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Abstract: This article presents a study on singularly perturbed 1D parabolic Dirichlet’s type differen-
tial equations with discontinuous source terms on an interior line. The time derivative is discretized
using the Euler backward method, followed by the application of the streamline–diffusion finite
element method (SDFEM) to solve locally one-dimensional stationary problems on a Shishkin mesh.
Our proposed method is shown to achieve first-order convergence in time and second-order conver-
gence in space. Our proposed method offers several advantages over existing techniques, including
more accurate approximations of the solution on the boundary layer region, better efficiency, and
robustness in dealing with discontinuous line source terms. The numerical examples presented in this
paper demonstrate the effectiveness and efficiency of our method, which has practical applications
in various fields, such as engineering and applied mathematics. Overall, our proposed method
provides an effective and efficient solution to the challenging problem of solving singularly perturbed
parabolic differential equations with discontinuous line source terms, making it a valuable tool for
researchers and practitioners in various domains.

Keywords: singularly perturbed problem; parabolic differential equation; convection–diffusion
problem; line discontinuous source term; streamline–diffusion finite element method; Shishkin mesh;
uniformly convergent

MSC: 34K26; 35B25; 65M22; 65M50; 65N22

1. Introduction

In the literature, there are several articles available that deal with the numerical
solution of singularly perturbed 1D parabolic differential equations with sufficiently smooth
data functions, see [1–5]. Such problems, but with non-smooth data functions, can be seen
in [6–8]. In [9], Clavero considered a numerical scheme with two small parameters in both
the convection and diffusion terms. In [10], Gracia and O’Riordan considered a singularly
perturbed reaction–diffusion parabolic problem with an initial condition that was not
smooth. In [11], Clavero and Jorge considered 1D singularly perturbed parabolic convection
diffusion systems and used a splitting uniformly convergent method. In [12], Yao Cheng,
Yanjie Mei and H G Roos considered the local discontinuous Glerkin method for time
dependent singularly perturbed convection diffusion problems on layer adapted meshes.

While there have been several studies on solving parabolic differential equations with
various boundary conditions, such as Dirichlet and Neumann conditions, the problem
of nonlinear parabolic stochastic differential equations with nonlinear Robin conditions
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remains an active area of research. For instance, the recent article, [13], discusses Well-
Posedness for Nonlinear Parabolic Stochastic Differential Equations with Nonlinear Robin
Conditions which provides a rigorous analysis of the mathematical properties of this
problem. In this study, we focus on the related, but distinct, problem of numerically solving
1D singularly perturbed parabolic differential equations with discontinuous source terms
on an interior line.

This type of problem has a regular boundary layer at x = 1 (boundary point) as
the parameter ε tends to zero [14]. As a layer near the boundary exists, conventional
discretization techniques, such as Finite Difference Methods (FDMs) or Finite Element
Methods (FEMs), cannot yield an accurate solution, unless the mesh is highly refined [14].
Therefore, it is essential that any method proposed must employ a layer-adapted mesh
to achieve uniform accuracy. Mukherjee and Natesan [15] developed a hybrid finite
difference approach that converges uniformly for singularly perturbed 1D parabolic initial-
boundary value problems (IBVPs) on the piecewise uniform Shishkin mesh. Similarly,
Das et al. [16] proposed a numerical technique on the Bakhvalov-Shishkin mesh to solve
2D delay parabolic IBVPs. Hughes and Brooks [17] introduced the Streamline–diffusion
finite element method (SDFEM), which is widely recognized as an effective technique for
obtaining the numerical solutions of convection-dominated flow problems. Later, Roos and
Zarin [18] applied SDFEM on the Shishkin mesh to solve a singularly perturbed two-point
boundary value problem with a non-smooth source function.

The main focus of this paper was to investigate the numerical treatment of 1D singu-
larly perturbed parabolic Dirichlet’s differential equations with discontinuous source terms
on an interior line. This problem contains an interior layer at x = z due to the presence
of line discontinuities. The authors propose a method that first uses the backward Euler
method to discretize the time derivative, followed by applying SDFEM on the Shishkin
mesh to solve the locally one-dimensional stationary problem. In [19], Ghiocel Groza and
Nicolae Pop considered a numerical scheme for the locally one-dimensional stationary
boundary value problem. Various numerical examples were used to validate the suggested
method, both theoretically and numerically, and it demonstrated uniform convergence in
both space and time.

