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Abstract: The main concern of this paper is to investigate the existence and uniqueness of a fuzzy neu-
tral impulsive stochastic differential system with Caputo fractional order driven by fuzzy Brownian
motion using fuzzy numbers with bounded v-level intervals that are convex, normal and upper-
semicontinuous. Fuzzy It6 process, Gronwall’s inequality and the Banach fixed-point theorem are
employed to probe the local and global existence. An analytical example is provided to examine the
theoretical results.
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fractional derivative; Banach fixed-point theorem

MSC: 60H10; 34F05; 34A07; 34A12

1. Introduction

Fractional order derivatives have gained prominence and appeal among researchers in
recent decades. The primary advantage of fractional calculus is that fractional derivatives
can be used to describe the memory and hereditary qualities of diverse materials and pro-
cesses. Fractional calculus is important in many disciplines of practical research, including
blood flow, control theory, economics, etc. [1,2]. Several articles [3-5] have reported the
existence results for neutral differential equations with fractional order in the Caputo sense.
Various proposed fuzzy differential systems furnish better models in the frame of ambiguity.
Noise frequently causes fluctuations in deterministic systems so it is inevitable to replace
deterministic models with stochastic models. The behaviour of uncertainty is concerned
with the stochastic mutability of an entire attainable consequence of states though ambigu-
ity connected with the blurred confine of models. Stochastic differential equations (SDEs)
and fuzzy SDEs are effective tools for modelling fuzzy random phenomena. Dynamical
systems with fuzziness are designed by fuzzy stochastic differential systems affected by
fuzzy stochastic noise. The basic statistical properties of fuzzy stochastic processes are
considered in [6].

Many experts are investigating fuzzy postulates [7-12], which currently have increas-
ing applications in a wide range of engineering disciplines and also in finance [13-16].
Many interpretations of facts in economics, smart fluid technology, bioinformatics, and
neural networks have successfully used perturbation terms in crisp stochastic differential
systems [17]. A number of studies [12,18-23] have employed fuzzy stochastic differen-
tial and integral equations for applications, including the presentation of a model for
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application in population dynamics. Zhu et al. [24] examined the uniqueness and ex-
istence of stochastic set-valued differential equations with fractional Brownian motion,
and Jafari et al. [15] studied fuzzy stochastic differential equations driven by fractional
Brownian motion. Arhrrabi et al. [25] inspected the existence, uniqueness and stability for
fuzzy fractional stochastic differential systems driven by fractional Brownian motion using
an approximation method.

The reason for investigators to concentrate on fuzzy impulsive differential equations
is the sudden switch over of conditions in numerous processes. Benchohra et al. [26]
investigated fuzzy solutions for impulsive differential equations. Priyadharshini et al. [27]
proposed the existence and uniqueness of fuzzy fractional stochastic differential systems
with impulses with granular derivatives using a contraction principle. Bao et al. [28] and
Chadha et al. [29] undertook work on impulsive neutral stochastic differential equations
with infinite delay in the frame of the Caputo fractional order. Narayanamoorthy et al. [30]
studied the approximate controllability for impulsive linear fuzzy stochastic differential
equations under non-local conditions. Maheswari et al. [31] and Anguraj et al. [32]
examined the existence and stability behavior of neutral impulsive stochastic differential
equations. The results of [33] showed that impulses can facilitate the stability of stochastic
differential equations when the original system is not stable.

Examples of manifesting the existence and uniqueness of various systems have been
reported in numerous articles. Balasubramainiam et al. [34] studied the existence and
uniqueness of fuzzy solutions for semilinear fuzzy integro-differential equations using
fuzzy numbers whose values were normal, convex upper-semicontinuous, and with com-
pactly supported intervals. Abuasbeh et al. [16] investigated the existence and uniqueness
of fuzzy fractional stochastic differential systems driven by fractional Brownian motion
with non-local conditions using an approximation method. Arhrrabi et al. [35] explored
the existence and uniqueness of solutions for fuzzy fractional stochastic differential equa-
tions under generalized Hukuhara differentiability, using the principle of contraction
mappings. Luo et al. [36] explored a new kind of Caputo fractional fuzzy stochastic dif-
ferential equation with delay and established the existence using a monotone iterative
technique. Using a fuzzy controller function, Chaharpashlou et al. [37] stabilized the
random operator for a type of fractional stochastic Voltera integral equation. The authors
of [38] addressed the exact controllability for Caputo fuzzy fractional evolution equations
in the credibility space from the perspective of the Liu process. The concepts of global and
local existence and uniqueness were presented in [39] for the fuzzy fractional functional
evolution equation by employing the contraction principle and successive approximation.

