance and Management. Geopolit. Hist. Int. Relat. 2021, 13, 23–36. [Google Scholar] [CrossRef]
- Zhang, J.; Fukuda, T.; Yabuki, N. Automatic Generation of Synthetic Datasets from a City Digital Twin for Use in the Instance Segmentation of Building Facades. J. Comput. Des. Eng. 2022, 9, 1737–1755. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, F.; Cai, J.; Wang, Y.; Guo, H.; Zheng, J. Digital Twin and Its Applications: A Survey. Int. J. Adv. Manuf. Technol. 2022, 123, 4123–4136. [Google Scholar] [CrossRef]
- Zhaoyun, Z.; Linjun, L. Application Status and Prospects of Digital Twin Technology in Distribution Grid. Energy Rep. 2022, 8, 14170–14182. [Google Scholar] [CrossRef]
- Zvarikova, K.; Horak, J.; Downs, S. Digital Twin Algorithms, Smart City Technologies, and 3D Spatio-Temporal Simulations in Virtual Urban Environments. Geopolit. Hist. Int. Relat. 2022, 14, 139–154. [Google Scholar] [CrossRef]
- Dijmărescu, I.; Iatagan, M.; Hurloiu, I.; Geamănu, M.; Rusescu, C.; Dijmărescu, A. Neuromanagement decision making in facial recognition biometric authentication as a mobile payment technology in retail, restaurant, and hotel business models. Oeconomia Copernic. 2022, 13, 225–250. [Google Scholar] [CrossRef]
- Nagy, M.; Lăzăroiu, G.; Valaskova, K. Machine Intelligence and Autonomous Robotic Technologies in the Corporate Context of SMEs: Deep Learning and Virtual Simulation Algorithms, Cyber-Physical Production Networks, and Industry 4.0-Based Manufacturing Systems. Appl. Sci. 2023, 13, 1681. [Google Scholar] [CrossRef]
- Vătămănescu, E.-M.; Brătianu, C.; Dabija, D.-C.; Popa, S. Capitalizing Online Knowledge Networks: From Individual Knowledge Acquisition towards Organizational Achievements. J. Knowl. Manag. 2022. [Google Scholar] [CrossRef]
- Zvarikova, K.; Frajtova Michalikova, K.; Rowland, M. Retail Data Measurement Tools, Cognitive Artificial Intelligence Algorithms, and Metaverse Live Shopping Analytics in Immersive Hyper-Connected Virtual Spaces. Linguist. Philos. Investig. 2022, 21, 9–24. [Google Scholar] [CrossRef]
- Andronie, M.; Lăzăroiu, G.; Iatagan, M.; Hurloiu, I.; Ștefănescu, R.; Dijmărescu, A.; Dijmărescu, I. Big Data Management Algorithms, Deep Learning-Based Object Detection Technologies, and Geospatial Simulation and Sensor Fusion Tools in the Internet of Robotic Things. ISPRS Int. J. Geo-Inf. 2023, 12, 35. [Google Scholar] [CrossRef]
- Zauskova, A.; Miklencicova, R.; Popescu, G.H. Visual Imagery and Geospatial Mapping Tools, Virtual Simulation Algorithms, and Deep Learning-based Sensing Technologies in the Metaverse Interactive Environment. Rev. Contemp. Philos. 2022, 21, 122–137. [Google Scholar] [CrossRef]
- Kovacova, M.; Oláh, J.; Popp, J.; Nica, E. The Algorithmic Governance of Autonomous Driving Behaviors: Multi-Sensor Data Fusion, Spatial Computing Technologies, and Movement Tracking Tools. Contemp. Read. Law Soc. Justice 2022, 14, 27–45. [Google Scholar] [CrossRef]
- Lăzăroiu, G.; Androniceanu, A.; Grecu, I.; Grecu, G.; Neguriță, O. Artificial Intelligence-based Decision-Making Algorithms, Internet of Things Sensing Networks, and Sustainable Cyber-Physical Management Systems in Big Data-driven Cognitive Manufacturing. Oeconomia Copernic. 2022, 13, 1045–1078. [Google Scholar] [CrossRef]
- Popescu, G.H.; Valaskova, K.; Horak, J. Augmented Reality Shopping Experiences, Retail Business Analytics, and Machine Vision Algorithms in the Virtual Economy of the Metaverse. J. Self-Gov. Manag. Econ. 2022, 10, 67–81. [Google Scholar] [CrossRef]
- Blake, R. Metaverse Technologies in the Virtual Economy: Deep Learning Computer Vision Algorithms, Blockchain-based Digital Assets, and Immersive Shared Worlds. Smart Gov. 2022, 1, 35–48. [Google Scholar] [CrossRef]