The paper is organized as follows: Section 2 presents the statement of the problem,
the temporal discretization, derivative estimates and stability findings of locally 1D prob-
lems. In Sections 3 and 4, the weak formulation and the numerical scheme for solving our
problem are described. In Section 5, the error estimate for the SDFEM method is provided,
while Section 6 offers numerical validation through various test examples. Finally, Section 7
provides some concluding remarks.

2. Continuous Problem and Stability Analysis
2.1. Statement of Continuous Problem

Inspired by the work of [20], the following singularly perturbed 1D parabolic differen-
tial equation is investigated in this paper.

Find a function u such that

Mu :=ut − εuxx + a(x)ux + b(x)u = δ(x− z)g(t) + f (x, t), (x, t) ∈ Ω∗ × (0, T], (1)

u(x, 0) = u0(x), x ∈ Ω, (2)

u(0, t) = 0 = u(1, t), t ∈ [0, T], (3)

where 0 < ε � 1 is a very small positive parameter, Ω∗ = Ω− ∪ Ω+, Ω− = (0, z),
Ω+ = (z, 1), Ω = [0, 1], the functions a(x) ≥ α > 0, b(x) > β > 0, g(t), f (x, t) and u0(x)
are sufficiently differentiable and bounded in their respective domains, δ(x− z) is the delta
function, and T is some fixed positive time.

In [18], Roos and Zarin used the SDFEM method to solve a two-point boundary value
problem with a point source function, which exhibits singular perturbation and requires
a layer adaptive mesh like Shishkin mesh. In their model, there was only one interior
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layer at a single point. However, in our problem, which involves time evolution, we have
an interior layer along a line source. Thus, we need to accurately capture the numerical
solution along this line source.

In the paper, the positive constant C is used to denote a generic constant that is
not dependent on the perturbation parameter ε, or the discretization parameters, such
as N or M. For practical purposes, the accepted convention is to assume ε ≤ CN−1 for
the convection coefficient problem. Additionally, the authors use the supremum norm
|ψ|D = supx∈D |ψ(x)| to measure the error and derivative bounds.

2.2. Time Domain Discretization and Locally 1D Problems

We introduce equidistant meshes in the time domain [0, T] with time step ∆t, such
that ΩM

t = {ti = i∆t}M
i=0, ∆t = T

M , where M represents the number of mesh elements in
the time direction. Now, discretizing the time derivative by means of the Euler fractional
method on uniform mesh, we obtain the following ordinary differential equation for every
time step tn in the set ΩM

t , where n ranges from 1 to M:

(I + ∆tL)ũn =ũn−1 + ∆t[ f (x, tn) + δ(x− z)g(tn)], x ∈ Ω∗ (4)

ũn(0) = 0 = ũn(1), (5)

where the differential operator L = −ε d2

dx2 + a(x) d
dx + b(x) and ũn is the solution of (4) and (5).

Note that ũ0(x) = 0 = u0(x), x ∈ Ω.
To achieve the stability of the scheme given by (4) and (5), one can easily prove that

the operator Q = (I + ∆tL) satisfies the maximum principle:

‖Q−1‖∞ ≤
1

1 + β∆t
. (6)

We can rewrite the semi-discretized problem (4) and (5) as:L∗ũn := −ε
d2ũn(x)

d2x
+ a(x)

dũn(x)
dx

+ c(x)ũn(x) = gn(x), x ∈ Ω∗,

ũn(0) = 0 = ũn(1)
(7)

where c(x) = b(x) + 1
∆t and gn(x) = 1

∆t ũn−1 + { f (x, tn) + δ(x − z)g(tn)}. The above
scheme (7) is an ordinary differential equation in space variable x for each time step tn.

2.3. Maximum Principle and Derivative Estimates

Lemma 1 (Maximum Principle). Suppose that there exists a function ξ, belonging to the set
C0(Ω) ∩ C2(Ω∗), that satisfies the following conditions: ξ(x) ≥ 0 for x = 0, 1, L∗ξ(x) ≥ 0 for
all x ∈ Ω∗ and ξ ′(z−)− ξ ′(z+) ≥ 0 Then, it can be concluded that ξ(x) ≥ 0 for all x ∈ Ω.

Proof. The method of proof for the lemma is comparable to the one used in (Lemma 2
in [21]).