The determined efforts which have inspired this article include the work of Anil
kumar et al. [40] on fuzzy fractional differential systems with non-instantaneous impulses,
which inspect the local and global existence using contraction mapping and Gréonwall’s
inequality. The weak uniqueness of fuzzy stochastic differential equations driven by fuzzy
Brownian motion was explored by Didier et al. [41]. The fuzzy stochastic integral driven
by fuzzy Brownian motion with metric between fuzzy numbers and the limit of sequences
of fuzzy numbers was taken into account in [42]. The primary purpose of this paper is to
investigate the existence and uniqueness using a v-cut method of the fuzzy fractional order
neutral impulsive stochastic differential system operated by fuzzy Brownian motion.

We explore below the solution for the considered fractional order fuzzy neutral impul-
sive stochastic differential system.

“DY[2(D) + (¢ 2
Az

@) = h(&,2(2))dZ +o(Z,2(Z))dB;, ¢eloT], # Cm
Cm) = bu(z(Zm)), {=Tm m=1,2,34..k

2(8) = (), ¢ e[-70] )
where CDg isa u € (0, 1) order Caputo derivative, and z(() is the fuzzy function structure.

Here, 0 = 0o < {1 < ... (i <l =T < o0 E’g is the fuzzy Brownian motion. The
pertinent functions are g,h,0 : V x Q) X Fl‘% — Ffé ; where Ff{ signify the group of fuzzy
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numbers that are convex, normal, upper-semi continuous with bounded v-level intervals.
z(3) and z(Z;,) depict the right and left limit of the fuzzy function at {,,

A2(w) = 2(C3) ~ 2(Z3) where 2(5) = lim =(Z +€) and 2(Z5,) = lim 2(Gn — €),
ec0™ ec0t
n={n),¢e[-7,0},n:[-1,0 — FI% is a continuous function.

The contribution of this article are:

(i) This study explores the existence of fuzzy neutral impulsive fractional stochastic sys-
tems with fuzzy metrices and fuzzy Brownian motion for the first time in the literature.
(i) An example is provided to illustrate the theory.

The article is structured as follows: In Section 2, the core definitions that are funda-
mental to the paper are presented. In Section 3, the local existence and uniqueness of the
considered system is established. In Section 4, the global existence and uniqueness of the
considered system is established. In Section 5, an example with v-cut is provided for the
proposed system. Finally, the conclusions are drawn in Section 6.

2. Preliminaries

This part of the article sets out some notations, rudimentary definitions, and major
lemmas that are utilized for the leading proof. Let us indicate CF as the collection of all
fuzzy valued continuous functions on V: = [0, T] and LE as the collection of all fuzzy
valued Labesgue integrable functions on V. In addition, we specify PCF (U, F) = {z :
u— FI‘{} as the space of fuzzy functions that are piecewise continuous functions where
u=I[-7,0)U0,T].

Definition 1. Hausdorff metric [9]: The distance of two sets that are nonempty bounded subsets
of R as

dy (y,¢) := maxq supinf |[§ — &[|ga, sup inf [|§ — ¢][ga y,c € Kg
gey €e¢ cec Vey

We elucidate the structure (Q), AF, P) to be the complete probability space with filtra-
tion {Ag € V := [0, T]} contented by regular conditions. The proceeding values from K%,

i.e., (the collection of all non-empty subsets of R? that are convex and compact). The fuzzy
Brownian motion {B;, { € V} is defined on (€, Af, {Ag}gevz P).

Signifying M(Q, AF, K%) as the family of Af-measurable multi-valued random vari-
ables and also L7 (Q, AF P, Ffé) as the set of all LP-integrably bounded. The function
G:Q — K% with state {w € Q : G(w) UO # ®} € Al is satisfied for every open set
O € R%. The function F : Q — K?{ is a multi-valued random variable if, and only if, F is a
AF \fd ., measurable function (B, denotes the Borel r-algebra generated by the metric dy
in K%).

Definition 2. Fuzzy random variable [9]: A mapping z : Q — Fi is claimed to be a fuzzy
random variable if [z]" : Q — K% is an AF-measurable set valued random variable ¥ v € (0, 1]
with [z]" (w) = [z(w)]".

Considering the o-algebra B;_, generated by the topology induced by the metric deo in K%, the
interpretation is analogous to the AP\ B, measurability for z : Q — Fi.

Definition 3. LP-integrably bounded [23]: Fuzzy random variable z : Q) — F4 to LP-integrable
that are bounded , p > 1 if w — [z(w)]" € LF(Q, AF, P, F§,5,) is complete.

