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Abstract: In this paper, we consider an insurance risk model with two-sided jumps, where downward
and upward jumps typically represent claim amounts and random gains, respectively. We use the
Laguerre series to expand the Gerber–Shiu function and estimate it based on observed information.
Moreover, we show that the estimator is easily computed and has a fast convergence rate. Numerical
examples are also provided to show the efficiency of our method when the sample size is finite.
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1. Introduction

In this paper, the surplus process of an insurance company is described by the classical
risk model

U(t) = u + ct− S(t) = u + ct−
N(t)

∑
i=1

Zi, (1)

where U(0) = u ≥ 0 is the initial surplus and c > 0 is the constant premium rate per
unit time. The claim number process {N(t)}t≥0 is a homogeneous Poisson process with
intensity λ > 0, and the claim sizes {Zi}∞

i=1 form an independent and identically distributed
sequence that may be positive or negative. For later use, the density of Zi is denoted by
f (·). We also assume that {N(t)}t≥0 and {Zi}∞

i=1 are independent. Furthermore, since the
size of each jump Zi can be positive or negative, we can think of it as jumping up or down,
and the upward and downward jumps can be interpreted as company random gains and
random losses, respectively. The size of each upward jump is defined as Xi and its density
function is defined as f+(·), the mean value is µ+. Similarly, the size of each downward
jump is defined as Yi and the corresponding density function is f−(·), the mean value is
µ−. Hence, we have

f (x) = p f+(x)I{x>0} + q f−(−x)I{x<0}, (2)

where p, q > 0, p + q = 1, I{A} is an indicator function of the event A. To this end, we

define N+(t) =
N(t)
∑

i=1
I{Zi>0} to be the number of upward jumps until time t. Similarly, let
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N−(t) =
N(t)
∑

i=1
I{Zi<0} be the number of downward jumps until time t. Therefore, the surplus

process (1) can be viewed as a risk model with stochastic premium income

U(t) = u + c− S(t) = u + c +
N−(t)

∑
i=1

Yi −
N+(t)

∑
i=1

Xi, t ≥ 0. (3)

For a more detailed introduction of Equations (1) and (3), please refer to Cheung et al. [1].
Related works can be found in [2–5], among others.

Define the ruin time by τ = in f {t ≥ 0 : U(t) < 0}, and set τ = ∞ if U(t) ≥ 0 for
all t ≥ 0. In this paper, we are interested in the Gerber–Shiu expected discounted penalty
function that is defined as

m(u) := E[e−δτω(U(τ−), |U(τ)|)I{τ<∞}], u ≥ 0.

where δ ≥ 0 is the Laplace transform argument, and ω : [0, ∞)× [0, ∞) → [0, ∞) is a
measurable penalty function of the U(τ−) and |U(τ)|. This function was first introduced
by Gerber and Shiu [6]. It has become an important and standard risk measure in ruin
theory since various quantities of interests in ruin theory can be obtained for different
values of the discount factor δ and different penalty functions ω. Interested readers are
referred to [7–13], among others.

The above-mentioned papers assume that some probability characteristics of the sur-
plus process are known, for example, the probability characteristics of the claim sizes and
claim number process; however, these are usually unknown for an insurance company.
In fact, we can only obtain some discrete data information about the surplus flow levels,
claim numbers, and individual claim sizes (income numbers and individual income sizes).
According to these data, more and more actuarial researchers use different methods to cal-
culate statistical estimations of ruin probability and Gerber–Shiu function. Shimizu [14,15]
used a regularized version of the inverse Laplace transform to estimate the Gerber–Shiu
function in the Lévy risk model and the perturbed compound Poisson risk model, respec-
tively; You and Cai [16] used a regularized version of the inverse Laplace transform to
consider the nonparametric estimation of the survival probability for a spectrally negative
Lévy risk model based on high-frequency data; Zhang and Yang [17,18] estimated the ruin
probability based on high-frequency data and low-frequency data, respectively; Shimizu
and Zhang [19] estimated the Gerber–Shiu function in a Lévy risk model based on high-
frequency data by Fourier inversion transform. In addition, there are some effective
estimation methods. Chau et al. [20,21] used the Fourier-cosine series expansion to esti-
mate ruin probability and Gerber–Shiu function in the Lévy risk models; Yang et al. [22]
applied two-dimensional Fourier cosine series expansion to estimate the discounted den-
sity function of the deficit at ruin; Xie and Zhang [23] applied the Fourier cosine series
expansion to estimate the compound Poisson risk model under a constant barrier dividend
strategy; Zhang [24] proposed a new estimator of the Gerber–Shiu function by Fourier
sinc series expansion in the perturbed compound Poisson risk model; Chan [25,26] pro-
posed a method based on the complex Fourier series expansion and used it in the actuarial
field; Wang et al. [27] considered the pricing problem of variable annuities with guaranteed
minimum death benefit by a complex Fourier series method under regime-switching jump
diffusion models. For more detail on the statistical estimation of risk models, we refer the
interested readers to [28–40].

The main goal of this paper is to use the Laguerre series expansion method to estimate
the Gerber–Shiu function. The Laguerre series expansion method has been used by some
authors for solving some statistical problems. For example, Comte and Genon-Catalot [41]
used the appropriate Laguerre basis to take into account the estimation of the random
strength of the mixed Poisson model; Zhang and Su [42,43] applied Laguerre series to
approximate the Gerber–Shiu function in the class compound Poisson risk model and the
Lévy risk model, respectively; Zhang and Yong [44] studied the valuation of equity-linked
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annuity contracts with guaranteed minimum death benefits by Laguerre series expan-
sion; Cheung and Zhang [45] proposed to use Laguerre series expansion as a function of
the initial earnings level to approximate the ruin probability of the updated risk model; Al-
brecher et al. [46] considered the bivariate Laguerre expansions approach for joint ruin
probabilities in a two-dimensional insurance risk process; Xie and Zhang [47] considered
the finite-time dividend and ruin problems in a class of risk models under the constant
dividend barrier strategy by Laguerre series expansion; Su et al. [48] considered the random
deviation of premium income (or claim loss), so they studied the statistical estimation of
Gerber–Shiu function in the compound Poisson risk model perturbed by diffusion. In the
actual insurance business, the premium income of insurance companies, especially small
companies, is sometimes random. Therefore, this paper considers the two-sided jumps risk
model. For more on the Laguerre series expansion method, we refer the interested readers
to [49–53].

The remainder of this paper is organized as follows: In Section 2, we first briefly
introduce the Laguerre series expansion method, and then derive Laguerre series expan-
sions of m(u). In Section 3, we present how to construct estimators for the aforementioned
quantities based on observed sample of the surplus process, and in Section 4, we study
the consistency rate of our estimator. Finally, numerical examples are given in Section 5 to
illustrate that the performance of the estimator behaves well when the sample size is finite.

2. Preliminaries
2.1. The Laguerre Series Expansion

In this subsection, we present some known results on the Laguerre series expansion
method. Throughout, let L1(R+) and L2(R+) denote the classes of absolutely integrable
functions and square integrable functions on the positive axis, respectively, and denote
by C+ (respectively, C++) those complex numbers that have a non-negative (respectively
positive) real part, that is

C+ := {s ∈ C : Re(s) ≥ 0} and C++ := {s ∈ C : Re(s) > 0}.

For any complex number s, we denote its real part and imaginary part by Re(s) and
Im(s), respectively. For two positive functions f1, f2 with a common domain X ∈ R, we
use f1 . f2 to mean f1(x) ≤ C f2(x) uniformly in x ∈ X . Similarly, we use f1(x) & f2(x) to
mean f1(x) ≥ C f2(x) uniformly in x ∈ X . For two sequences of functions { fk} and {gk},
we use fk . (or &)gk to mean fk(x) ≤ (or ≥)Cgk(x) uniformly in k and x. Denote the
scalar product and L2-norm on L2(R+) by

〈 f , g〉 =
∫ ∞

0
f (x)g(x)dx, ‖ f ‖ =

√∫ ∞

0
f (x)2dx, ∀ f , g ∈ L2(R+).

For convenience, let C be a generic positive constant that can take different values
from line to line. For any g ∈ L1, we define its Laplace transform and Fourier transform by
Lg(s) =

∫ ∞
0 e−sug(u)du, Re(s) ≥ 0 and Fg(s) =

∫ ∞
0 eisug(u)du s ∈ R. Furthermore, let Ts

be the Dickson–Hipp operator, such that

Ts f (y) =
∫ ∞

y
e−s(x−y) f (x)dx =

∫ ∞

0
e−sx f (x + y)dx, y ≥ 0,

for any integrable real function f . The operator Ts was first introduced in Dickson and Hipp [54]
and has many nice properties, which can be found in Li and Garrido [55]. The Laguerre
functions are given by

ψk(x) =
√

2Lk(2x)e−x, x ≥ 0, k = 0, 1, 2, . . . , (4)
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where {Lk} is a Laguerre polynomial defined as

Lk(x) =
k

∑
j=0

(−1)j
(

k
j

)
xj

j!
, x ≥ 0. (5)

It is follows that the Laguerre functions are uniformly bounded, i.e.,

|ψk| ≤
√

2, ∀ k ≥ 0 and ∀ x ∈ R+. (6)

We also note that, for the Laguerre functions ψk and ψj, the following convolution
formula holds: ∫ x

0
ψk(x− y)ψj(y)dy =

1√
2
[ψk+j(x)− ψk+j+1(x)]. (7)

For more details on the above results, refer to Abramowitz and Stegun [56].