Lemma 2. Suppose ũn is the solution of problem (7) and is decomposed as ũn = r + s. Then,
the derivatives of the regular components satisfy∥∥∥∥∥dlr(x)

dxl

∥∥∥∥∥
Ω∗
≤ C(1 + ε−l+2), l = 0, 1, 2, 3, (8)

and, the derivatives of the singular components satisfy



Mathematics 2023, 11, 2034 4 of 17

∣∣∣∣∣dls(x)
dxl

∣∣∣∣∣ ≤ Cε−l


exp

(
α(x− z)

ε

)
, x ∈ Ω−, l = 0, 1, 2, 3,

exp
(

α(x− 1)
ε

)
, x ∈ Ω+.

(9)

Proof. A similar strategy to the one used in (Theorem 9.1 in [22]) is employed for the proof.

2.4. Truncation Error

Lemma 3. Assume that, | ∂iu
∂ti | ≤ C, i = 0, 1, 2, 3, then ‖en‖∞ ≤ C∆t2 and ‖En‖∞ ≤ C∆t, where

en = u(x, tn)− ūn and En = ∑n
j=1 ej.

Proof. As ũn is the solution of (4) and (5), we have

(I + ∆tL)ũn − ∆t{ f (x, tn) + δ(x− z)g(tn)} = un−1. (10)

By means of Taylor expansion, we have

u(x, tn−1) = u(x, tn)− ∆t
∂u
∂t

(x, tn) + O(∆t2). (11)

From Equation (1) and if the solution of (1) is smooth enough, we have

∂u
∂t

(x, tn) = { f (x, tn) + δ(x− z)g(tn)} − Lun. (12)

From (10)–(12), we have

(I + ∆tL)en = O(∆t2), en(0) = en(1) = 0.

From this, we have ‖en‖ ≤ C(∆t)2 by using the stability result in (6).
The stability result and consistency property of (4) and (5) together implies

‖En‖ ≤ C∆t.

3. Weak Formulation

The standard weak formulation of problem (7) for a fixed n is given as follows. Find
ũn ∈ V = H1

0(Ω), such that

B(ũn, v) = gn(v), ∀v ∈ V,

where
B(y, v) = ε(y′, v′) + (ay′ + cy, v)

gn(v) = (gn, v).

Here, (. , .) represents the inner product in L2(Ω∗).
Consider the mesh in space as ΩN

x = {x0, x1, . . . , xN}, where N is some positive integer.
We define a mesh that includes the point z as one of its nodes. Let φi be the basis for the
finite-dimensional subspace Vh of piece-wise linear polynomials. The basis is given by

φi(x) =


x−xi−1

hi
xi−1 ≤ x ≤ xi,

xi+1−x
hi+1

xi ≤ x ≤ xi+1,

0 otherwise,

where hi = xi − xi−1 and i ∈ {1, 2, . . . , N}. We use this basis to ensure that z is one of the
mesh points.

The standard Galerkin method is given as follows: find ũn
h ∈ Vh ⊂ V = H1

0(Ω)
such that
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Bh(ũn
h , vh) = gn

h(vh), ∀vh ∈ Vh.

4. Streamline Diffusion Finite Element Formulation

The streamline diffusion weak formulation for the problem (7) is to find ũn
h ∈ Vh ⊂

V = H1
0(Ω), such that

Bh(ũn
h , vh) = gn

h(vh), ∀v ∈ Vh, (13)

where

Bh(y, w) = ε(y′, w′) + (ay′ + cy, w) +
N

∑
i=1

∫ xi

xi−1

δi(−εy′′ + ay′ + cy)aw′dx,

gn
h(w) = (gn, w) +

N

∑
i=1

∫ xi

xi−1

δign(x)a(x)w′dx.

The parameter, known as the Streamline–diffusion (SD) parameter, denoted as δi, is
decided later.

The SDFEM’s relevant difference scheme is presented below.