Definition 4. Fuzzy stochastic process [41]: We term the mapping z : V x () — Flg a fuzzy
stochastic process if V { € V the function z({) : QO — Fﬁ is a fuzzy random variable. We affirm
that a fuzzy stochastic process z is deo-continuous if a stochastic process h is continuous and it is
{Ag }eev adapted and measurable.
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Definition 5. Fuzzy Brownian motion [41]: A fuzzy stochastic process {z({),{ € [0,T],0 <
T < co} is a fuzzy Brownian motion on the space (Q), A, P) if, and only if, Vv € (0,1], the process

[Bgl" = [(By)y, (By)y]

is an interval-Brownian Motion on (Q), AF, P) and By = U,¢(o1)[Bf]

Definition 6. Fuzzy Membership function [7]: The mapping M, : R — [0, 1] that satisfies

(1) If Mia(p) = 1,0 € RY, then jn is interpreted as complete membership.
(2)  If0 < Msn(p) <1, then fn is interpreted as partial membership.
(3)  If Msn(p) = O, then fn is interpreted as non-membership.

Definition 7. Fuzzy number [7]: A fuzzy set fun is claimed as a fuzzy number if it assures

(1) fn is normal, ie. forp € RT Mi,(p) = 1.

(2)  fnis fuzzy convex, ie., fn(ép + (1 —68)(p)) > min{fn(p) +fn(p)}, V6 € [0,1],0,p € RY
(3)  fn is upper semi-continuous on R%

(4)  fnis compactly supported, i.e., cl{p € R%; M, (p) > 0} is compact.

Definition 8. v-level set [11]: The v-level set of the fuzzy set fu is defined as

[fn]" = {p\p € R%;n(p) > 0}, v e (0,1]

and  [fn]® = cl{p € R%;fn(p) > 0}, c denotes closure and [fn]® is compact.
Define the v-level set of fn as [fu]” = [fn], fn}], fu;, fn, are left and right branch.
In consequence, for any two fuzzy numbers,

g+e = [+l ={e+p:pcpl pelel}ve(01]
o6 = {op:pelé'},ve(0,1]
Definition 9 ([9]). The distance between fuzzy numbers in the Hausdorff space is defined as

dy(y,c) == sup max{d(|y} — /|, |y} —c/|)} = sup max{d([y]",[c]")}
ve(0,] ve(0,1]

Clearly (Fl‘%, dy) is a complete metric space and the metric sustains the properties
(1) dy(y+cx+c)=d(yx) VyxeFs

2) dy(y+cx+a)=dy(yx)+dy(ca), Yy x,cac Fl‘%

(3)  dy(Ay,Ax) = [Aldy(y,x), Vy,x € F§

Definition 10 ([10]). We define
dy([y]", [x]") = max{d([y]", [x]"), d([x]", [y)");v € (0,1]} y, x € Ff
Hence, (F{, dy) forms a complete metric space.
Definition 11 ([10]). The supremum metric des on F4 is defined by
deo(y, x) = sup{dy([y]", [x]") : v € (0,1] vy, x € F}}
Now, deo is a metric in Ff{ and (Flg, do) forms a complete metric space.
Definition 12 ([10]). We define the metric

Ha(y,x) = sup{dw(y(£),x(2)) : { € U,y,x € PC*(U, F{)}
It is direct that (PCF (U, F4), H1) is a complete metric space.
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Lemma 1 ([10]). For p,q € F&,v € (0,1], we have

p+4q" = [pu+aquw P+
[pxq]" = [min{hi,hj}, max{hj, hi}], i,j =u,v
p—4q" = [pu—aquw Po— a0

Definition 13. Fuzzy integral [8]: The integral of a function z({) : V — F&, which is measurable
and integrably bounded is in the configuration

[0x] = [Eora
= {/fﬁ(g)d@\i V- Fﬁis a measurable selection for(z(.)]" v € (0,1]}

Theorem 1. (Fuzzy It6 process) [41] For (Y({))z>o, (Y(@))gzo € L2(F%), we have

E [d%o ( JEY () dBy, [ YdBKﬂ <E [ JEaz, (Y(K),Y(K))dx}

Proof. From the definition of d for > 0
Now, consider E {dgo (f0§ x)dBy, fo dBK)}

= elswp & ([0 [ 10 w8 )

ve(0,1]
¢ v B \V P v v
< o sup di /0 (OB, [ 101 0B )
su 2 Y1V (x))dx
< Vefl/d )/ 191" ()
< ([ sup &8, (!0, [9) ()i
ve(0,1]

< L[ (Y0, 50)) ]