- Andronie, M.; Lăzăroiu, G.; Karabolevski, O.L.; Ștefănescu, R.; Hurloiu, I.; Dijmărescu, A.; Dijmărescu, I. Remote Big Data Management Tools, Sensing and Computing Technologies, and Visual Perception and Environment Mapping Algorithms in the Internet of Robotic Things. Electronics 2023, 12, 22. [Google Scholar] [CrossRef]
- Pelau, C.; Dabija, D.-C.; Ene, I. What Makes an AI Device Human-Like? The Role of Interaction Quality, Empathy and Perceived Psychological Anthropomorphic Characteristics in the Acceptance of Artificial Intelligence in the Service Industry. Comput. Hum. Behav. 2021, 122, 106855. [Google Scholar] [CrossRef]
- Kliestik, T.; Vochozka, M.; Vasić, M. Biometric Sensor Technologies, Visual Imagery and Predictive Modeling Tools, and Ambient Sound Recognition Software in the Economic Infrastructure of the Metaverse. Rev. Contemp. Philos. 2022, 21, 72–88. [Google Scholar] [CrossRef]
- Nagy, M.; Lăzăroiu, G. Computer Vision Algorithms, Remote Sensing Data Fusion Techniques, and Mapping and Navigation Tools in the Industry 4.0-based Slovak Automotive Sector. Mathematics 2022, 10, 3543. [Google Scholar] [CrossRef]
- Balcerzak, A.P.; Nica, E.; Rogalska, E.; Poliak, M.; Klieštik, T.; Sabie, O.-M. Blockchain Technology and Smart Contracts in Decentralized Governance Systems. Adm. Sci. 2022, 12, 96. [Google Scholar] [CrossRef]
- Grupac, M.; Husakova, K.; Balica, R.-Ș. Virtual Navigation and Augmented Reality Shopping Tools, Immersive and Cognitive Technologies, and Image Processing Computational and Object Tracking Algorithms in the Metaverse Commerce. Anal. Metaphys. 2022, 21, 210–226. [Google Scholar] [CrossRef]
- Oláh, J.; Nica, E. Biometric Sensor Technologies, Virtual Marketplace Dynamics Data, and Computer Vision and Deep Learning Algorithms in the Metaverse Interactive Environment. J. Self-Gov. Manag. Econ. 2022, 10, 7–22. [Google Scholar] [CrossRef]
- Valaskova, K.; Nagy, M.; Zabojnik, S.; Lăzăroiu, G. Industry 4.0 Wireless Networks and Cyber-Physical Smart Manufacturing Systems as Accelerators of Value-Added Growth in Slovak Exports. Mathematics 2022, 10, 2452. [Google Scholar] [CrossRef]
- Zvarikova, K.; Rowland, Z.; Nica, E. Multisensor Fusion and Dynamic Routing Technologies, Virtual Navigation and Simulation Modeling Tools, and Image Processing Computational and Visual Cognitive Algorithms across Web3-powered Metaverse Worlds. Anal. Metaphys. 2022, 21, 125–141. [Google Scholar] [CrossRef]
- Poliak, M.; Jurecki, R.; Buckner, K. Autonomous Vehicle Routing and Navigation, Mobility Simulation and Traffic Flow Prediction Tools, and Deep Learning Object Detection Technology in Smart Sustainable Urban Transport Systems. Contemp. Read. Law Soc. Justice 2022, 14, 25–40. [Google Scholar] [CrossRef]
- Grupac, M.; Lăzăroiu, G. Image Processing Computational Algorithms, Sensory Data Mining Techniques, and Predictive Customer Analytics in the Metaverse Economy. Rev. Contemp. Philos. 2022, 21, 205–222. [Google Scholar] [CrossRef]
- Kliestik, T.; Musa, H.; Machova, V.; Rice, L. Remote Sensing Data Fusion Techniques, Autonomous Vehicle Driving Perception Algorithms, and Mobility Simulation Tools in Smart Transportation Systems. Contemp. Read. Law Soc. Justice 2022, 14, 137–152. [Google Scholar] [CrossRef]
- Lăzăroiu, G.; Andronie, M.; Iatagan, M.; Geamănu, M.; Ștefănescu, R.; Dijmărescu, I. Deep Learning-Assisted Smart Process Planning, Robotic Wireless Sensor Networks, and Geospatial Big Data Management Algorithms in the Internet of Manufacturing Things. ISPRS Int. J. Geo-Inf. 2022, 11, 277. [Google Scholar] [CrossRef]
- Kovacova, M.; Horak, J.; Higgins, M. Behavioral Analytics, Immersive Technologies, and Machine Vision Algorithms in the Web3-powered Metaverse World. Linguist. Philos. Investig. 2022, 21, 57–72. [Google Scholar] [CrossRef]