Remark 1. Suppose that the collection {ψk}k≥0 is a complete orthonormal basis of L2(R+) satis-
fying

(1) ‖ψk‖ = 1;
(2) 〈ψk, ψj〉 = 0 for k 6= j.

Using the orthonormal property of the Laguerre basis {ψk}k≥0, for any f ∈ L2(R+),
we can develop it on the Laguerre basis

f (x) =
∞

∑
k=0
〈 f , ψk〉ψk(x).

In practical applications, we need to truncate the above infinite sum. Hence, for all
K ≥ 0, we have

f (x) ≈ fK(x) =
K

∑
k=0
〈 f , ψk〉ψk(x).

To evaluate the convergence rate of the bias ‖ fK − f ‖, we introduce the Sobolev–
Laguerre space (see Bongioanni and Torrea [57]) that is defined by

W(R+, r, B) =

{
f : R+ → R, f ∈ L2(R+),

∞

∑
k=0

kr〈 f , ψk〉2 ≤ B < ∞

}
,

where 0 < r, B < ∞. Suppose that r is a positive integer. If f ∈ L2(R+), then the following
properties are equivalent:

(1)
∞
∑

k=0
kr〈 f , ψk〉2 < ∞.

(2) For function f admits derivatives up to order r− 1, with f (r−1) absolutely continuous
and for m = 0, 1, . . . , r− 1, the functions

x
(m+1)

2 ( f ex)(m+1)e−x = x
(m+1)

2

m+1

∑
j=0

(
m + 1

j

)
f (j) (8)
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belong to L2(R+) (see Comte and Genon-Catalot [41]). If f ∈ W(R+, r, B), using the
orthonormal property of the Laguerre basis {ψk}k≥0 (see Zhang and Su [43] and Zhang
and Yong [44]), we have

‖ fK − f ‖ =
∞

∑
k=K+1

〈 f , ψk〉2 ≤ (K + 1)−r
∞

∑
k=K+1

kr〈 f , ψk〉2 ≤ BK−r.

2.2. The Laguerre Expansion of Gerber–Shiu Function

In this subsection, we show that the Gerber–Shiu function can be expressed by La-
guerre functions. We focus on the Erlang[n, β] distribution, for some β > 0 and a positive
integer n, to model the premium sizes (see Labbé et al. [58]). No specific assumption is
made on the claim’s distribution. For u > 0, conditioning on the time of the first event
(premium or claim), we obtain

m(u) =
∫ ∞

0
λpe−(δ+λ)t

∫ u+ct

0
m(u + ct− y) f+(y)dydt +

∫ ∞

0
λpe−(δ+λ)t

×
∫ ∞

u+ct
ω(u + ct, y− u− ct) f+(y)dydt +

∫ ∞

0
λqe−(δ+λ)t

∫ ∞

0
m(u + ct + y) f−(y)dydt,

hence

m(u) =
∫ u

0
m(u− y) fδ(y)dy + Hδ,w(u), (9)

where

fδ(y) =
pλ

c

(−1)n
n+1

∑
i=1

(β− ρi)
n

n+1
∏

j=1,j 6=i
(ρi − ρj)

Tρi f+(y)

, y ≥ 0,

Hδ,w(u) =
pλ

c

(−1)n
n+1

∑
i=1

(β− ρi)
n

n+1
∏

j=1,j 6=i
(ρi − ρj)

Tρi η(u)

, u ≥ 0,

η(u) =
∫ ∞

u
ω(u, y− u) f+(y)dy.

For any δ ≥ 0, in the following Lundberg’s fundamental equation (in s)

χ(s) := [λ + δ− cs− pλL f (s)](β− s)n − qλβn = 0, s ∈ C+, (10)

ρi and ρj are the n + 1 roots of the above equation.

Remark 2. Assume, in addition, that n = 1 (i.e., the annuity income amounts follow the exponen-
tial distribution).

χ(s) := [λ + δ− cs− pλL f+(s)](β− s)− qλβ = 0, s ∈ C+. (11)

The above equation has two positives roots, ρ1 ∈ (0, β) and ρ2 ∈ (β, ∞). It is clear
from Equation (11) that the continuous function χ(s) is such that χ(0) = δβ > 0, χ(β) =
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−qλβ < 0 and lim
s→∞

χ(s) = ∞. Thus, the existence of two distinct roots satisfying 0 ≤ ρ1 <

β < ρ2 < ∞ is established.

fδ(y) =
pλ

c

 2

∑
i=1

(ρi − β)
2

∏
j=1,j 6=i

(ρi − ρj)

Tρi f+(y)

, y ≥ 0,

Hδ,w(u) =
pλ

c

 2

∑
i=1

(ρi − β)
2

∏
j=1,j 6=i

(ρi − ρj)

Tρi η(u)

, u ≥ 0,

η(u) =
∫ ∞

u
ω(u, y− u) f+(y)dy.

In the following, we suppose that some conditions hold true in this paper, which has
also been considered in Shimizu and Zhang [19].

Condition 1. (Net profit condition.)

ct− E[S(t)] = ct + qλtµ− − pλtµ+ > 0, t > 0.

The above condition guarantees that the expectation of the surplus process will always
be positive at any time t > 0. From a practical point of view, we only consider the case of
c > pλ in this paper.

Condition 2. For the penalty function w, it satisfies∫ ∞

0

∫ ∞

0
(1 + x)ω(x, y) f+(x + y)dydx < ∞.

Condition 3. For the penalty function w, there exist some integers α1, α2 such that

w(x, y) . (1 + x)α1(1 + y)α2 .

In order to use the Laguerre series expansion method to calculate Equation (9), we
need to ensure that m ∈ L2(R+). Using inequality (x + y)2 ≤ 2x2 + 2y2, we obtain

∫ ∞

0
m2(u)du =

∫ ∞

0

(∫ u

0
m(u− y) fδ(y)dy + Hδ,w(u)

)2
du

≤ 2
∫ ∞

0

(∫ u

0
m(u− y) fδ(y)dy

)2
du + 2

∫ ∞

0
(Hδ,w(u))2du.

(12)

As can be seen from Equation (12), in order to determine m ∈ L2(R+), we need some
Lemmas.

Lemma 1. For function fδ, by δ > 0, µ− = 1
β and Condition 1, we have fδ ∈ L2(R+).
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Proof. Because∫ ∞

0
fδ(x)dx =

pλ

c

2

∑
i=1

(ρi − β)
2

∏
j=1,j 6=i

(ρi − ρj)

∫ ∞

0

∫ ∞

x
e−ρi(y−x) f+(y)dydx

=
pλ

c

2

∑
i=1

(ρi − β)
2

∏
j=1,j 6=i

(ρi − ρj)

∫ ∞

0

∫ y

0
e−ρi(y−x) f+(y)dxdy

≤ pλ

c

2

∑
i=1

(ρi − β)
2

∏
j=1,j 6=i

(ρi − ρj)

∫ ∞

0
y f+(y)dy

=
pλ

c
· µ+ <

λ

c
q
β
+ 1 <

λ + cβ

cβ
.

Note that

fδ(x) ≤ pλ

c

2

∑
i=1

(ρi − β)
2

∏
j=1,j 6=i

(ρi − ρj)

∫ ∞

0
f+(y)dy <

λ

c
.

Hence, ∫ ∞

0
( fδ(x))2dx ≤ λ

c

∫ ∞

0
fδ(x)dx ≤ λ2 + cλβ

c2β
< ∞. (13)

This completes the proof.

Lemma 2. Under Condition 2, we have Hδ,w ∈ L2(R+).

Proof.

sup
u≥0

Hδ,w(u) ≤
pλ

c

∫ ∞

0
η(u)du =

pλ

c

∫ ∞

0

∫ ∞

0
ω(x, y) f (x + y)dydx < ∞

and∫ ∞

0
Hδ,w(u)du =

pλ

c

2

∑
i=1

(ρi − β)
2

∏
j=1,j 6=i

(ρi − ρj)

∫ ∞

0

∫ ∞

u

∫ ∞

x
e−ρi(y−x)ω(x, y− x) f (y)dydxdu

≤ pλ

c

∫ ∞

0

∫ ∞

u

∫ ∞

x
ω(x, y− x) f (y)dydxdu

=
pλ

c

∫ ∞

0

∫ ∞

0
xω(x, y) f (x + y)dydx < ∞,

which yield

∫ ∞

0
(Hδ,w(u))2du ≤ sup

u≥0
Hδ,w(u)×

( ∫ ∞

0
Hδ,w(u)du

)
< ∞. (14)

This completes the proof.

Lemma 3. As for m, by Conditions 1 and 2, we obtain m ∈ L2(R+).
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Proof. By Equation (9), we have

∫ ∞

0
m(u)du =

∫ ∞
0 Hδ,w(u)du

1−
∫ ∞

0 fδ(y)dy
< ∞,

i.e., m ∈ L1(R+). According to Theorem 1.4.5 in Stenger [59], we can obtain
∫ u

0 m(u −
x) fδ(x)dx ∈ L2(R+) due to fδ ∈ L2(R+). Furthermore, according to Equations (12) and
(14), we can obtain m ∈ L2(R+).