We have dB, = [(dB), (dB,)"]
Hence, the proof. O

Definition 14 ([2]). Let z : [u,v] — F§, the fuzzy Riemann—Liouville integral of fuzzy valued
function z is

(2@ = f [ 0 z(k)de, w <L 0 < p<1
Definition 15 ([2]). The fuzzy Caputo differentiability of z is

‘D 2(C f YRl (D" )(K)dkzﬁi?(@Z(”))(g), {>u,n—-1l<u<n

l"ny

In particular, for u € (0,1)
DF2(Q) = [(C — )P z()dx

Lemma 2. Ifz() € ¢S5 N £5,0 < pu < 1, then the unique solution of
“Dpz(g) = u(l), L €10,T]
is given by
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0) = i J5 (€ —0)rtu(x)di

Definition 16. An Aé -adapted fuzzy stochastic process z : V x ) — FI‘% is reckoned to be the

solution of the proposed system(1) if z(0) = 1(0) where z is de continuous , z € LP(V x Q, N; F4)
is disposed to be as

1), Cel-70

7(0) +4(0,7(0)) = 4(8,2(2)) + 5 Ji (£ — )" Th(xe,2(x)) e
Z(C,) — +F}4 fO 7K M 1Q( /Z(K))dBK/ Vi e [Olgl] ?)
7(0) +4(0,7(0) = 4(8,2(2)) + 1 Ji (£ — )" Th(xc,2(x)) e
+ry fo K)F Lo (e, 2(1))dBye + Ly bun(2(3m)),

VZ € (Zms G

3. Existence of Local Solutions via Contraction Principle
Theorem 2. If the hypothesis

(1) Forn the AF is measurable, we retain
Ed3,(7(2),0) < oo
$(2) ForallghoandY, Y, we retain

, < ,
(i) o ([ (YN [, Y(Q)))Y) < hdd, ([Y(2)), [Y(2)])
(i) d 7 ([e(C,Y(0)]", [o(g, Y <

$(3) For by, we retain
a2, ([bx (Y(2))]Y, [bm (Y(2))]") < bmd3, ([Y(D)]Y, [

is satisfied, then system (1) possibly has a local unique solution on UL

<>
—
N
=
<
S—

Proof. Defining an operator ® : PCF (U, F4) —: PCF (U, F%)
The solution of the system (1) is

1), ¢el-1,0
17(0) +4(0,7(0)) —q(Z, Y(2)) + 1 J§ (€ =) h(x, Y ()

Sz — k)" ok, Y (x))dB
©Y)(7) = +ri Jo (€= 0)F e, Y (x))dBy, VT € [0,1] o

7(0) +4(0,7(0)) — (2, Y(2)) + & Jis (€ — 1)*"h(x, Y (x) dx
o S (E = 1071006, Y (1)) By + Xy b (Y(Z),
v€ € (ém; Cm—i—l]

Now, we show that the operator ® owns a fixed point, that provides the solution of
the proposed system (1). We crack the proof over three segments.
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Case1: 1f { € [-7,0] and Y,Y € PCF(U, Fﬁ), we know that

(OY)Z =7(g) and (OY)] =1({)
Therefore
H2(©Y(2),0Y(7)) =0

Hence, © is a contraction in [—T, 0]
Case 2: When { € [0,{1] and Y, Y € PCF (U, F{), we could explore

(©Y)(0) =1(0)+q01(0) ~aEY@) + 1. [€— 0l Y (0
g [ @0 et X)) aB,

(©9)(0) =1(0) + 010 ~aEY@) + 1 [€ =0l ()

o [ €= 0 tet V0B,
Now, E[d,(1(@¥)(2))",[(©9)(0)]")]
— e[ (O + OO = g€ Y@ + [ [[€= 0 hix, Yoax] +

[Flpt/ (€= X" a0, X(W)MB , [7(0)) + (01O = g6, Y@+

v

[FI/ (€ — )" h(, ¥ (x )d;c]v+ {rly /Og(C—K)’”Q(KrY(KWBK} ﬂ

< 3E[ a3, (~1a(6, Y@~ (9@ 1))

v e ([ /Oig_K);«lh(K,y(K))dK]V & @ v ))de

13E [di([rly /(f(g—K)P‘—lg(K,Y(K))dBK]V [rly/ (€ =)ol Y(x ))déx]v)]

By using the hypothesis and Theorem 1, we have

E[d], ([(0OV)(D))", [(0Y)(9)]")] < —34E[d7 ([Y(D))", [Y(D)]")]

- I%Z [ /0 (€ —m)F a3 (Y (), [Y ()] dr]
* ?i [ /0 (€ = o)y ([Y(0)]Y, [Y ()] dx]

Now, by Definition 11, we have
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IN