- Kovacova, M.; Horak, J.; Popescu, G.H. Haptic and Biometric Sensor Technologies, Deep Learning-based Image Classification Algorithms, and Movement and Behavior Tracking Tools in the Metaverse Economy. Anal. Metaphys. 2022, 21, 176–192. [Google Scholar] [CrossRef]
- Andronie, M.; Lăzăroiu, G.; Ștefănescu, R.; Ionescu, L.; Cocoșatu, M. Neuromanagement Decision-Making and Cognitive Algorithmic Processes in the Technological Adoption of Mobile Commerce Apps. Oeconomia Copernic. 2021, 12, 863–888. [Google Scholar] [CrossRef]
- Novak, A.; Novak Sedlackova, A.; Vochozka, M.; Popescu, G.H. Big Data-driven Governance of Smart Sustainable Intelligent Transportation Systems: Autonomous Driving Behaviors, Predictive Modeling Techniques, and Sensing and Computing Technologies. Contemp. Read. Law Soc. Justice 2022, 14, 100–117. [Google Scholar] [CrossRef]
- Nica, E.; Poliak, M.; Popescu, G.H.; Pârvu, I.-A. Decision Intelligence and Modeling, Multisensory Customer Experiences, and Socially Interconnected Virtual Services across the Metaverse Ecosystem. Linguist. Philos. Investig. 2022, 21, 137–153. [Google Scholar] [CrossRef]
- Andronie, M.; Lăzăroiu, G.; Iatagan, M.; Uță, C.; Ștefănescu, R.; Cocoșatu, M. Artificial Intelligence-Based Decision-Making Algorithms, Internet of Things Sensing Networks, and Deep Learning-Assisted Smart Process Management in Cyber-Physical Production Systems. Electronics 2021, 10, 2497. [Google Scholar] [CrossRef]
- Valaskova, K.; Horak, J.; Bratu, S. Simulation Modeling and Image Recognition Tools, Spatial Computing Technology, and Behavioral Predictive Analytics in the Metaverse Economy. Rev. Contemp. Philos. 2022, 21, 239–255. [Google Scholar] [CrossRef]
- Kovacova, M.; Oláh, J.; Popescu, G.H. Digital Twin Simulation and Modeling Tools, Deep Learning Object Detection Technology, and Visual Perception and Sensor Fusion Algorithms in the Metaverse Commerce. Econ. Manag. Financ. Mark. 2022, 17, 9–24. [Google Scholar] [CrossRef]
- Valaskova, K.; Horak, J.; Lăzăroiu, G. Socially Responsible Technologies in Autonomous Mobility Systems: Self-Driving Car Control Algorithms, Virtual Data Modeling Tools, and Cognitive Wireless Sensor Networks. Contemp. Read. Law Soc. Justice 2022, 14, 172–188. [Google Scholar] [CrossRef]
- Watson, R. Tradeable Digital Assets, Immersive Extended Reality Technologies, and Blockchain-based Virtual Worlds in the Metaverse Economy. Smart Gov. 2022, 1, 7–20. [Google Scholar] [CrossRef]
- Andronie, M.; Lăzăroiu, G.; Ștefănescu, R.; Uță, C.; Dijmărescu, I. Sustainable, Smart, and Sensing Technologies for Cyber-Physical Manufacturing Systems: A Systematic Literature Review. Sustainability 2021, 13, 5495. [Google Scholar] [CrossRef]
- Valaskova, K.; Machova, V.; Lewis, E. Virtual Marketplace Dynamics Data, Spatial Analytics, and Customer Engagement Tools in a Real-Time Interoperable Decentralized Metaverse. Linguist. Philos. Investig. 2022, 21, 105–120. [Google Scholar] [CrossRef]
- Valaskova, K.; Popp, J.; Balica, R.-Ș. Visual and Spatial Analytics, Immersive Virtual Simulation Technologies, and Motion Planning and Object Recognition Algorithms in the Retail Metaverse. Econ. Manag. Financ. Mark. 2022, 17, 58–74. [Google Scholar] [CrossRef]
- Zvarikova, K.; Cug, J.; Hamilton, S. Virtual Human Resource Management in the Metaverse: Immersive Work Environments, Data Visualization Tools and Algorithms, and Behavioral Analytics. Psychosociol. Issues Hum. Resour. Manag. 2022, 10, 7–20. [Google Scholar] [CrossRef]
- Andronie, M.; Lăzăroiu, G.; Iatagan, M.; Hurloiu, I.; Dijmărescu, I. Sustainable Cyber-Physical Production Systems in Big Data-Driven Smart Urban Economy: A Systematic Literature Review. Sustainability 2021, 13, 751. [Google Scholar] [CrossRef]