In the remainder of this paper, suppose that m, fδ, Hδ,w ∈ L2(R+). Then we can
develop them on the Laguerre basis, i.e.,

m(u) =
∞

∑
k=0

Pkψk(u), u ≥ 0, (15)

fδ(x) =
∞

∑
k=0

Qkψk(x), x ≥ 0, (16)

Hδ,w(x) =
∞

∑
k=0

Rkψk(x), x ≥ 0, (17)

where for k = 0, 1, 2, . . .

Pk = 〈m, ψk〉, Qk = 〈 fδ, ψk〉, Rk = 〈Hδ,w, ψk〉.

Plugging the Laguerre series expansion Equations (15)–(17) into the defective renewal
Equation (9) and using the convolution Formula (7), we obtain

∞

∑
k=0

Pkψk(u) =
∫ u

0

∞

∑
k=0

Pkψk(u− x) ·
∞

∑
j=0

Qjψj(x) +
∞

∑
k=0

Rkψk(u)

=
∞

∑
k=0

∞

∑
j=0

PkQj

∫ u

0
ψk(u− x)ψj(x) +

∞

∑
k=0

Rkψk(u)

=
∞

∑
k=0

∞

∑
j=0

1√
2

PkQj[ψk+j(u)− ψk+j+1(u)] +
∞

∑
k=0

Rkψk(u).

(18)

Furthermore, by changing the order of summation we obtain

∞

∑
k=0

∞

∑
j=0

1√
2

PkQjψk+j(u) =
∞

∑
k=0

∞

∑
j=0

1√
2

PjQk−jψk(u)

and

∞

∑
k=0

∞

∑
j=0

1√
2

PkQjψk+j+1(u) =
∞

∑
k=0

∞

∑
j=0

1√
2

PjQk−j−1ψk(u).

As a result, Equation (18) gives

∞

∑
k=0

Pkψk(u) =
[

1√
2

P0Q0 + R0

]
ψ0(u)

+
∞

∑
k=1

(
k−1

∑
j=0

1√
2

Pj(Qk−1 −Qk−j−1) +
1√
2

PkQ0 + Rk

)
ψk(u).

(19)
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After comparing the coefficients for each basis function ψk(u) on both sides of Equation (19),
we obtain an infinite triangular system of linear equations,

P0 =
1√
2

P0Q0 + R0,

Pk =
k−1

∑
j=0

1√
2

Pj(Qk−1 −Qk−j−1) +
1√
2

PkQ0 + Rk, k ≥ 1.
(20)

Furthermore, let~p = (P0, P1, P2, . . .)T,~r = (R0, R1, R2, . . .)T and

A =


1− 1√

2
Q0 0 0 . . .

1√
2
(Q0 −Q1) 1− 1√

2
Q0 0 . . .

1√
2
(Q1 −Q2)

1√
2
(Q0 −Q1) 1− 1√

2
Q0 . . .

...
...

...
. . .

 := (aij)i,j≥1.

Then we can write Equation (20) in the following matrix form

A~p =~r. (21)

Note that A is a lower triangular Toeplitz matrix, and for the non-zero elements in A,
we have ∣∣∣∣ 1√

2
(Qk −Qk−1)

∣∣∣∣ ≤ 1√
2

∫ ∞

0
fδ(x)|ψk(x)|dx +

1√
2

∫ ∞

0
fδ(x)|ψk−1(x)|dx

≤ 2
∫ ∞

0
fδ(x)dx ≤ 2

(
1 +

qλ

cβ

)
, k ≥ 1.

Furthermore, we have

1− 1√
2

Q0 = 1− 1√
2
〈 fδ, ψ0〉 = 1− 1√

2

∫ ∞

0
fδ(x)ψ0(x)dx

= 1−
∫ ∞

0
fδ(x)e−xdx > 1− pλ

c
> 0,

by Condition 1, then A is nonsingular and explicitly invertible.
Hence, for all K ≥ 0, truncating the infinite dimension vectors and matrix in Equation (21)

leads to

AK~pK =~rK, (22)

where ~pK = (P0, P1, P2, . . . , PK)
T,~rK = (R0, R1, R2, . . . , RK)

T, and AK = (aij)
K+1
i,j=1. As a

result, the matrix AK is nonsingular and explicitly invertible. Then we have

~pK = A−1
K ~rK. (23)

After solving Equation (23), we can obtain~pK, and for a larger K we can approximate
the Gerber–Shiu function as follows:

m(u) ≈ mK(u) :=
K

∑
k=0

Pkψk(u), u ≥ 0. (24)

3. Estimation Procedure

In this section, we assume that both Poisson intensity and claim size density are
unknown, but we can obtain discrete information about the surplus process and the
aggregate claims. Assume that we can observe the surplus process over a long time interval
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[0, T]. Let4 > 0 be a fixed inter-observation interval (or sampling interval). Without loss
of generality, assume that T/4 is an integer, and let n = T/4.

(1) Data-set of surplus levels:

{Uj4 : j = 0, 1, 2, . . . , n},

where Uj4 is the observed surplus level at time t = j4.

(2) Data-set of total claim numbers and claim sizes:

{Nj4, Z1, Z2, . . . , ZNj4}, j = 1, . . . , n.

(3) Data-set of downward jump numbers and random loss sizes:

{N+
j4, X1, X2, . . . , XN+

j4
}, j = 1, . . . , n.

(4) Data-set of upward jump numbers and random income sizes:

{N−j4, Y1, Y2, . . . , YN−j4
}, j = 1, . . . , n.

where Nj4 is the total claim number up to time t = j4 and Nj4 = N+
j4 + N−j4.

Next, we shall propose our estimator of the Gerber–Shiu function by Laguerre expansion
based on Equation (24). To this end, we need to estimate the vector~pK, or equivalently, AK
and~rK. By the definitions of AK and~rK, we only need to estimate the following quantities:

Qk, Rk, k = 0, 1, 2, . . . , K.

By the definitions of Qk and Rk and changing the order of integrals, we can write Qk
and Rk as follows:

Qk = 〈 fδ, ψk〉 =
∫ ∞

0
fδ(x)ψk(x)dx =

pλ

c

2

∑
i=1

ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)

∫ ∞

0

∫ ∞

x
e−ρi(y−x) f+(y)dyψk(x)dx

=
pλ

c

2

∑
i=1

ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)

∫ ∞

0

∫ y

0
e−ρi(y−x)ψk(x)dx f+(y)dy

=
pλ

c

2

∑
i=1

ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)

E
[∫ X

0
e−ρi(X−x)ψk(x)dx

]
(25)

and

Rk = 〈Hδ,w, ψk〉 =
∫ ∞

0
Hδ,w(u)ψk(x)dx =

pλ

c

2

∑
i=1

ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)

∫ ∞

0

∫ ∞

u
e−ρi(y−u)η(y)dyψk(u)du

=
pλ

c

2

∑
i=1

ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)

∫ ∞

0

∫ ∞

u

∫ ∞

y
e−ρi(y−u)ω(y, x− y) f+(x)dxdyψk(u)du

=
pλ

c

2

∑
i=1

ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)

∫ ∞

0

∫ x

0

∫ x

u
e−ρi(y−u)ω(y, x− y) f+(x)dyψk(u)dudx

=
pλ

c

2

∑
i=1

ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)

E
[∫ X

0

∫ X

u
e−ρi(y−u)ω(y, X− y)dyψk(u)du

]
.

(26)
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The above two formulae imply that we have to estimate the Poisson intensity λ, p, q, β,
the root ρ1, ρ2, and the expectations appearing in Equations (25) and (26).

According to the property of Poisson distribution, we can estimate p and λ by

p̂ =
N+

T
NT

, q̂ = 1− p̂, λ̂ =
NT
T

.

Since the premium size Y follows the Erlang(1, β) distribution, we have E[Y] = 1/β,
then we can estimate β by

β̂ =
1

1
N−T

N−T
∑

j=1
Yi

,

which are all unbiased estimates. We estimate the root ρ1, ρ2 by ρ̂1, ρ̂2, which is a positive
root of the following estimating equation:[

λ̂ + δ− cs− p̂λ̂L̂ f+(s)
]
(β̂− s)− q̂λ̂β̂ = 0, s ∈ C+ (27)

where L̂ f+(s) =
1

N+
T

N+
T

∑
j=1

e−sXj is an estimate of the Laplace transform L f+(s). It follows

from Equation (25) that we have

Q̂k =
1

cT

2

∑
i=1

ρ̂i − β̂
2

∏
j=1,j 6=i

(ρ̂i − ρ̂j)

N+
T

∑
j=1

∫ Xj

0
e−ρ̂i(Xj−x)ψk(x)dx

=

√
2

cT

2

∑
i=1

ρ̂i − β̂
2

∏
j=1,j 6=i

(ρ̂i − ρ̂j)

N+
T

∑
j=1

∫ Xj

0
e−ρ̂i(Xj−x)−xLk(2x)dx

=

√
2

cT

2

∑
i=1

ρ̂i − β̂
2

∏
j=1,j 6=i

(ρ̂i − ρ̂j)

N+
T

∑
j=1

k

∑
m=0

(−2)m
(

k
m

)
e−ρ̂iXj

∫ Xj

0
e−(1−ρ̂i)x · xm

m!
dx

=

√
2

cT

2

∑
i=1

ρ̂i − β̂
2

∏
j=1,j 6=i

(ρ̂i − ρ̂j)

N+
T

∑
j=1

k

∑
m=0

(−2)m

(1− ρ̂i)m+1

(
k
m

)
e−ρ̂iXj

(
1−

m

∑
l=0

e−(1−ρ̂i)Xj
[(1− ρi)Xj]

l

l!