IN

E[dZ,(©Y(£),0Y(0))] = E[ sup d3,([OY(0))",[OY(2)]")]

ve(0,1]

~548] sup a3 (IY(O)1 [¥(0)))) + SB[ (¢ ) d sup (IY()*, [V()]*) e
ve(0,1] B oJo ve(0,1]

FRELL (€0 s (YO 91001) i

3B, (Y(0), V(@) + o (€~ 0" EIG (Y(0), Y06

—|—3é é(é—K)P’*lE[dgo(Y(K),Y(K))]d;c

T o
According to Definition 12, we have

E[2(0©Y,0Y)] = E[ sup d%(©Y,0Y)]
7el0,41]

IN

el T Jo

30 ¢ B .
F—Q (C —x)"1E| sup dgo(Y(K),Y(K))]dK
mJo zef0,21]

3h (¢ N .
By (€= R ()i

20 (g B (Y, V)

IN

—34E[H? (Y, Y)] +

~

_ . N g A
H;(OY,0Y) < 3q’H%(Y,Y)+§Z /O (— o) (Y, Y)dx

4 3 .
+—= ; (¢ — ) HE (Y, Y)dx

A

Hi(OY,0Y) <

’H%(@Y,@Y) < ﬁl’}:l%(Y,Y), where £, = | —

Hence, © is contraction in [0, {1]
Case 3: When { € ({m,{m+1] and Y, Y € PCE(U, FI”{), we could explore

1

(©Y)(Z) = 7(0) +4(0,7(0)) —q(,Y(2)) + FH/g(C—K)"_lh(KIY(K))dK

m

k
. rly /i(g—x)”le(K,Y(K))dBKJF L tm(Y(En)
A 1

¢ _ N
B o (€= V()

b [ € e YO+ 3 (V)

—34E[ sup di(Y(g),Y(g))]+%/€(§—K)”_1E[ sup d%o(Y(K),Y(K))]dK
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Now, E[d([(©Y)(2)]",[(®Y)()]")]

— a0 + 10,0 ~ 1@ X)) + [ /(a 9, Y () }

[ [ tamyonan] [ £ movi] o o
e Y@+ [ [ 6= i Yoo+ [ /gi(g—x)ﬂleM(x))dBK}
k v
" zlbmmgm))] )]

< 4] (~@ YO - [ Y@)]")]

+4E d%{({l} /gi(g—x)ﬂlh(K,Y(K))dK} B L}H /gi(g—x)ﬂlh(x Y(K))dxrﬂ
casfa ([ [ 00 e vwnas] [ [ @ -0 e Span] )]
Jae| @ ( L?k:l bm<Y<ém>>] V, L?k:l b (Y@m))] )]

By using the hypothesis and Theorem 1

< —4GE[&, (V@) Y QP)] + ﬁzE [ /gn(@ 0 (Y, (06|
e (@0 (v, ¥00]") | +4 mi_l bmE[d3, ([Y(@n)]", (Y]]

Now, by using Definition 11, we have

E[dZ,(©Y(0),0Y(2))] = E[ sup d3,([0Y(2)]",[0Y(0)]")]

ve(0,1]

—44E[ sup dj, ([Y(0)]", [Y(©))" )]#LM]E[/%(é—K)”1 sup d ([Y(x)]", [Y (x)]")dx]

ve(0,1] I ve(0,1]

k
2 [ sup @R (YO [V(0)))d] 44 3 6l sup (Y], 961"

Tu ve(0,1] m=1 ve(0,1]

IN

< BV, YO + o [ (6~ 0PI (¥(0), Y00 i
k
22 [ (€~ 0B (Y0, Y06 e+ 4 3 B ELGR (Y(E), ¥(2)
Cm m=1

According to the Definition 12, E[#{2(©Y,0Y)] =E [ sup d2,(0Y,0Y)
éG [Orgl]
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sup  dx(Y(2),Y(2)) dx

GG[Cm Tl

IN

ah (¢ .
+— [ (C—x)'E [ sup  d%(Y(x), Y(x))
T / Celmims]

A k
r*Q/ —x)!'E| sup  d&(Y(x), Y(x)) [dc+4 ) GmE[ sup dio(y(gm),\?(gm))]
CE[GmCm1] m=1 C€[CmALm]
oo on] AR [T T < 4 (¢ T2 <
< —43E[FR(Y, V)] ﬂ/g (G 1E[H§(y,y)}dx+i [ G—ny 'E[ TR (Y, ¥)]dx

m=1
Hence,
72(0Y,0) < —44# / )R (Y, ¥ di
40 —1472 O L 72 O
+= (g—x)” HI(Y,Y)dc+4 ) b, HI(Y,Y)
r‘” Cm m=1
) o b+ " I
H;(OY,0Y) < —4q+4ﬁT +4 ) b |HT(Y,Y)
m=1
72 S S 20y S ¢ o+ S
Hi(OY,0Y) < £ HI(Y,Y), where £, = |—44+4 T T"+4) b
m=1