- Durana, P.; Musova, Z.; Cuțitoi, A.-C. Digital Twin Modeling and Spatial Awareness Tools, Acoustic Environment Recognition and Visual Tracking Algorithms, and Deep Neural Network and Vision Sensing Technologies in Blockchain-based Virtual Worlds. Anal. Metaphys. 2022, 21, 261–277. [Google Scholar] [CrossRef]
- Kliestik, T.; Novak, A.; Lăzăroiu, G. Live Shopping in the Metaverse: Visual and Spatial Analytics, Cognitive Artificial Intelligence Techniques and Algorithms, and Immersive Digital Simulations. Linguist. Philos. Investig. 2022, 21, 187–202. [Google Scholar] [CrossRef]
- Poliak, M.; Poliakova, A.; Zhuravleva, N.A.; Nica, E. Identifying the Impact of Parking Policy on Road Transport Economics. Mob. Netw. Appl. 2021, 1–8. [Google Scholar] [CrossRef]
- Kral, P.; Janoskova, K.; Dawson, A. Virtual Skill Acquisition, Remote Working Tools, and Employee Engagement and Retention on Blockchain-based Metaverse Platforms. Psychosociol. Issues Hum. Resour. Manag. 2022, 10, 92–105. [Google Scholar] [CrossRef]
- Zvarikova, K.; Machova, V.; Nica, E. Cognitive Artificial Intelligence Algorithms, Movement and Behavior Tracking Tools, and Customer Identification Technology in the Metaverse Commerce. Rev. Contemp. Philos. 2022, 21, 171–187. [Google Scholar] [CrossRef]
- Valaskova, K.; Vochozka, M.; Lăzăroiu, G. Immersive 3D Technologies, Spatial Computing and Visual Perception Algorithms, and Event Modeling and Forecasting Tools on Blockchain-based Metaverse Platforms. Anal. Metaphys. 2022, 21, 74–90. [Google Scholar] [CrossRef]
Topic | Identified | Selected |
---|---|---|
Sustainable urban governance networks + digital twin simulation tools | 119 | 19 |
Sustainable urban governance networks + spatial cognition algorithms | 114 | 17 |
Sustainable urban governance networks + multi-sensor fusion technology | 108 | 16 |
Type of paper | ||
Original research | 303 | 40 |
Review | 23 | 12 |
Conference proceedings | 12 | 0 |
Book | 1 | 0 |
Editorial | 2 | 0 |
Data-driven smart sustainable urbanism requires visual recognition tools, monitoring and sensing technologies, and simulation-based digital twins. | [1,2,3] |
Simulated 3D environments and immersive multisensory virtual spaces in smart sustainable city governance necessitate digital twin simulation technologies, geospatial mapping tools, and urban Internet of Things systems. | [4,5,6] |
Data fusion technologies, smart connected devices, and sustainable urban monitoring systems optimize digital twin cities. | [7,8,9] |
Big geospatial data analytics harnesses 3D virtual simulation technology, sustainable urban computing systems, and digital twin networks. | [10,11,12] |
Smart networked environments in big-data-driven urban geopolitics require digital twin simulation modeling, spatial computing technology, and Internet of Things sensors and actuators. | [13,14,15] |
Smart sustainable city governance necessitates virtual simulation tools, sensor data fusion, and geospatial mapping technologies. | [16,17,18] |
Multi-sensor data fusion algorithms, spatial computing technology, and virtual simulation tools are pivotal in simulated 3D environments across sustainable urban governance networks. | [19,20,21,22] |
Networked sustainable urban technologies, Internet of Things sensing infrastructures, and deep-learning-based computer vision algorithms are instrumental in immersive hyperconnected virtual spaces in smart city governance. | [23,24,25] |
Spatiotemporal fusion algorithms, cyber-physical cognitive systems, and virtual twin modeling tools configure sustainable urban governance networks. | [26,27,28] |
Immersive 3D environments in urban digital twins necessitate spatial data visualization tools, virtual modeling technology, and blockchain-enabled Internet of Things networks. | [29,30,31] |