)
.

(28)

Similarly, we can estimate Rk by

R̂k =
1

cT

2

∑
i=1

ρ̂i − β̂
2

∏
j=1,j 6=i

(ρ̂i − ρ̂j)

N+
T

∑
j=1

∫ Xj

0

∫ Xj

u
e−ρ̂i(x−u)ω(x, Xj − x)dxψk(u)du. (29)

Now, we define the estimates of AK and~rK by replacing Qk and Rk with Q̂k and R̂k in
their definitions, and denote them by ÂK and~̂rK, respectively. Accordingly, the estimate
of ~pK, denoted by ~̂pK := (P̂0, P̂1, . . . , P̂K)

T, is defined to be the solution of the following
linear system:

ÂK~̂pK = ~̂rK. (30)
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Finally, replacing PK by P̂K in Equation (23), we obtain the following estimate of the
Gerber–Shiu function:

m̂K(u) =
K

∑
k=0

P̂kψk(u), u ≥ 0. (31)

Remark 3. The estimator R̂k given in Equation (29) is expressed in a two-fold integral, which can
be explicitly computed for most of the widely used penalty functions. Here are some examples.

(1) δ = 0 and ω = 1. In this case, the Gerber–Shiu function becomes the ruin probability
and we have ρ̂1 = 0 and ρ̂2 ∈ (β̂, ∞). Then

R̂k =

√
2

cT
β̂

ρ̂2

N+
T

∑
j=1

k

∑
m=0

(−2)m
(

k
m

)[
Xj

(
1−

m

∑
l=0

e−Xj
Xl

j

l!

)
− (m + 1)

(
1−

m+1

∑
l=0

e−Xj
Xl

j

l!

)]

+

√
2

cT
ρ̂2 − β̂

ρ̂2
2

N+
T

∑
j=1

k

∑
m=0

(−2)m
(

k
m

)(
1−

m

∑
l=0

e−Xj
Xl

j

l!

)

−
√

2
cT

ρ̂2 − β̂

ρ̂2
2

N+
T

∑
j=1

k

∑
m=0

(−2)m

(1− ρ̂2)m+1

(
k
m

)
e−ρ̂2Xj

(
1−

m

∑
l=0

e−(1−ρ̂2)Xj
((1− ρ̂2)Xj)

l

l!

)
.

(2) δ > 0 and ω = 1. In this case, the Gerber–Shiu function becomes the Laplace
transform of ruin time and we have ρ̂1 ∈ (0, β̂) and ρ̂2 ∈ (β̂, ∞). Then

R̂k =

√
2

cT
ρ̂1 − β̂

(ρ̂1 − ρ̂2)ρ̂1

N+
T

∑
j=1

k

∑
m=0

(−2)m
(

k
m

)(
1−

m

∑
l=0

e−Xj
Xl

j

l!

)

−
√

2
cT

ρ̂1 − β̂

(ρ̂1 − ρ̂2)ρ̂1

N+
T

∑
j=1

k

∑
m=0

(−2)m

(1− ρ̂1)m+1

(
k
m

)
e−ρ̂1Xj

(
1−

m

∑
l=0

e−(1−ρ̂1)Xj
((1− ρ̂1)Xj)

l

l!

)

+

√
2

cT
ρ̂2 − β̂

(ρ̂2 − ρ̂1)ρ̂2

N+
T

∑
j=1

k

∑
m=0

(−2)m
(

k
m

)(
1−

m

∑
l=0

e−Xj
Xl

j

l!

)

−
√

2
cT

ρ̂2 − β̂

(ρ̂2 − ρ̂1)ρ̂2

N+
T

∑
j=1

k

∑
m=0

(−2)m

(1− ρ̂2)m+1

(
k
m

)
e−ρ̂2Xj

(
1−

m

∑
l=0

e−(1−ρ̂2)Xj
((1− ρ̂2)Xj)

l

l!

)
.

(3) δ = 0 and ω(x, y) = x + y. In this case, the Gerber–Shiu function becomes the
expected claim size causing ruin. Then

R̂k =

√
2

cT
β̂

ρ̂2

N+
T

∑
j=1

k

∑
m=0

(−2)m
(

k
m

)[
X2

j

(
1−

m

∑
l=0

e−Xj
Xl

j

l!

)
− Xj(m + 1)

(
1−

m+1

∑
l=0

e−Xj
Xl

j

l!

)]

+

√
2

cT
ρ̂2 − β̂

ρ̂2
2

N+
T

∑
j=1

k

∑
m=0

Xj(−2)m
(

k
m

)(
1−

m

∑
l=0

e−Xj
Xl

j

l!

)

−
√

2
cT

ρ̂2 − β̂

ρ̂2
2

N+
T

∑
j=1

k

∑
m=0

Xj(−2)m

(1− ρ̂2)m+1

(
k
m

)
e−ρ̂2Xj

(
1−

m

∑
l=0

e−(1−ρ̂2)Xj
((1− ρ̂2)Xj)

l

l!

)
.
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(4) δ = 0 and ω(x, y) = y. In this case, the Gerber–Shiu function reduces to the expected
deficit at ruin. Then

R̂k =

√
2

2cT
β̂

ρ̂2

N+
T

∑
j=1

k

∑
m=0

(−2)m
(

k
m

)[
X2

j

(
1−

m

∑
l=0

e−Xj
Xl

j

l!

)
− 2Xj(m + 1)

(
1−

m+1

∑
l=0

e−Xj
Xl

j

l!

)]

+

√
2

2cT
β̂

ρ̂2

N+
T

∑
j=1

k

∑
m=0

(−2)m
(

k
m

)
(m + 1)(m + 2)

(
1−

m+2

∑
l=0

e−Xj
Xl

j

l!

)

+

√
2

cT
ρ̂2 − β̂

ρ̂2
2

N+
T

∑
j=1

k

∑
m=0

(−2)m
(

k
m

)[
Xj

(
1−

m

∑
l=0

e−Xj
Xl

j

l!

)
− (m + 1)

(
1−

m+1

∑
l=0

e−Xj
Xl

j

l!

)]

−
√

2
cT

ρ̂2 − β̂

ρ̂3
2

N+
T

∑
j=1

k

∑
m=0

(−2)m
(

k
m

)(
1−

m

∑
l=0

e−Xj
Xl

j

l!

)

+

√
2

cT
ρ̂2 − β̂

ρ̂3
2

N+
T

∑
j=1

k

∑
m=0

(−2)m

(1− ρ̂2)m+1

(
k
m

)
e−ρ̂2Xj

(
1−

m

∑
l=0

e−(1−ρ̂2)Xj
((1− ρ̂2)Xj)

l

l!

)
.

4. Consistency Properties

In this section, we study the asymptotic properties of our estimator. We measure
the performance of the estimator m̂K by the L2-norm distance ‖m̂K − m‖. By L2-norm
inequality, we have

‖m̂K −m‖2 = ‖m̂K −mK + mK −m‖2 ≤ 2‖m̂K −mK‖2 + 2‖mK −m‖2, (32)

where ‖mK −m‖ is the series truncation error and ‖m̂K −mK‖ is the error due to statistical
estimation. Now, if m ∈W(R+, r, B), we have

‖mK −m‖2 =

∥∥∥∥∥ ∞

∑
k=K+1

Pk · ψk

∥∥∥∥∥
2

=
∞

∑
k=K+1

P2
k =

∞

∑
k=K+1

〈m, ψk〉2 ≤
B

(K + 1)r = O(K−r) (33)

due to Remark 1. The polynomial convergence rate in Equation (33) can be improved when
m has an exponential decay rate.

Next, it remains to study the convergence rate for ‖m̂K −mK‖, and we obtain the result
as follows:

Theorem 1. Suppose EX2 < ∞ and Conditions 1–3 hold. If K = o(T
1
2 ), then

‖m̂K −m‖2 ≤ 2‖mK −m‖2 + Op(K2T−1). (34)

Further, if m ∈W(R+, r, B), then

‖m̂K −m‖2 = O(K−r) + Op(K2T−1). (35)

In the following, we present some notations on matrix (and vector) norms. For a

vector ~b = (b1, b2, . . . , bn)T, its 2-norm is defined by ‖~b‖2 =
√

∑n
i=1 |bi|2. For a matrix

B = (bij)
n
i,j=1, its spectral norm is defined by ‖B‖2 =

√
λmax(BTB), where λmax(BTB) is

the largest eigenvalue of BTB. The Frobenius norm of B is defined by

‖B‖F =
√

tr(BTB) =

√√√√ n

∑
i=1

n

∑
j=1
|bi,j|2.

It is known that

‖B~b‖2 ≤ ‖B‖2 · ‖~b‖2, ‖B‖2 ≤ ‖B‖F. (36)
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For two square matrices B1 and B2 with the same dimension, we have ‖B1B2‖2 ≤
‖B1‖2 · ‖B2‖2.

