Phi, Fei, Fo, Fum: Effect Sizes for Categorical Data That Use the Chi-Squared Statistic
Abstract
:1. Introduction
2. Effect Sizes for Tests of Independence
2.1. Phi
2.2. Cramér’s V (and Tschuprow’s T)
3. Effect Sizes for the Goodness-of-Fit Tests
3.1. Cohen’s w
3.2. Fei
4. Simulation Study of the Distributional Form of the Fei Effect Size
5. Conclusions
6. How to Type the פ Symbol
- By copying the character from https://util.unicode.org/UnicodeJsps/character.jsp?a=05E4 (access date: 9 March 2023) or similar webpages.
- In R, by typing the string “\u05e4”.
- In LaTeX, by typing \char”05e4 and using a Unicode-compatible compiler, such as XeTeX or LuaLaTeX.
- In Microsoft Word, from the Hebrew character of the Symbols window (Insert → Symbol…) or by typing 05e4, followed by Alt + X on the keyboard (Windows only).
- On Windows, using the Character Map application or by holding down Alt and typing +1508 on the numeric keypad.
- On macOS, by enabling the Unicode Hex Input language from System Settings… → Keyboard, then typing Opt + 05e4.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Open Science Collaboration. Estimating the Reproducibility of Psychological Science. Science 2015, 349, aac4716. [Google Scholar] [CrossRef] [PubMed]
- Camerer, C.F.; Dreber, A.; Holzmeister, F.; Ho, T.-H.; Huber, J.; Johannesson, M.; Kirchler, M.; Nave, G.; Nosek, B.A.; Pfeiffer, T.; et al. Evaluating the Replicability of Social Science Experiments in Nature and Science between 2010 and 2015. Nat. Hum. Behav. 2018, 2, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Cumming, G. The New Statistics: Why and How. Psychol. Sci. 2014, 25, 7–29. [Google Scholar] [CrossRef] [PubMed]
- Wiernik, B.M.; Dahlke, J.A. Obtaining Unbiased Results in Meta-Analysis: The Importance of Correcting for Statistical Artifacts. Adv. Methods Pract. Psychol. Sci. 2020, 3, 94–123. [Google Scholar] [CrossRef]
- DeGeest, D.S.; Schmidt, F.L. The Impact of Research Synthesis Methods on Industrial-Organizational Psychology: The Road from Pessimism to Optimism about Cumulative Knowledge. Res. Synth. Methods 2010, 1, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Pearson, K., VII. Note on Regression and Inheritance in the Case of Two Parents. Proc. R. Soc. Lond. 1895, 58, 240–242. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: Oxfordshire, UK, 1988; ISBN 978-0-203-77158-7. [Google Scholar]
- Cummings, P. The Relative Merits of Risk Ratios and Odds Ratios. Arch. Pediatr. Adolesc. Med. 2009, 163, 438. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shachar, M.; Lüdecke, D.; Makowski, D. Effectsize: Estimation of Effect Size Indices and Standardized Parameters. J. Open Source Softw. 2020, 5, 2815. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Olvera Astivia, O.L. The Relationship between the Phi Coefficient and the Chi-Square Test of Association. Psychometroscar 2022. Available online: https://psychometroscar.com/2022/04/21/the-relationship-between-the-phi-coefficient-and-the-chi-square-test-of-association/ (accessed on 9 March 2023).
- Cramér, H. Mathematical Methods of Statistics; Princeton University Press: Princeton, NJ, USA, 1999; ISBN 978-0-691-00547-8. [Google Scholar]
- Tschuprow, A.A. Principles of the Mathematical Theory of Correlation; W. Hodge, Limited: London, UK, 1939. [Google Scholar]
- Chicco, D.; Jurman, G. The Advantages of the Matthews Correlation Coefficient (MCC) over F1 Score and Accuracy in Binary Classification Evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, M.S. A Generalized Formula for Converting Chi-Square Tests to Effect Sizes for Meta-Analysis. PLoS ONE 2010, 5, e10059. [Google Scholar] [CrossRef] [PubMed]
- Johnston, J.E.; Berry, K.J.; Mielke, P.W. Measures of Effect Size for Chi-Squared and Likelihood-Ratio Goodness-of-Fit Tests. Percept. Mot. Skills 2006, 103, 412–414. [Google Scholar] [CrossRef] [PubMed]
Sex | Survived | Died |
---|---|---|
Male | 367 | 1364 |
Female | 344 | 126 |
Variable 1 | Variable 2 | r (95% CI) | (95% CI) |
---|---|---|---|
Sex (male/female) | Survival (survived/died) | −0.46 (−0.49, −0.42) | 0.46 (0.42, 1.00) |
Class/Position | Survived | Died |
---|---|---|
1st | 203 | 122 |
2nd | 118 | 167 |
3rd | 178 | 528 |
Crew | 212 | 673 |
Type | Product | Cramér’s V (95% CI) | Tschuprow’s T (95% CI) | ||
---|---|---|---|---|---|
Soy | Milk | Meat | |||
Vegan | 47 | 0 | 0 | 1.00 (0.81, 1.00) | 0.84 (0.68, 1.00) |
Not-Vegan | 0 | 12 | 12 |
Observed Counts | Expected Proportion | Cohen’s w (95% CI) |
---|---|---|
90/10 | 0.5/0.5 | 0.80 (0.61, 1.00) |
90/10 | 0.35/0.65 | 1.15 (0.99, 1.36) |
5/10/80/5 | 0.25/0.25/0.25/0.25 | 1.27 (1.10, 1.73) |
Observed Counts | Expected Proportion | Fei (95% CI) |
---|---|---|
90/10 | 0.5/0.5 | 0.80 (0.64, 1.00) |
90/10 | 0.35/0.65 | 0.85 (0.73, 1.00) |
5/10/80/5 | 0.25/0.25/0.25/0.25 | 0.73 (0.64, 1.00) |
Test | Table Size | Effect Size |
---|---|---|
test for independence | 2-by-2 | |
Larger than 2-by-2 | or (Reduces to when table is 2-by-2) | |
test for goodness-of-fit | 2 classes with uniform null distribution | |
More than 2 classes and/or non-uniform null distribution | (Reduces to when there are 2 classes with uniform null dist). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben-Shachar, M.S.; Patil, I.; Thériault, R.; Wiernik, B.M.; Lüdecke, D. Phi, Fei, Fo, Fum: Effect Sizes for Categorical Data That Use the Chi-Squared Statistic. Mathematics 2023, 11, 1982. https://doi.org/10.3390/math11091982
Ben-Shachar MS, Patil I, Thériault R, Wiernik BM, Lüdecke D. Phi, Fei, Fo, Fum: Effect Sizes for Categorical Data That Use the Chi-Squared Statistic. Mathematics. 2023; 11(9):1982. https://doi.org/10.3390/math11091982
Chicago/Turabian StyleBen-Shachar, Mattan S., Indrajeet Patil, Rémi Thériault, Brenton M. Wiernik, and Daniel Lüdecke. 2023. "Phi, Fei, Fo, Fum: Effect Sizes for Categorical Data That Use the Chi-Squared Statistic" Mathematics 11, no. 9: 1982. https://doi.org/10.3390/math11091982
APA StyleBen-Shachar, M. S., Patil, I., Thériault, R., Wiernik, B. M., & Lüdecke, D. (2023). Phi, Fei, Fo, Fum: Effect Sizes for Categorical Data That Use the Chi-Squared Statistic. Mathematics, 11(9), 1982. https://doi.org/10.3390/math11091982