Immersive interactive environments in data-driven smart sustainable cities require virtual twinning techniques, deep-learning-based sensing and image recognition technologies, and data modeling and simulation tools. | [32,33,34] |
Digital twin simulation technologies, cognitive data mining algorithms, and urban analytics tools enable extended reality environments in cognitive smart cities. | [35,36,37] |
Cognitive smart cities require remote sensing data, virtual navigation tools, and visualization modeling technologies. | [38,39,40] |
Cloud computing analytics, urban logistics networks, and digital twin technologies articulate blockchain-based virtual worlds in sustainable smart cities. | [41,42,43,44] |
Cognitive automation technologies, blockchain-enabled Internet of Things networks, and virtual data modeling tools assist data-driven smart sustainable urbanism. | [45,46,47,48] |
Spatial computing technologies, digital twin simulation, and synthetic sensing devices are instrumental in immersive and decentralized 3D digital worlds in smart and sustainable urban systems. | [49,50,51,52] |
Sensing and computing technologies, virtual simulation tools, and cognitive artificial intelligence algorithms configure urban digital twins. | [1,16,29] |
Urban simulated environments necessitate virtual twin modeling tools, sensor data fusion, and deep neural network technology. | [7,20,32] |
Real-time Internet of Things data, immersive visualization systems, and geospatial mapping tools optimize smart sustainable city governance. | [13,34,41] |
Remote sensor networks, digital twin modeling, and urban computing technologies are instrumental in data-driven smart sustainable urbanism. | [4,25,37] |
Immersive and decentralized 3D digital worlds in smart sustainable city governance require spatial data visualization tools, remote sensing technologies, and data simulation algorithms. | [3,12,35] |
Geospatial analytics tools, digital twin technologies, and Internet of Things sensing infrastructures shape blockchain-based virtual worlds in smart sustainable city governance. | [6,23,38] |
Spatiotemporal fusion algorithms, virtual simulation tools, and visual modeling technologies assist sustainable urban governance networks. | [9,22,50] |
Sustainable smart cities integrate virtual twin modeling tools, deep-learning-based ambient sound processing, and geospatial data mining. | [10,18,45] |
Three-dimensional city modeling, virtual simulation tools, and geospatial mapping technologies configure data-driven smart sustainable urbanism. Intelligent sensor networks, machine learning techniques, and ambient sound recognition software configure immersive hyperconnected virtual spaces in digital twin cities. | [1,2,3] |
Data mining tools, Internet of Things sensing infrastructures, and digital twin simulations articulate virtual urban environments. | [4,5,6] |
Internet-of-Things-based smart city environments require cognitive data fusion techniques, deep-learning-based sensing technologies, and predictive simulation tools. | [7,8,9] |
Spatial cognition algorithms, digital twin simulation modeling, and smart Internet of Things devices enable big-data-driven urban geopolitics. | [10,11,12] |
Digital twin simulation and modeling tools, Internet of Things sensing infrastructures, and geospatial data mining further smart and environmentally sustainable cities. | [13,14,15] |
Big-data-driven urban analytics leverages virtual simulation tools, digital twin networks, and remote sensing technologies. | [16,17,18] |
Urban big data analytics, remote sensing systems, and virtual simulation modeling tools assist smart city digital twins. | [19,20,21,22] |
Digital twin simulation, remote sensing technologies, and spatial computing algorithms enable augmented reality-powered immersive spaces in urban digital governance. | [23,24,25] |