By the inequality (x + y)2 ≤ 2x2 + 2y2 and the first inequality in Equation (36), we obtain

‖m̂K −mK‖2

= ‖
K

∑
k=0

(P̂k − Pk)ψk‖2 =
K

∑
k=0

(P̂k − Pk)
2 = ‖~̂PK −~PK‖2

2

= ‖Â−1
K
~̂rK −A−1

K ~rK‖2
2 = ‖(Â−1

K −A−1
K )~̂rK + A−1

K (~̂rK −~rK)‖2
2

≤ 2‖(Â−1
K −A−1

K )~̂rK‖2
2 + 2‖(A−1

K (~̂rK −~rK)‖2
2

≤ 4‖(Â−1
K −A−1

K )(~̂rK −~rK))‖2
2 + 4‖(Â−1

K −A−1
K )~̂rK‖2

2 + 2‖(A−1
K (~̂rK −~rK)‖2

2

≤ 4‖(Â−1
K −A−1

K )‖2
2 · ‖~̂rK −~rK)‖2

2 + 4‖(Â−1
K −A−1

K )‖2
2 · ‖~̂rK‖2

2 + 2‖A−1
K ‖

2
2 · ‖~̂rK −~rK‖2

2.

(37)

In order to prove Theorem 1, we can study the convergence rates for the three terms on
the right-hand side of Equation (37). To obtain the convergence rates ‖~rK‖2

2 and ‖~̂rK −~rK‖2
2,

we need the following Lemma:

Lemma 4. Suppose that Condition 2 holds. Then

‖~rK‖2
2 < ‖h‖2 < ∞.

Moreover, if Conditions 1 and 3 hold and EX2 < ∞, we have

‖~̂rK −~rK‖2
2 < ‖h‖2 <= Op(KT−1). (38)

Proof. First, under Condition 2 we have

‖~rK‖2
2 =

K

∑
k=0

R2
k <

∞

∑
k=0

R2
k = ‖h‖2

2 < ∞.

Next, we prove Equation (38). We only consider the case δ > 0. Under Condition 1 and
EX2 < ∞,

ρ̂1 − ρ1 = Op(T−
1
2 ), ρ̂2 − ρ2 = Op(T−

1
2 ).

Because NT is Poisson-distributed with intensity λT and is independent from Xj, we have

Rk =
pλ

c

2

∑
i=1

ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)

E
[∫ X

0

∫ X

u
e−ρi(y−u)w(y, X− y)dyψk(u)du

]
.

=
pλ

c

2

∑
i=1

ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)

E

 NT

N+
T
· T

NT
· 1

T
·

N+
T

∑
j=1

∫ Xj

0

∫ Xj

u
e−ρi(x−u)w(x, Xj − x)dxψk(u)du



=
1

cT

2

∑
i=1

ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)

E

N+
T

∑
j=1

∫ Xj

0

∫ Xj

u
e−ρi(x−u)w(x, Xj − x)dxψk(u)du

.

(39)

Hence,
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R̂k − Rk =
1

cT

2

∑
i=1

ρ̂i − β̂
2

∏
j=1,j 6=i

(ρ̂i − ρ̂j)

N+
T

∑
j=1

∫ Xj

0

∫ Xj

u
e−ρ̂i(x−u)w(x, Xj − x)dxψk(u)du

− 1
cT

2

∑
i=1

ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)

E

N+
T

∑
j=1

∫ Xj

0

∫ Xj

u
e−ρi(x−u)w(x, Xj − x)dxψk(u)du



=
1

cT

2

∑
i=1

ρ̂i − β̂
2

∏
j=1,j 6=i

(ρ̂i − ρ̂j)

N+
T

∑
j=1

∫ Xj

0

∫ Xj

u
(e−ρi(x−u) − e−ρi(x−u))w(x, Xj − x)dxψk(u)du

+

 1
cT

2

∑
i=1

ρ̂i − β̂
2

∏
j=1,j 6=i

(ρ̂i − ρ̂j)

− 1
cT

2

∑
i=1

ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)


×

N+
T

∑
j=1

∫ Xj

0

∫ Xj

u
e−ρi(x−u)w(x, Xj − x)dxψk(u)du

+
1

cT

2

∑
i=1

ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)

{ N+
T

∑
j=1

∫ Xj

0

∫ Xj

u
e−ρi(x−u)w(x, Xj − x)dxψk(u)du

− E

[ N+
T

∑
j=1

∫ Xj

0

∫ Xj

u
e−ρi(x−u)w(x, Xj − x)dxψk(u)du

]}
:=Ik,1 + Ik,2 + Ik,3.

(40)

Then, using inequality (x + y)2 ≤ 2x2 + 2y2, we have

‖~̂rK −~rK‖2
2 =

K

∑
k=0

(R̂K − RK)
2 ≤ 2

K

∑
k=0

I2
k,1 + 4

K

∑
k=0

I2
k,2 + 4

K

∑
k=0

I2
k,3. (41)

By the mean value theorem, it is easy to see that∣∣∣e−ρ̂i(x−u) − e−ρi(x−u)
∣∣∣ = ∣∣∣(ρ̂i − ρi)(x− u)e−ρ∗i (x−u)

∣∣∣
≤ |ρ̂i − ρi|(x− u), i = 1, 2, (42)

where ρ∗1 , ρ∗2 is a random number between ρ̂i and ρi, i = 1, 2. First, to estimate
K
∑

k=0
I2
k,1,
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K

∑
k=0

I2
k,1

=
2

c2T2

2

∑
i=1

 ρ̂i − β̂
2

∏
j=1,j 6=i

(ρ̂i − ρ̂j)


2

K

∑
k=0

N+
T

∑
j=1

∫ Xj

0

∫ Xj

u
(e−ρ̂i(x−u) − e−ρi(x−u))w(x, Xj − x)dxψk(u)du

2

=
2

c2T2

2

∑
i=1

 ρ̂i − β̂
2

∏
j=1,j 6=i

(ρ̂i − ρ̂j)


2

K

∑
k=0

∫ ∞

0

N+
T

∑
j=1

I(u≤Xj)

∫ Xj

u
(e−ρ̂i(x−u) − e−ρi(x−u))w(x, Xj − x)dx

ψk(u)du

2

≤ 2K
c2T2

2

∑
i=1

 ρ̂i − β̂
2

∏
j=1,j 6=i

(ρ̂i − ρ̂j)


2 ∫ ∞

0

N+
T

∑
j=1

I(u≤Xj)

∫ Xj

u
(e−ρ̂i(x−u) − e−ρi(x−u))w(x, Xj − x)dx

2

du

≤ 2K
c2T2

2

∑
i=1

 ρ̂i − β̂
2

∏
j=1,j 6=i

(ρ̂i − ρ̂j)


2

(ρ̂i − ρi)
2N+

T

∫ ∞

0

N+
T

∑
j=1

[
I(u≤Xj)

∫ Xj

u
(x− u)w(x, Xj − x)dx

]2

du

=
2Kλ̂ p̂

c2

2

∑
i=1

 ρ̂i − β̂
2

∏
j=1,j 6=i

(ρ̂i − ρ̂j)


2

(ρ̂i − ρi)
2 1

T

N+
T

∑
j=1

∫ Xj

0

[∫ Xj

u
(x− u)w(x, Xj − x)dx

]2

du.

(43)

It follows from Condition 3 and Markov’s inequality that

1
T

N+
T

∑
j=1

∫ Xj

0

[∫ Xj

u
(x− u)w(x, Xj − x)dx

]2

du = Op(1),

hence

K

∑
k=0

I2
k,1 = Op(KT−1). (44)

As for
K
∑

k=0
I2
k,2, we can obtain
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K

∑
k=0

I2
k,2

=
K

∑
k=0


 1

cT

2

∑
i=1

ρ̂i − β̂
2

∏
j=1,j 6=i

(ρ̂i − ρ̂j)

− 1
cT

2

∑
i=1

ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)


N+

T

∑
j=1

∫ Xj

0

∫ Xj

u
e−ρi(x−u)w(x, Xj − x)dxψk(u)du


2

≤ 2
K

∑
k=0

2

∑
i=1

 1
cT

ρ̂i − β̂
2

∏
j=1,j 6=i

(ρ̂i − ρ̂j)

− 1
cT

ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)


2N+

T

∑
j=1

∫ Xj

0

∫ Xj

u
e−ρi(x−u)w(x, Xj − x)dxψk(u)du

2

≤ 2
c2T2

2

∑
i=1

 ρ̂i − β̂
2

∏
j=1,j 6=i

(ρ̂i − ρ̂j)

− ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)


2

K

∑
k=0

∫ ∞

0

( N+
T

∑
j=1

I(u≤Xj)

∫ Xj

u
w(x, X− x)dx

)
ψk(u)du

2

≤ 2K
c2T2

2

∑
i=1

 ρ̂i − β̂
2

∏
j=1,j 6=i

(ρ̂i − ρ̂j)

− ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)


2 ∫ ∞

0

N+
T

∑
j=1

I(u≤Xj)

∫ Xj

u
w(x, X− x)dx

2

du

≤ 2Kλ̂ p̂
c2

2

∑
i=1

 ρ̂i − β̂
2

∏
j=1,j 6=i

(ρ̂i − ρ̂j)

− ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)


2

1
T

N+
T

∑
j=1

∫ Xj

0

(∫ Xj

u
w(x, X− x)dx

)2

du.