Hence, © is the contraction in { € ({m, {m+1]-
Consequently, we complete the proof by concluding as

#H2(QY,0Y) = supd% (OY,0Y) < EH3(Y,Y)
cev

Therefore, ® is a contraction in a strict manner on PCF (u, FI%) and, thus, by the
Banach fixed-point theorem shows that ® has a unique fixed point for the proposed
fuzzy system. [

4. Existence of Global Solutions via Gronwall Inequality

Lemma 3. Ref. [40] Let Y(,,x) > 0 be a continuous function on 0 < ¢ < T. If there are positive
constants s, ¢, y such that

V(G k) <s+r ST —x)P IV x)d,0< < T

then there exists a constant m such that Y ({,x) < mfor 0 < { <T

Theorem 3. Let the functions q,h,0 : V x Q x F& — F4 retain the claimed assumptions and

provided that
%‘([ q(¢,2(0))", [0]") < :diq([Z(C)]”, [0])
d, ([ (¢, 2(2))]", [01") < Hdy, ([2(9))", [01")
dj, ([o(g,2(0))]", [0]") < pd3 ([z(D)]", [0]")

Then the system (1) has a unique solution z on ¢ € [—t, T).

Proof. We address the solution of the system (1), using the theorem (2) up to ||z|| staying
bounded. Thus, we need to claim z exists on [—T, T] ; then it is bounded as { increases to T.
Here, the proof is divided into three segments
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case (i) When ( in the interval [—7,0), we explore
H2(z,0) =0

case (ii) When { € [0, (1], we have

2() = 1(0)+(0.7(0) ~ (@, 2(@) + 1 (€~ e 2N+ 1 [*(E =)ot 206,

Now, E[d3,([z(2)]",[0]")]

g v
= a0 + 100" ~ lg@ 2O + | [ (€= e ()] +

& [e- 0 et awan] | o)

v

[d%{<{1 /()5(€_K>u1h(x,z(x))dx] ,[0]”)]
+5E [d%{ ( H{ /Og(é - K)”‘le("/z("))dg"]v’ W)]

By using assumptions and Theorem 1, we have

< S5E[d7([7(0)]",[0]")] + 5E[d3;([9(0,7(0))]", [0]")] — 5QE[d,([z(£)]", [0]")]

+5rI:E[ /f(g — )P ([2(6)]Y, 0] )dx] + ?ﬁE[/f@ — k)1, (Y (1)), 0] )dx]

By Definition 11, E[d%(z({),0)] = E| 51(%)1] dz,([z(2)]", [01)]

< S5E[sup dj([7(0)]",[0]")] +5E[ sup d7([q(0,7(0))]",[0]")] — 5QE[ sup dF,([z(2)]",[0]")]
ve(0,1] ve(0,1] ve(0,1]

SH ¢ - v o s . [° : Vo
+ﬁ/0 (¢ —x) 1E[vzt(»1$1] d3([2(2)]", 0] )]d”ﬁ/o (¢ —x) 1E[V21(1$1] d3,([2(2)]", [0]")]dx

< SEIdL (5 0)1, 101 + SEI4 (4(0, 7 )], 01)] — SAEE (2(0), )]
50 @ 0 Bl (0,0 + L [0 0Bl 3(0), 0

According to Definition 12, E[#2(z,0)] = E| sElp ] d2,(z(2),0)]
§€ Olgl

. T 8
< 5¢, +5¢, — 59E[ sup d2%(z(¢),0)] +i—H/ (T —x)"YE[ sup d%(z(2),0)]dx
zel0,2i] pJo zel0,gi]

5 (¢ -1 2
+ : d2,(2(0),0)]d
T /O (C=x) [g:;llzﬂ (2(£), 0)]dx
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< 5€1+5€2—5QE[’}:[%(2,0)]+511[:/ (¢ — K)" B[z, 0)]dx
+ 2 [0~ (R (2, 0))d

Ty Jo
where €, = d%(7(0),0), ¢, = d2,(q(5(0),0))

Thus, we have

5(¢;, +¢,) e 5(H 4+ p)