LN
SD := −ε[D+ui − D−ui] + αiD−ui + βiD+ui + γiui = gh(φi), (14)

where the symbols D+ and D− are given by the following:

D+ui =
ui+1 − ui

hi+1
, D−ui =

ui − ui−1

hi
,

and

αi =
∫ xi

xi−1

a(x)φidx− hi

∫ xi

xi−1

c(x)φi−1φidx +
δi
hi

∫ xi

xi−1

a(x)2 dx

− δi

∫ xi

xi−1

a(x)c(x)φi−1dx,

βi =
∫ xi+1

xi

a(x)φidx + hi+1

∫ xi+1

xi

c(x)φi+1φidx− δi+1

hi+i

∫ xi+1

xi

a(x)2 dx

− δi+1

∫ xi+1

xi

a(x)c(x)φi+1dx,

γi =
∫ xi+1

xi−1

c(x)φidx +
δi
hi

∫ xi

xi−1

a(x)c(x)dx− δi+1

hi+1

∫ xi+1

xi

a(x)c(x)dx.

The standard Galerkin method is effective for step lengths that are sufficiently small. If this
condition is not met, the method can be stabilized by utilizing the characteristics of an M-
matrix. To satisfy this condition, the streamline–diffusion parameter δi can be determined
such that the matrix resulting from the associated difference scheme (14) transforms into
an M-matrix, as outlined below:

[−αi]δi=0 ≤ ε,

This can be written as Cihi ≤ Ai + ε, where Ai =
∫ xi

xi−1
a(x)φidx and Ci =

∫ xi
xi−1

c(x)φi−1φidx.
If this condition is not met, αi is set to zero for i ∈ {1, 2, . . . , N} to achieve an M-matrix,
which results in the following:

δi =
(hiCi − Ai)hi

A2
i − hi ACi

where, A2
i =

∫ xi
xi−1

(a(x))2dx and ACi =
∫ xi

xi−1
a(x)c(x)φi−1dx. If we summarize the above

conditions, then we obtain
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δi =

0, i f Cihi ≤ Ai + ε
(hiCi−Ai)hi
A2

i−hi ACi
, otherwise.

(15)

As a result, it is evident that δi = O(hi). By choosing vh as φi as well as ũh = (ũn
h(x1),

ũn
h(x2), . . . , ũn

h(xN)) ∈ RN , we obtain the linear system of algebraic equations associated
with the SDFEM scheme

Kũh = gh,

where K represents a tridiagonal matrix K = (kij) and gh = gn
h(φi). Upon computing the

coefficients,

ki,i−1 =− εh−1
i − h−1

i

∫ xi

xi−1

a(x)φidx +
∫ xi

xi−1

c(x)φi−1φidx− δih−2
i

∫ xi

xi−1

a(x)2 dx

+ δih−1
i

∫ xi

xi−1

a(x)c(x)φi−1dx,

ki,i =εh−1
i + εh−1

i+1 + h−1
i

∫ xi

xi−1

a(x)φidx− h−1
i+1

∫ xi+1

xi

c(x)φidx +
∫ xi

xi−1

c(x)φ2
i dx

+
∫ xi+1

xi

c(x)φ2
i dx + δih−2

i

∫ xi

xi−1

a(x)2 dx

+ δi+1h−2
i+1

∫ xi+1

xi

a(x)2dx + δih−1
i

∫ xi

xi−1

a(x)c(x)φidx− δi+1h−1
i+1

∫ xi+1

xi

a(x)c(x)φi dx

ki,i+1 =− εh−1
i+1 + h−1

i+1

∫ xi+1

xi

a(x)φidx +
∫ xi+1

xi

c(x)φi+1φi dx

− δi+1h−2
i+1

∫ xi+1

xi

a(x)2dx− δi+1h−1
i+1

∫ xi+1

xi

a(x)c(x)φi+1dx.

Remark 1. We defined the SD parameter using the procedure given in [23]. Realistically, the con-
ventional Galerkin method satisfies the criterion that defines an M-matrix for almost all 1D problems.
In such a situation, the Galerkin method and the SDFEM both yield almost identical outcomes.

Remark 2. Generally, the conventional Galerkin method is analogous to the central finite difference
approach. However, in regions where convection is dominant, applying a central finite difference
approximation to the convective term may lead to oscillations [14]. In such instances, the SDFEM
is a superior alternative.

4.1. Discrete Green’s Function and Stability

To establish the (l∞, w−1,∞) stability of the SDFEM, we introduce the discrete Green’s
function. The i-th discrete Green’s function, denoted as λi ∈ Vh, is determined by solving
the following problem: {

Bh(φj, λi) = δij,
λi(0) = λi(1) = 0,

(16)

where δij denotes the Kronecker delta. Additional details on these and related concepts can
be found in references such as [24–26].