(45)

According to β̂− β = Op(T−
1
2 ), ρ̂1 − ρ1 = Op(T−

1
2 ) and ρ̂2 − ρ2 = Op(T−

1
2 ). Then ρ̂i − β̂

2
∏

j=1,j 6=i
(ρ̂i − ρ̂j)

− ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)


2

= Op(T−1). (46)

Hence,

K

∑
k=0

I2
k,2 = Op(KT−1). (47)

For the summation
K
∑

k=0
I2
k,3, we have
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E

[
K

∑
k=0

I2
k,3

]
=

K

∑
k=0

E[I2
k,3]

=
K

∑
k=0

2
c2T2

2

∑
i=1

 ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)


2

Var


N+

T

∑
j=1

∫ Xj

0

∫ Xj

u
e−ρi(x−u)w(x, Xj − x)dxψk(u)du



≤ 2pλ

c2T

2

∑
i=1

 ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)


2

K

∑
k=0

E
[∫ X

0

∫ X

u
e−ρi(x−u)w(x, Xj − x)dxψk(u)du

]2

=
2pλ

c2T

2

∑
i=1

 ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)


2

E

{
K

∑
k=0

[∫ ∞

0

(
I(u≤X)

∫ X

u
e−ρi(x−u)w(x, X− x)dx

)
ψk(u)du

]2
}

≤ 2Kpλ

c2T

2

∑
i=1

 ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)


2

E

[∫ ∞

0

(
I(u≤X)

∫ X

u
e−ρi(x−u)w(x, X− x)dx

)2

du

]

=
2Kpλ

c2T

2

∑
i=1

 ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)


2

E

[∫ X

0

(∫ X

u
e−ρi(x−u)w(x, X− x)dx

)2

du

]

≤ 2Kpλ

c2T

2

∑
i=1

 ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)


2

E

[∫ X

0

(∫ X

u
w(x, X− x)dx

)2

du

]
,

(48)

which, together with Condition 3 and Markov’s inequality, yields

K

∑
k=0

I2
k,3 = Op(KT−1). (49)

Finally, we complete the proof.

In order to obtain the convergence rates of ‖ÂK −AK‖2
F, ‖A−1

K ‖2 and ‖Â−1
K −A−1

K ‖2,
we have the following propositions:

Proposition 1. Let Condition 1 hold and EX2 < ∞. Then

‖ÂK −AK‖2
F = Op(K2T−1). (50)

Proposition 2. Suppose that Condition 1 holds. Then for all K ≥ 1,

‖A−1
K ‖2 ≤

2c
c− λ(pµ+ − qµ−)

. (51)

Proposition 3. Let Condition 1 hold and EX2 < ∞. If K = o(T
1
2 ), then

‖Â−1
K −A−1

K ‖2 = Op(KT−
1
2 ). (52)
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In the rest of the section, we give the proof of Propositions 1, 2 and 3 and Theorem 1.

Proof of Proposition 1. Using the definitions of ÂK and AK, then

‖ÂK −AK‖2
F =

K

∑
k=0

k

∑
j=0

{
1√
2
(Qk−j − Q̂k−j)−

1√
2
(Qk−j−1 − Q̂k−j−1)

}2

=
1
2

K

∑
k=0

k

∑
j=0

{
(Qk−j − Q̂k−j)− (Qk−j−1 − Q̂k−j−1)

}2

≤
K

∑
k=0

k

∑
j=0

{
(Qk−j − Q̂k−j)

2 − (Qk−j−1 − Q̂k−j−1)
2
}

, (53)

where we have put Q−1 = Q̂−1 = 0 for convenience.
Because NT is Poisson-distributed with intensity λT and is independent from Xj,

we have

Qk =
pλ

c

2

∑
i=1

ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)

E
[∫ X

0
e−ρi(X−x)ψk(x)dx

]

=
pλ

c

2

∑
i=1

ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)

E

 NT

N+
T
· T

NT
· 1

T
·

N+
T

∑
j=1

∫ Xj

0
e−ρi(Xj−x)ψk(x)dx


=

1
cT

2

∑
i=1

ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)

E


N+

T

∑
j=1

∫ Xj

0
e−ρi(Xj−x)ψk(x)dx

.

Then

Q̂k −Qk =
1

cT

2

∑
i=1

ρ̂i − β̂
2

∏
j=1,j 6=i

(ρ̂i − ρ̂j)

N+
T

∑
j=1

∫ Xj

0
e−ρ̂i(Xj−x)ψk(x)dx



− 1
cT

2

∑
i=1

ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)

E


N+

T

∑
j=1

∫ Xj

0
e−ρi(Xj−x)ψk(x)dx


=

1
cT

2

∑
i=1

ρ̂i − β̂
2

∏
j=1,j 6=i

(ρ̂i − ρ̂j)

N+
T

∑
j=1

∫ Xj

0

(
e−ρ̂i(Xj−x) − e−ρi(Xj−x)ψk(x)dx

)

+
1

cT

2

∑
i=1

 ρ̂i − β̂
2

∏
j=1,j 6=i

(ρ̂i − ρ̂j)

− ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)


N+

T

∑
j=1

∫ Xj

0
e−ρ̂i(Xj−x)ψk(x)dx



+
1

cT

2

∑
i=1

ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)


N+

T

∑
j=1

∫ Xj

0
e−ρ̂i(Xj−x)ψk(x)dx− E

N+
T

∑
j=1

∫ Xj

0
e−ρi(Xj−x)ψk(x)dx


:=I Ik,1 + I Ik,2 + I Ik,3.

(54)

Plugging the above result into Equation (48), we obtain
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‖ÂK −AK‖2
F ≤

K

∑
k=0

k

∑
j=0

{
(I Ik−j,1 + I Ik−j,2 + I Ik−j,3)

2 + (I Ik−j−1,1 + I Ik−j−1,2 + I Ik−j−1,3)
2
}

≤ 4
K

∑
k=0

k

∑
j=0

[
I Ik−j,1 + I Ik−j,2 + I Ik−j,3 + I Ik−j−1,1 + I Ik−j−1,2 + I Ik−j−1,3

]
≤ 8K

K

∑
k=0

[
I I2

k,1 + I I2
k,2 + I I2

k,3

]
.

(55)

First, for K
K
∑

k=0
I I2

k,1, we can obtain

K
K

∑
k=0

I I2
k,1 =

K

∑
k=0

2K
c2T2

2

∑
i=1

 ρ̂i − β̂
2

∏
j=1,j 6=i

(ρ̂i − ρ̂j)


2N+

T

∑
j=1

∫ Xj

0

(
e−ρ̂i(Xj−x) − e−ρi(Xj−x)

)
ψk(x)dx

2

≤ 2K2

c2T2

2

∑
i=1

 ρ̂i − β̂
2

∏
j=1,j 6=i

(ρ̂i − ρ̂j)


2 ∫ ∞

0

N+
T

∑
j=1

I(x≤Xj)

(
e−ρ̂i(Xj−x) − e−ρi(Xj−x)

)2

≤ 2K2

c2T2

2

∑
i=1

 ρ̂i − β̂
2

∏
j=1,j 6=i

(ρ̂i − ρ̂j)


2

(ρ̂i − ρi)
2N+

T

∫ ∞

0

N+
T

∑
j=1

I(x≤Xj)

∣∣∣(Xj − x)e−ρ∗i (Xj−x)
∣∣∣2dx

≤ 2K2λ̂ p̂
c2

2

∑
i=1

 ρ̂i − β̂
2

∏
j=1,j 6=i

(ρ̂i − ρ̂j)


2

(ρ̂i − ρi)
2

[min{ρi, ρ̂i}]2
· 1

T

N+
T

∑
j=1

Xj.

(56)

It follows from E

[
1
T

N+
T

∑
j=1

Xj

]
= pλµx < ∞ and Markov’s inequality that 1

T

N+
T

∑
j=1

Xj =

Op(1). Then

K
K

∑
k=0

I I2
k,1 = Op(K2T−1). (57)

Next, to compute I Ik,2, we can obtain
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K
K

∑
k=0

I I2
k,2 = 2K

K

∑
k=0

2

∑
i=1

 1
cT

ρ̂i − β̂
2

∏
j=1,j 6=i

(ρ̂i − ρ̂j)

− 1
cT

ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)


2N+

T

∑
j=1

∫ Xj

0
e−ρi(Xj−x)ψk(x)dx

2

=
2K

c2T2

K

∑
k=0

2

∑
i=1

 ρ̂i − β̂
2

∏
j=1,j 6=i

(ρ̂i − ρ̂j)

− ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)


2∫ ∞

0

N+
T

∑
j=1

I(x≤Xj)
e−ρi(Xj−x)ψk(x)dx

2

≤ 2K2

c2T2

2

∑
i=1

 ρ̂i − β̂
2

∏
j=1,j 6=i

(ρ̂i − ρ̂j)

− ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)


2 ∫ ∞

0

N+
T

∑
j=1

I(x≤Xj)

2

dx

≤ 2K2λ̂ p̂
c2

2

∑
i=1

 ρ̂i − β̂
2

∏
j=1,j 6=i

(ρ̂i − ρ̂j)

− ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)


2

1
T

N+
T

∑
j=1

Xj.