:
72 <tk B 1972 d h ki = = =
i (2,0) <k + 2/0 (€ =" THi(z Oy, where ki = -5y ke = sl T

case (iii) When { € ({m, (t1], we explore

2(0) = 1(0) +q(0,7(0)) = 9(¢,2(2))  + rly /;@—K)f*-lhw,z(m)dfc
1 /¢ _ - k
tor /&n@—w’ o0 2(x))dB + 3 bulz(En)

Now, E[dj,([z(0)]",[0]")]

= 5[ (IO + 01O ~ lg 21" + [1,1” / i(g— O i (0|
i [0t znas] +

Y, e )]

Thus, by the assumptions and Theorem 1, we have

IN
[*))
rri
—
f=N
BN
—~
=
—~
(=)
=
<
=)
~—
[E——
+
[*))
e
—
o
N
—
=
—~
e
=
—~
~
=
=)
~—
[E——
|
&)
e
—
Qu
N
—~
—
N
N
—~
R
~
=
<
~—
[E——

2] [ @0 2001 01 )] + 8] [ @01 (et 2] 0]

m

IN
[N
N

6E 3, ([1(0)]", 10]")] -+ 6E a3, ([a(0, 7 (0))]", [0]") ] ~ 69 [d3, ([z(2))", 0]")

+@E [/gi(g - K)”’ld%_[([z(x)]v, [O]U)dK} + ff:{E {/@i(g - K)V’ld%{ ([z(x)]", [O]V)dx]

16 ; b3, ([2(2n)]", [0]")]
By Definition 11, we have E[d2,(z({),0)] = E| 51(10p1] daz,([z(2)]", [0])]
6H (¢

| €= 0" E[dR(0),0)]dx

< 6C, +6¢, — 60E|d%(2(0),0)| + o ).

60 (¢ B P
5y, €= 0" TE[aL (@), 0)]dx+6 ) buE|d5(2(0),0)

where €, = d%(7(0),0), ¢, = d%(q(1(0),0))
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According to Definition 12, E[#23(z,0)] = E [ [sup | d%o(z(g),O)]
ce €n11§7n+1

6H

< 6€, +6¢, —69E [ﬁ%(z, 0)} T

/ (- )”’1E[7-t%(z, 0)}1;{

6p (¢ —1x (472 7 72
A E[Hl(z,o)}dx+6”§1me{7-[1(2,0)}

_ A A ¢ _
Hi(z,0) <k, +ka, /é (€= ®)! 1 H (2, 0)dx

m

A 6(¢,+¢,) _ s 6(H+0) _
where ki, = Tr(ir6a—6rt bm),m =1,23,.k, ky, = TR (1T60-61T bm),m =1,2,3,..k

Thus, from case(i)—(iii), we have
H2(2,0) < My + My [T_(g — x)F1H2(2,0)dx
here M; = ki, ki, }, My = ka, ko, },
where My = max {ki ki, }, My = max {ky ko, }

In order that
~ T _
Ti2(2,0) < MyeMe S <G
Hence,

~ T _
H3(2,0) < M3, where M3 = max {M;e™2 S (G 1d'<}
1<m<k

From Lemma (3), we conclude #3(z,0) = ||z||* < M; (i.e.) z is bounded. Clearly our
solution exists globally in the interval [—7, T]. O

5. Example

Considering the neutral impulsive Caputo-order fuzzy fractional stochastic differential
system with fuzzy Brownian motion

8D§[Z(C)+4C] = 42z2%(0) +4¢%2%(Q)dB;, (€0, T)

A2(]) = Cos(mg) 2(Cm), € = Gy = 1,2,3,4,5

z(¢) = W(C) =042 (€[-1,0]
It is noted that, {9 = 0 < {1 < ....0m < {41 = T, and for the fuzzy number, the v-cut
is [4]Y = [v+3,5 —v] withv €0, 1] u € (0,1). Here q(Z,z(7)) = 4Z,h({,2(7)) = 47Z%(Q),
0(3,2(0)) = 32%2(2), b (8, 2(Zm)) = W9 2(g), m =1,2,3, 4, 5.

Now, the solution for the system with the v-cut method is furnished below

{+2, €10

—47 — 2+\Ff0 —x 24K22(K)dK+\/—f0 — )7 8222 (x)dB,, V¢ € 0,21

—47 -2+ — &) 7 dxz2(x)dK + ﬁ N x) 7 Ax222(x)dBy + Y5 _, “’Zﬁ,f,?@z(gm),

vg € (gl’fl/ §m+1]

1 e
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Now, the v-level set is noticeable for the example

A2 = [(v+3)5(z(0))% (5 -v)(z/(0))?]
[A%2(0)dB]" = [(v+3)C%(24(0))*(dBy)y, (5 —v)E* (2 (0))*(dBy)]]