Lemma 4 ([25]). If λi = ∑N
j=1 λi

jφj,, then the discrete Green’s function exhibits the follow-
ing conditions:

(1) λi
j ≥ 0, i, j ∈ {1, 2, . . . , N},

(2) 0 ≤ λi
1 < . . . < λi

i > λi
i+1 . . . > λi

N .

Lemma 5. If we denote c0 = mini{ci}, i = 1, 2, . . . , N where ci = ki+1,i − ki,i+1 and
λi = ∑N

j=1 λi
jφj, then λi

i ≤ c−1
0 .
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Proof. From (16), for any vh ∈ Vh, we have

Bh(vh, λi) = vh(xi).

Considering vh = ∑i
j=1 φj, one can derive

N

∑
j=1

j

∑
k=1

k j,kλi
j = 1.

Expanding, we obtain

(k1,1+k1,2)λ
i
1 +

i

∑
j=2

(k j,j−1 + k j,j + k j,j+1)λ
i
j+

ki+1,i(λ
i
i+1 − λi

i) + λi
i(ki+1,i − ki,i+1) = 1.

K is an M-matrix implying (ki,i−1 + ki,i + ki,i+1) ≥ 0, for i ∈ {2, . . . , N− 1}. Now, by means
of Lemma 4 and k1,1 > k1,2 (property), we have

λi
i(ki+1,i − ki,i+1) ≤ 1.

This implies that

λi
i ≤

1
(ki+1,i − ki,i+1)

= c−1
i .

So, we conclude that λi
i ≤ c−1

0 .

Lemma 6 ([25]). The SDFEM, equipped with the streamline–diffusion parameter specified in
Equation (15), is uniformly stable in the (l∞, w−1,∞) norm, as demonstrated by the following result:

‖vh‖∞ ≤
2
c0

max
j

∣∣∣∣∣ N

∑
k=j

(Kvh)k

∣∣∣∣∣, ∀vh ∈ Vh, j = 1, . . . , N.

4.2. Shishkin Type Mesh

We used a general type mesh introduced in [27] with adapted layers at the points
x = z and x = 1. Let N be a positive even integer greater than 4 and σ1 = min{ z

2 , τ0
α ε ln N},

σ2 = min{ 1−z
2 , τ0

α ε ln N}, τ0 ≥ 2. Here, we considered σ1 = σ2 = τ0
α ε ln N. Let

Ωs = (0, z− σ1) ∪ (z, 1− σ2) and Ω0 = (z− σ1, z) ∪ (1− σ2, 1). On Ωs and Ωo, the mesh is
equidistant and graded respectively. The transition points are chosen to be

x N
4
= z− σ1, x N

2
= z, x 3N

4
= 1− σ2.

We chose two mesh generating functions ϕ1 and ϕ2 for the particular layers:

ϕ1(
1
4
) = ln N, ϕ1(

1
2
) = 0,

ϕ2(
3
4
) = ln N, ϕ2(1) = 0.

The nodes of the Shishkin mesh (S-mesh) are as follows:

xi =


4i
N (z− σ1) i = 0, . . . , N

4 ,
z− τ0

α εϕ1(ti) i = N
4 + 1, . . . , N

2 ,

z + 4(1−z−σ2)(i− N
2 )

N i = N
2 + 1, . . . , 3N

4 ,
− τ0

α εϕ2(ti) + 1 i = 3N
4 + 1, . . . , N,

(17)
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where ti = i
N , ϕi = − ln ψi for i = 1, 2, ψ1(t) = exp (−(2− 4t) ln N) and ψ2(t) =

exp (−(4− 4t) ln N) on Shishkin mesh (S-mesh).
maxi |ψ′i |, i = 1, 2 plays a part in error analysis as we see in the upcoming section. we

have max |ψ′| ≤ C ln N in the S-mesh. Assuming that the mesh generating function ϕi,
for i = 1, 2, obeys the following:

max{|ϕ′i|} ≤ NC0, f or i = 1, 2. (18)

We observe that on the coarse part Ωs, the following holds for the S-mesh:

hi N ≤ C. (19)

On the layer part it is true that on the S-mesh,

hi ≤ Cε
ln N

N
(20)

and, by the assumption (18), we obtain

hi
ε
≤ CN−1 max |ϕ′| ≤ C. (21)

5. Error Estimations

The error at each time level tn, where 1 ≤ n ≤ M − 1, can be expressed as the
difference between ũn(xi) and ũn

h(xi) for all xi ∈ Ω∗. Another way to represent this error is
by utilizing the linear interpolant ũn

I of ũn as follows:

e(xi) = (ũn − ũn
h)(xi) = (ũn − ũn

I )(xi) + (ũn
I − ũn

h)(xi)

= eI + eD.