(58)

Then,

K
K

∑
k=0

I I2
k,2 = Op(K2T−1), (59)

due to β̂− β = Op(T−
1
2 ), ρ̂1 − ρ1 = Op(T−

1
2 ) and ρ̂2 − ρ2 = Op(T−

1
2 ).

As for I Ik,3, taking expectation, we have

E

[
K

K

∑
k=0

I I2
k,3

]
= K

K

∑
k=0

E
[

I I2
k,3

]
=

K

∑
k=0

2K
c2T2

2

∑
i=1

 ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)


2

×Var


N+

T

∑
j=1

∫ Xj

0
e−ρi(Xj−x)ψk(x)dx


=

2λpK
c2T

K

∑
k=0

2

∑
i=1

 ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)


2

E

[(∫ X

0
e−ρi(X−x)ψk(x)dx

)2
]

≤ 2λpK2

c2T

2

∑
i=1

 ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)


2

E
[∫ X

0
e−2ρi(X−x)dx

]

≤ 2λpK2

c2T

2

∑
i=1

 ρi − β
2

∏
j=1,j 6=i

(ρi − ρj)


2

E(X).

(60)
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Due to µX < ∞ and Markov’s inequality, hence

K
K

∑
k=0

I I2
k,3 = Op(K2T−1). (61)

Finally, substituting Equations (57), (59) and (61) into Equation (55) yields the conver-
gence rate.

Proof of Proposition 2. First, let h = λ
c

2
∑

i=1

(ρi−β)
2
∏

j=1,j 6=i
(ρi−ρj)

∫ ∞
x e−ρi(y−x)(p f+(y) − q f−(y))dy

and define a sequence {ck}∞
k=0 by

c0 = 1− 1√
2

C0, ck =
1√
2
(Ck−1 − Ck), k = 1, 2, · · ·

where
Ck = 〈h, ψk〉 for k = 0, 1, 2 · · ·

such that C is an infinite lower triangular Toeplitz matrix generated by {ck} similar to A

C =


1− 1√

2
C0 0 0 . . .

1√
2
(C0 − C1) 1− 1√

2
C0 0 . . .

1√
2
(C1 − C2)

1√
2
(C0 − C1) 1− 1√

2
C0 . . .

...
...

...
. . .

.

It is easy to see that
‖A−1

K ‖2 ≤ ‖C−1
K ‖2,

where CK = (cij)
K+1
i,j=1.

By Lemma 4.3 in Zhang and Su [42], we know that ck, k ≥ 0 are Fourier coefficients of
the function

c(eiθ) =
∞

∑
k=0

ckeiθk = 1−Lh
(

1 + iθ
1− iθ

)
, θ ∈ R.

Let ζ = {z ∈ C : |z| = 1} denote the complex unite circle. We have

inf
z∈ζ
|c(z)| = inf

z∈ζ

∣∣∣1−Lh
(

1 + iθ
1− iθ

)∣∣∣ ≥ 1− sup
z∈ζ

∣∣∣Lh
(

1 + iθ
1− iθ

)∣∣∣
≥ 1−

∫ ∞

0
h(x)dx = 1− λ

c

2

∑
i=1

(ρi − β)

∏2
j=1,j 6=i(ρi − ρj)

∫ ∞

0

∫ ∞

x
e−ρi(y−x)(p f+(y)− q f−(y))dydx

≥ 1− λ

c

∫ ∞

0

∫ ∞

x
p f+(y)− q f−(y)dydx = 1− λpµ+

c
+

λqµ−
c

> 0,

by Condition 1. Then, by Lemma 3.8 in the work of Böttcher and Grudsky [60], we obtain

‖A−1
K ‖2 ≤ ‖C−1

K ‖2 ≤
2

1− λpµ+
c + λqµ−

c

=
2c

c− λ(pµ+ − qµ−)
.

The proof is completed.
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Proof of Proposition 3. Note that ÂK = AK + ÂK −AK and AK is invertible. By Proposi-
tions 1 and 2,

‖A−1
K · (ÂK −AK)‖2 ≤ ‖A−1

K ‖2 · ‖ÂK −AK‖2 ≤
2c

c− λ(pµ+ − qµ−)
· ‖ÂK −AK‖2

≤ 2c
c− λ(pµ+ − qµ−)

· ‖ÂK −AK‖F = Op(KT−
1
2 ) = op(1).

Then, by the result of Theorem 2.5 of Stewart and Sun [61], we have

‖Â−1
K −A−1

K ‖2 ≤
‖ÂK −AK‖2 · ‖A−1

K ‖2
2

1− ‖A−1
K · (ÂK −AK)‖2

≤
(

2c
c− λ(pµ+ − qµ−)

)2 ‖ÂK −AK‖F

1− ‖A−1
K · (ÂK −AK)‖2

= Op(KT−
1
2 ). (62)

This completes the proof.

Finally, by the three terms of (37), Lemma 4, and Propositions 1–3, the proof of
Theorem 1 is as follows:

Proof of Theorem 1. By Lemma 4 and Propositions 1–3, we have

‖Â−1
K −A−1

K ‖
2
2 · ‖~̂rK −~rK‖2

2 = Op(K3T−2),

‖Â−1
K −A−1

K ‖
2
2 · ‖~rK‖2

2 = Op(K2T−1),

‖A−1
K ‖

2
2 · ‖~̂rK −~rK‖2

2 = Op(KT−1).

Then,

‖m̂K −mK‖2 = Op(K3T−2) + Op(K2T−1) + Op(KT−1) = Op(K2T−1) (63)

under condition K = o(T
1
2 ). Furthermore, if m ∈W(R+, r, B), Equation (35) follows from

Equation (34).

Remark 4. Suppose the conditions in Theorem 1. Then, by Equations (33) and (63), we have

‖m̂K −m‖2 = O(K−r) + Op(K2T−1).

We can minimize the error bound O(K−r) +Op(K2T−1) to find the optimal truncation

parameter, say mop, has Op(T−
1
2 ). (See Zhang and Su [43] and Su et al. [49].)

5. Numerical Illustration

In this section, we provide some numerical examples to show the performance of
our estimator when the observed sample size is finite. Throughout this section, we set
c = 1.5, λ = 2, β = 1, p = 0.5, and q = 0.5, and we consider the following three claim
density functions at the same time:

(1) Exponential density function: f+(x) = e−x, x > 0.
(2) Erlang (2) density function: f+(x) = 4xe−2x, x > 0.
(3) Combination-of-exponentials density function: f+(x) = 3e−1.5x − 3e−3x, x > 0.

As in Zhang [24], we estimate the following four classes of Gerber–Shiu functions:
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(1) Ruin probability (RP): w(x, y) ≡ 1, δ = 0.
(2) Laplace transform of ruin time (LT): w(x, y) ≡ 1, δ = 0.1.
(3) Expected claim size causing ruin (ECS): w(x, y) ≡ x + y, δ = 0.
(4) Expected deficit at ruin (ED): w(x, y) ≡ y, δ = 0.

Note that the assumptions of the above three claim density functions all satisfy µ1 = 1,
and through Equations (9) and (11), we can easily obtain the explicit formulae for the
above Gerber–Shiu functions by Laplace inversion. For exponential claim density function,
the explicit formulae for these Gerber–Shiu functions are given by

(1) m(u) = 0.46482e−0.53518u, u ≥ 0.
(2) m(u) = 0.43217e−0.56783u, u ≥ 0.
(3) m(u) = 1.8593e−0.53518u − e−u, u ≥ 0.
(4) m(u) = 0.46482e−0.53518u, u ≥ 0.

For Erlang (2) claim size, the explicit formulae for these Gerber–Shiu functions are
given by

(1) m(u) = 0.53387e−0.747u − 0.06037e−2.819u, u ≥ 0.
(2) m(u) = 0.50866e−0.764u − 0.06266e−2.816u, u ≥ 0.
(3) m(u) = 1.2575e−0.747u + 0.41249e−2.819u − e−2u, u ≥ 0.
(4) m(u) = 0.02046e−2.819u + 0.34454e−0.747u, u ≥ 0.

For combination-of-exponential claim size, the explicit formulae for these Gerber- Shiu
functions are given by

(1) m(u) = 0.49493e−0.707u − 0.04003e−30357u, u ≥ 0.
(2) m(u) = 0.48606e−0.746u − 0.04136e−3.352u, u ≥ 0.
(3) m(u) = 1.3522e−0.707u − 0.6667e−1.5u − 0.3333e−3u + 0.33879e−3.357u, u ≥ 0.
(4) m(u) = 0.35945e−0.707u + 0.01625e−0.3.357u, u ≥ 0.

Here, we consider T = 120, 180, 360. For the cut-off parameter K, we use the result of
Remark 4.1 in Su et al. [49] with K = b5T

1
10 c, where b·cmeans the integer part. Through

simulation, we find that even if the truncation parameter K is very small, the satisfactory
effect can be obtained. In the case of finite sample size, to test the performance of the
estimator, we consider mean value, mean relative error, and integrated mean square error
(IMSE) based on 300 experiments, which are computed by

1
300

300

∑
j=1

m̂K,j(u),
1

300

300

∑
j=1

m̂K,j(u)
m(u)

− 1,
1

300

300

∑
j=1

∫ 30

0
|m̂K,j(u)−m(u)|2du,

where m̂K,j(u) is the estimate of Gerber–Shiu function in the j-th experiment. For IMSE, we
computed the integral on the finite domain [0, 30] instead of [0, ∞], since when u is large,
both the true value and the estimates are very close to zero.