Therefore, we now deduce the uniqueness for the instance

E[d, (In(, Y@, (&, Y @))]
- E:d%{<[\/1E/ (C—%)2h(Z,Y(Q)d \F/ 2 (g, Y(0))dx]” ﬂ
_ E_di(\/lE/Og(@ ) 7 [BY2 (x )]def/ (€ —x) 7 @2 (x )]deﬂ
_ Edi(\/lg [ @07 [+ R0 (5 — v (X ()P,

o= [0 [+ R0 5 - () Pl )

< [max{ = / (§—R) 7 (v +3)(Xy (1)) — (v + B)x (Vs () 2,
S [R5 02 ~ (5 - V(R0 )]
< Blmar(" 2 [0 Pl vy 02 - (102,
O [F (@ ) I - (3062
< e[ (- ) Fmax{ Y (6) — FORIVE () + L),

Y7 () = X7 () [P Y7 (1) + Y?(K)Iz}dk]

IN

5_vy -1 v v v v
T(ﬁ) [/ (€= max (Y09 = Y PG () + T3P,

Y7 () = X5 () 2] (1) + Y7 ()] }dK]

< 10 Feon? max 1Y)+ 5500 B[, (V(E)1 (901

< B[, (V@) @)

~ _ 1 ~
where h = T(‘ri/%) fog(é IR _E%iz{IYZ(K) + Yy (k) [*
T7 =

Hence, it satisfies the hypothesis.
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In addition,
E[d3, (lo(¢, Y(2))I", (6, ¥(@)]")]
= E_dﬁ([\%/j( —x)Z 0(¢,Y(Q))dBy]", \F/ Zo(C Y(C))dBK]”ﬂ
= E_d%(\%/f( —x) 2 [A2Y?(x)dBy] f/ 7 (322 (x)dB }”)
= Ed%{(ln /f< — )2 [0+ )RRV (%)) 2(dBY)g, (5 — v)k*(YY (x))2(dBY),),
T [ @07 1 0208, 5 - )L 0B )
< E max{\/lE/Og(C—K)21|(1/+3)K2(Y5(K))2_(V+3)K2(YZ(K))2|2(dB%)qI
;E (f( — 1) 7 |(5— V)R (YY(x))? - <5v>x2<Y:<K>>2|2}<de>r]
< Blmar("2 [0 Pl vy 02 - (G078,
Sl [0 k0 )2 = x(2 )P B
< P (5\/_;)15 /0 (€ — %) 7 max{ Y4 (x) — Y50 PIYY () + 2 (0) 2,
Y2 (0) = V2 () 2IYY (1) + X5 ()P
5—v) [ 1 o
< PO [(C0F max 10 - BN + K0P,
Y2 () = Y2 (e) 1YY () + ¥ 0P}
(5—1/) v v LAY, v
< PP /O (-n7 max {1Y5() + Yo () PYE[ @B, (X)), [Y(2))") |
<

GE[d3, (Y (@), Y1) ]

h— 7206V ¢ = GV () |2
where 9 = T T;{fo (C—x)2 %{r;ag;Z{\Yg(K) + Yy ()| }dx

Hence, it satisfies the hypothesis.
Now, the v-level set for fuzzy number 1 = [v,2 — v] V v €(0, 1] and the v set for the
impulse are as follows:

5 5
(3 (@) = L (el
5
L w2 = vl

5

= Y O sy (), (2~ V) (G

m=1



Mathematics 2023, 11, 1990 16 of 18

Therefore,
[ 5 5
E|d, ([ L bY@ (X bm@,Y(o)JVﬂ
:2 > cosml . v 2 cosmy; o, v
= E dH<21 it VY3 (6n), (2= Y2l 3 [qu@m),(z—v)Yr(gmn)]
: > m & 5 m ~
= E{maxfy 1 TG )~ e 0 —) L T |Y:<§m>—Y:<§m>|2}]
) 5
< (2-vE [ Y a1 @) = @) Y, )~ Yr<cm>|2|}]

5 cosmT

< 2-v) Y SE[S (Y@ o)

< BE|d}(

R 5
whereb=(2—v) ¥ C";n—"%T
m=1

Hence, it satisfies the hypothesis.
Thus, all the hypotheses are addressed. Hence, the system has a unique fuzzy solution.

6. Conclusions

The solution of the fuzzy fractional neutral impulsive stochastic differential equation
possessing global and local existence is demonstrated in this paper. We put forward a
v-cut method to obtain the uniqueness and existence results. Future research on fuzzy
time-delay fractional stochastic differential equations driven by fuzzy Brownian motion
with non-instantaneous impulses could benefit from the findings of this study.
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