The errors of interpolation and discretization are denoted by eI and eD, respectively. In this
section, we begin by deriving an estimate for the upper bound of the discretization error,
based on the error caused by interpolation. Following that, we estimate the upper bound
of the interpolation error.

The discretization error is given by

eD = (ũn
I − ũn

h)(x) =
N

∑
i=0

eiφi. (22)

By means of the orthogonality property, we have

Bh(ũn − ũn
h , vh) = 0, ∀vh ∈ Vh.

Using the above property, we obtain

Bh(eD, φi) = Bh(ũn
I − ũn

h , φi)

= Bh(ũn
I − ũn, φi), i ∈ {1, 2, . . . , N − 1}.

Therefore, the equation for error is{
Bh(eD, φi) = Bh(ũn

I − ũn, φi), i ∈ {1, 2, . . . , N − 1},
eD

0 = 0, eD
N = 0.

(23)

The following lemma gives the explicit expression for Bh(ũn
I − ũn, φi).
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Lemma 7. The error Equation (23) involves the bilinear form Bh(ũn
I − ũn, φi), which can be

explicitly expressed as follows:

Bh(ũn
I − ũn, φi) = Oi + (Pi + Pi+1) + (Qi −Qi+1) + (Ri − Ri+1) + (Si − Si+1),

where

Oi =
∫ xi+1

xi−1

a′(x)(ũn
I − ũn)φidx, (24)

Pi =
∫ xi

xi−1

c(x)(ũn
I − ũn)φidx, (25)

Qi =
δi
hi

∫ xi

xi−1

(a(x)c(x)(ũn
I − ũn) + a(x)2(ũn

I − ũn)′)dx, (26)

Ri =− εδih−1
i

∫ xi

xi−1

a(x)(ũn
I − ũn)′′dx, (27)

Si =h−1
i

∫ xi

xi−1

a(x)(ũn
I − ũn)dx. (28)

Proof. One can prove the required results by a simple calculation.

Lemma 8. Assume that a(x) ∈W2,1, then the following estimates are true:

(i)
N

∑
i=1
|Oi| ≤ c1‖ũn − ũn

I ‖∞, (ii)
N

∑
i=1
|Pi| ≤ c2‖ũn − ũn

I ‖∞,

(iii) ‖Qi‖∞ ≤ c3‖ũn − ũn
I ‖∞, (iv) ‖Ri‖∞ ≤ c4‖ũn − ũn

I ‖∞,

(v) ‖Si‖∞ ≤ c5‖ũn − ũn
I ‖∞.

Proof. We prove this Lemma sequentially:

(i). From (24), we know that

Oi =
∫ xi+1

xi−1

a′(x)(ũn
I − ũn)φidx.

Now, taking all the intervals and summing up, we have

N

∑
i=1
|Oi| ≤ ‖ũn

I − ũn‖∞

N

∑
i=1

∫ xi+1

xi−1

a′(x)dx

≤ ‖ũn
I − ũn‖∞|a(x)|1,1

= c1‖ũn
I − ũn‖∞.

(ii). From Equation (25), we have

Pi =
∫ xi

xi−1

c(x)(ũn
I − ũn)φidx.

If we conduct a summation over all intervals, and derive

N

∑
i=1
|Pi| ≤ ‖ũn

I − ũn‖∞‖a(x)‖∞ hi

= c2‖ũn
I − ũn‖∞.
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(iii). From Equation (26), we have

Qi =
δi
hi

∫ xi

xi−1

(a(x)c(x)(ũn
I − ũn) + a(x)2(ũn

I − ũn)′)dx.