For Figure 1, we consider the comparison between the 30 estimated curves and the
value curves when T = 180 and the exponential claim size density. It is easily observed
that the estimated curves are close to each other and close to the true value curve, which
indicates that our estimation method has good stability. Next, in Figures 2 and 3, based on
300 experiments, we respectively show the mean value curves and true value curves of the
exponential claim size density and the combination-of-exponentials claim size density at
different observed intervals T. It is easy to see from the figure above that it is difficult to
distinguish the true value curves from the mean value curves when T is larger.
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Figure 1. Estimation of the Gerber–Shiu function for exponential density function: red line (true
values) and green lines (30 estimated curves) when T = 180. (a) Ruin probability; (b) Laplace
transform of ruin time; (c) expected claim size causing ruin; (d) expected deficit at ruin.

Figure 2. Estimation of the Gerber–Shiu function for exponential density function: mean curves.
(a) Ruin probability; (b) Laplace transform of ruin time; (c) expected claim size causing ruin; (d) ex-
pected deficit at ruin.
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Figure 3. Estimation of the Gerber–Shiu function for combination-of-exponentials density function:
mean curves. (a) Ruin probability; (b) Laplace transform of ruin time; (c) expected claim size causing
ruin; (d) expected deficit at ruin.

We also provide the situation of the mean relative error curves at the Erlang (2) claim
size density in Figure 4. It can be noted that (1) the mean relative error curves first increase
and then decrease with the increase in u; (2) when T is larger, the average relative error
curve is smaller. This fact can be explained as follows: (1) when the initial surplus u is small,
the true value m(u) as the denominator is large, which leads to a small mean relative error;
(2) with the increase in u, the true value m(u) decreases, so the mean relative error increases;
(3) as u continues to increase, the estimated value m̂K(u) as the numerator decreases faster
than the true value m(u) as the denominator, which makes the subsequent mean relative
error curve drop below zero level.

In addition, based on the above 300 repeated experiments, we give a series of IMSE val-
ues of Gerber–Shiu function estimation under three kinds of claim distribution assumptions
in Table 1. All the numerical experiments in this paper were completed in MATLAB. Taking
exponential density as an example, when T = 120, we completed 300 independent repeated
experiments in 176.06 s. For each claim density function, the IMSE of the Gerber–Shiu
function decreases as T increases. This conclusion also shows the stability of the estimation
method in this paper. Finally, we compare the Laguerre series expansion method with
FFT method used in Shimizu and Zhang [19]. The parameter setting of FFT is the same
as in Shimizu and Zhang [19]. First, we present the IMSE values for both methods in
Table 2, and we find that the Laguerre series expansion method can lead to smaller IMSEs
compared with the FFT method. Moreover, we set T = 120 and display the mean relative
error curves in Figure 5, and we find that the Laguerre series expansion method can yield
smaller mean relative errors.
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Table 1. IMSEs for the estimated Gerber–Shiu functions.

Claim Size T RP LT ECS ED

120 0.02167 0.00555 0.44172 0.01433
Exponential 180 0.01811 0.00304 0.42494 0.00682

360 0.01649 0.00181 0.39796 0.00468

120 0.00196 0.00707 0.22613 0.32025
Erlang (2) 180 0.00099 0.00153 0.16997 0.24374

360 0.00097 0.00023 0.13564 0.16738

120 0.00394 0.00192 0.02533 0.00501
Combination-of-exponentials 180 0.00271 0.00082 0.02261 0.00108

360 0.00205 0.00055 0.00163 0.00053

Figure 4. Estimation of the Gerber–Shiu function for Erlang (2) density function: mean relative error
curves. (a) Ruin probability; (b) Laplace transform of ruin time; (c) expected claim size causing ruin;
(d) expected deficit at ruin.

Table 2. IMSEs for the estimated Gerber–Shiu functions.

Claim Size T RP LT ECS ED

Laguerre 0.02167 0.00555 0.44172 0.01433Exponential FFT 0.02379 0.00613 0.47373 0.02041

Laguerre 0.00196 0.00707 0.22613 0.32025Erlang (2) FFT 0.00214 0.00813 0.24715 0.41079

Laguerre 0.00394 0.00192 0.02533 0.00501Combination-of-exponentials FFT 0.00424 0.00231 0.03141 0.00673
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Figure 5. Comparing with FFT method for Erlang (2) density function: mean relative error curves.
(a) Ruin probability; (b) Laplace transform of ruin time.

6. Conclusions

This paper introduces how to use the Laguerre series expansion method to estimate
the Gerber–Shiu function of the two-sided jumps risk model and gives the nonparametric
estimation of the corresponding ruin characteristic quantity. First, we prove that the Gerber–
Shiu function of the two-sided jumps risk model can be expanded by Laguerre series, then
Laguerre coefficient can be obtained by solving system of linear equations, and then the
unknown coefficients can be estimated based on sample information on claim numbers
and individual claim sizes. We derive the consistency property of this estimator when the
sample size is large. Finally, when the sample size is limited, we demonstrate the high
accuracy of the estimation method through numerical experiments. More importantly, it
should be noted that our methods are not limited to be applied to the two-sided jumps
risk model, but can be widely applied to other risk models in insurance. In addition,
the following studies could be extended to other mathematical methods and models.

Author Contributions: Software, K.H.; Methodology, K.H. and Y.H.; Writing–original draft, K.H.
and Y.H.; Writing–review and editing, Y.D. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China (Grant
Nos. 71701068 and 11601147), and the Natural Science Foundation of Hunan Province (Grant No.
2021JJ30436), and the Scientific Research Fund of Hunan Provincial Education Department, China
(Grant Nos. 20B381 and 20K084), and the Natural Science Foundation of Changsha City, China (Grant
No. kq2014072).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data in this paper are randomly generated and are not available
for readers.

Acknowledgments: The authors would like to thank the editors and reviewers for their help.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cheung, E.C.K.; Liu, H.; Willmot, G.E. Joint moments of the total discounted gains and losses in the renewal risk model with

two-sided jumps. Appl. Math. Comput. 2018, 331, 358–377. [CrossRef]
2. Boucheire, R.J.; Boxma, P.J.; Sigman, K. A note on negative customers, GI/G/1 workload, and risk processes. Probab. Eng. Inf. Sci.

1997, 358, 305–311. [CrossRef]
3. Zhang, Z.; Yang, H.; Li, S. The perturbed compound Poisson risk model with two-sided jumps. J. Comput. Appl. Math. 2010,

233, 1773–1784. [CrossRef]

http://doi.org/10.1016/j.amc.2018.03.037
http://dx.doi.org/10.1017/S0269964800004848
http://dx.doi.org/10.1016/j.cam.2009.09.014


Mathematics 2023, 11, 1994 29 of 30

4. Zou, W.; Gao, J.; Xie, J. On the expected discounted penalty function and optimal dividend strategy for a risk model with random
incomes and interclaim-dependent claim sizes. J. Comput. Appl. Math. 2014, 255, 270–281. [CrossRef]

5. Palmowski, Z.; Vatamidou, E. Phase-type approximations perturbed by a heavy-tailed component for the Gerber-Shiu function
of risk processes with two-sided jumps. Stoch. Model. 2020, 26, 337–363. [CrossRef]

6. Gerber, H.U.; Shiu, E.S.W. On the time value of ruin. N. Am. Actuar. J. 1998, 2, 48–478. [CrossRef]
7. Zhao, X.; Yin, C. The Gerber-Shiu expected discounted penalty function for Lévy insurance risk processes. Acta Math. Appl. Sin.
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29. You, H.; Guo, J.; Jiang, J. Interval estimation of the ruin probability in the classical compound Poisson risk model. Comput. Stat.

Data Anal. 2020, 144, 106890. [CrossRef]
30. Wang, Y.; Yu, W.; Huang, Y. Estimating the Gerber-Shiu function in a compound Poisson risk model with stochastic premium

income. Discret. Dyn. Nat. Soc. 2019, 2019, 5071268. [CrossRef]
31. Wang, Y.; Yu, W.; Huang, Y.; Yu, X.; Fan, H. Estimating the expected discounted penalty function in a compound poisson

insurance risk model with mixed premium income. Mathematics 2019, 7, 305. [CrossRef]
32. Li, J.; Yu, W.; Liu, C. Nonparametric estimation of ruin probability by complex Fourier series expansion in the compound Poisson

model. Commun. Stat. Theory Methods 2020, 51, 5048–5063. [CrossRef]
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Econ. 2022, 104, 133–157. [CrossRef]

37. Yang, Y.; Xie, J.; Zhang, Z. Nonparametric estimation of some dividend problems in the perturbed compound Poisson model.
Probab. Eng. Inf. Sci. 2022, 37, 418–441. [CrossRef]

38. Ai, M.; Zhang, Z.; Zhong, W. Valuation of a DB underpin hybrid pension under a regime-switching Lévy model. J. Comput. Appl.
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