Data-driven Internet of Things systems, cloud-based digital twins, spatial cognition algorithms, and immersive virtual technologies configure immersive 3D environments. | [26,27,28] |
Three-dimensional digital environments in smart city governance necessitate visual sensing devices, spatial cognition algorithms, and geospatial mapping technologies. | [29,30,31] |
Urban remote sensing data, cognitive digital twins, and data simulation and prediction tools assist immersive virtual worlds. | [32,33,34] |
Smart city analytics harnesses simulation modeling tools, urban sensing technologies, and spatial cognition algorithms. | [35,36,37] |
Deep-learning-based sensing technologies, spatial cognition algorithms, and environment perception mechanisms configure digital twin cities. | [38,39,40] |
Spatial cognition algorithms, 3D modeling and visualization tools, and urban sensing technologies shape big-data-driven urban geopolitics. | [41,42,43,44] |
Virtual-reality-based visualization environments in smart city digital twins require visual perception sensors, cognitive data fusion techniques, and spatial computing algorithms. | [45,46,47,48] |
Cognitive data visualization tools, predictive control algorithms, and urban spatial planning tools are instrumental in shared virtual environments across digital twin cities. | [49,50,51,52] |
Internet-of-Things-based smart city environments require urban network infrastructures, data mining and fusion technology, and spatial data visualization tools. | [1,16,29] |
Virtual data analytics leverages urban sensing and visual immersion technologies, data modeling and simulation tools, and image data fusion techniques. | [7,20,32] |
Augmented reality algorithms, ambient sound recognition software, and data fusion technologies optimize smart networked environments in 5G-enabled smart cities. | [13,34,41] |
Urban big data analytics harnesses digital twin technologies, smart data modeling, and multi-sensor environment data fusion tools. | [4,25,37] |
Sensor data fusion, visual recognition tools, and edge and cloud computing technologies configure digital twin cities. | [3,12,35] |
Multisource remote sensing data fusion, real-time predictive analytics, and 3D urban modeling tools articulate virtual simulation environments in digital twin cities. | [6,23,38] |
Digital twin simulation modeling, deep-learning-based sensing technologies, and urban data fusion optimize Internet-of-Things-based smart city environments. | [9,22,50] |
Internet of Things digital twins, spatial cognition algorithms, and multi-sensor environment data fusion are instrumental in smart urban governance. | [10,18,45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nica, E.; Popescu, G.H.; Poliak, M.; Kliestik, T.; Sabie, O.-M. Digital Twin Simulation Tools, Spatial Cognition Algorithms, and Multi-Sensor Fusion Technology in Sustainable Urban Governance Networks. Mathematics 2023, 11, 1981. https://doi.org/10.3390/math11091981
Nica E, Popescu GH, Poliak M, Kliestik T, Sabie O-M. Digital Twin Simulation Tools, Spatial Cognition Algorithms, and Multi-Sensor Fusion Technology in Sustainable Urban Governance Networks. Mathematics. 2023; 11(9):1981. https://doi.org/10.3390/math11091981
Chicago/Turabian StyleNica, Elvira, Gheorghe H. Popescu, Milos Poliak, Tomas Kliestik, and Oana-Matilda Sabie. 2023. "Digital Twin Simulation Tools, Spatial Cognition Algorithms, and Multi-Sensor Fusion Technology in Sustainable Urban Governance Networks" Mathematics 11, no. 9: 1981. https://doi.org/10.3390/math11091981
APA StyleNica, E., Popescu, G. H., Poliak, M., Kliestik, T., & Sabie, O. -M. (2023). Digital Twin Simulation Tools, Spatial Cognition Algorithms, and Multi-Sensor Fusion Technology in Sustainable Urban Governance Networks. Mathematics, 11(9), 1981. https://doi.org/10.3390/math11091981