If the inequality Cihi ≤ Ai + ε holds, then δi = 0 and, as a result, ri = 0. On the other
hand, if the condition is not satisfied, then we have δi 6= 0. In this scenario, it can be
observed that δi = O(hi), we obtain

|Qi| ≤ C‖a(x)‖∞‖ũn
I − ũn‖∞(‖c(x)‖∞hi − 2|a(x)|1,1)

= c3‖ũn
I − ũn‖∞.

(iv). From Equation (27), we have

Ri = −
εδi
hi

∫ xi

xi−1

a(x)(ũn
I − ũn)′′dx,

and, here also we have ri = 0 when Cihi ≤ Ai + ε, and if it is not true, we have

|Ri| ≤ C|a(x)|2,1‖ũn
I − ũn‖∞

= c4‖ũn
I − ũn‖∞.

(v). Now, finally from Equation (28), we have

Si =
1
hi

∫ xi

xi−1

a(x)(ũn
I − ũn)dx.

Simplifying this, we obtain

|Si| ≤ ‖a(x)‖∞‖ũn
I − ũn‖∞

= c5‖ũn
I − ũn‖∞.

Lemma 9. Consider the problem (7) and let ũn be the exact solution to this problem. Furthermore,
let ũn

I denote the interpolant of ũn on a given grid and let ũn
h represent the approximate solution at

the time level tn. Then, It follows that

‖ũn − ũn
h‖∞ ≤ C‖ũn

I − ũn‖∞.

Proof. Using Lemmas 6 and 8, we have

‖ũn
I − ũn

h‖∞ ≤ C max
i∈{1,...,N}

∣∣∣∣∣ N

∑
j=i

(K(ũn
I − ũn

h))j

∣∣∣∣∣
= C max

i∈{1,...,N}

∣∣∣∣∣ N

∑
j=i

Bh(ũn
I − ũn, φj)

∣∣∣∣∣
≤ C

(∣∣∣∣∣ N

∑
i=1

Oi

∣∣∣∣∣+ 2

∣∣∣∣∣ N

∑
i=1

Pi

∣∣∣∣∣+ max
i∈{1,...,N}

(Qi −QN) + max
i∈{1,...,N}

(Ri − RN)

)
+ C max

i∈{1,...,N}
(Si − SN)

≤ C

(
N

∑
i=1
|Oi|+ 2

N

∑
i=1
|Pi|+ 2(‖Qi‖∞ + ‖Ri‖∞ + ‖Si‖∞)

)
≤ C‖ũn

I − ũn‖∞.
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This implies that the discretization error eD given in (22) is bounded in terms of
the interpolation error eI . By applying the triangle inequality, we establish the follow-
ing inequality:

‖ũn − ũn
h‖∞ ≤ C|ũn

I − ũn‖∞.

Therefore, we have successfully demonstrated the validity of this inequality.

We now proceed to estimate the upper bound of the interpolation error for the S-mesh.

Theorem 1. Let ũn be the classical solution of the problem (7), ũn
I be its interpolant on a Shishkin

mesh with the grid points xi as in (17) and ε ≤ C
N . Then, the following holds:

‖ũn
I − ũn‖∞ ≤

{
C(N−1 ln N)2, x ∈ Ω0,
CN−2, x ∈ Ωs.

Proof. We perform a separate analysis of the error due to interpolation on the domain Ω−
as well as Ω+.

First, consider x in the domain Ω−. Let ũn
1 (x) be the solution to the problem:{

L∗ũn
1 (x) = gn(x), x ∈ Ω− = (0, z),

ũ0(0) = 0, ũ0(z) = d.

For now, assume that d is a constant. Then, the solution ũn
1 (x) exists and we can decompose

it as a sum of two functions r1 and s1, where r1 and s1 satisfy bounds (8) and (9). Then, we
can write

ũn
1 (x)− ũn

1,I(x) = r1(x)− r1,I(x) + s1(x)− s1,I(x).

By means of classical theory, and from (19) and (8), we have the following estimate for
the interpolation error r1(x)− r1,I(x) on the regular part:

|r1(x)− r1,I(x)| ≤ Ch2
i max

xi−1≤x≤xi
|r′′1 | ≤ Ch2

i ≤ CN−2.

For the interpolation error r1(x)− r1,I(x) in the layer part, one can derive:

|r1(x)− r1,I(x)| ≤ Cε2(N−1 ln N)2 exp
(
−2α

τ0ε
(xi−1 − z)

)
≤ C(N−1 ln N)2.

The above expression is obtained by utilizing the inequality (20), selecting the transition
point σ1, and assuming the condition ε ≤ C

N holds. Now, for the interpolation error
s1(x)− s1,I(x) on the regular part, we have

|s1(x)− s1,I(x)| ≤ 2|s1(x)| ≤ C max
xi−1≤x≤xi

exp
(
−α

ε
(z− x)

)
≤ C exp

(
−α

ε
σ1

)
= CN−τ0 .

Regarding the interpolation error for the layer component, i.e., s1(x)− s1,I(x), we apply
the classical theory to obtain the following:

|s1(x)− s1,I(x)| ≤ Ch2
i max

xi−1≤x≤xi
|s′′1 |

≤ C(N−1 ln N)2 max
xi−1≤x≤xi

exp
(
−α

ε
(z− x)

)
≤ C(N−1 ln N)2.
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Here, we used the inequality (20), the first inequality of (9) and (21). Similarly, we can
prove the case x ∈ Ω+.

Theorem 2. Suppose that u(x, t) represents the classical solution of problem (1)–(3), ũn
h(x) rep-

resents the numerical solution of the SDFEM scheme (fully discrete) (13) at the nth time step tn.
Under the conditions of Lemma 3 and Theorem 1, we have the error estimate as follows:

‖ũn
h(x)− u(x, tn)‖∞ ≤

{
C((N−1 ln N)2 + ∆t), x ∈ Ω0,
C(N−2 + ∆t), x ∈ Ωs.

Proof. We can prove this error estimate by combining the results from Lemma 3 and
Theorem 1.

6. Numerical Validation

In order to demonstrate the accuracy of the theoretical findings, we provide two
illustrative examples in this section. We employed the double mesh principle to estimate
the errors and their convergence rates for the test problems, as the exact solutions are
unknown. The principle involves obtaining the numerical solution Y2N,k/2(xn

i , ti) on a grid
Ω2N

x ×Ω2M
t , where the spatial direction is divided into 2N intervals, while the temporal

direction is divided into 2M intervals. The mesh Ω2N
x ×Ω2M

t is obtained by dividing each
segment of the previous mesh ΩN

x ×ΩM
t , where the spatial direction is divided into N

intervals, while the temporal direction is divided into M intervals, in two equal parts.
Subsequently, we estimate the maximum point-wise error and convergence rate for each ε.

EN,k
ε = max

i,n

∣∣∣YN,k(xn
i , tn)−Y2N,k/2(xn

i , tn)
∣∣∣,

DN,k
x = max

ε
EN,k

ε , rN,k = log2

(
DN,k

x

D2N,k/2
x

)
.

Example 1. We examined the one-dimensional parabolic partial differential equation with a line
source, described by Equations (1)–(3). The given data for this problem were as follows:

u(x, 0) = 0, x ∈ Ω = (0, 1),

u(0, t) = 0, u(1, t) = 0, t ∈ [0, 1],

a(x) = x + 5; b(x) = 1; f (x, t) = x + t; g(t) = 1; z =
1
2

.

In Table 1, we list the order of convergence and the maximum point-wise error cor-
responding to Example 1. When M=50, the CPU run time for the error given in the table
was 7.6844× 102 s. Additionally, Figure 1 shows the spatial profile of the solution of the
problem described in Example 1 at different times t, for a fixed value of ε and is a visual
representation of the solution with a strong boundary layer at x = 1, where the solution
changed rapidly over a very small distance. This boundary layer arose due to the strong
boundary condition ũn

h(1, t) = 0, which forced the solution to approach the value zero very
quickly. The figure also shows the location of a strong interior layer at x = 1

2 , which caused
a localized increase in the solution, which arose due to the line source term at the line x = 1

2 .
Figure 2 shows the corresponding point-wise maximum error, that is, the maximum error
decreased as N increased, irrespective of ε.
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Table 1. Maximum error and order of convergence for Example 1 with the number M = 50,100.

ε M N (Number of Grid Points)

↓ ↓ 26 27 28 29 210 211 212

2−6 50 1.0843 × 10−1 3.1740 × 10−2 1.2410 × 10−2 4.0043 × 10−3 1.2979 × 10−3 3.6024 × 10−4 1.0865 × 10−4

100 1.0286 × 10−1 2.6681 × 10−2 1.0315 × 10−2 3.7978 × 10−3 1.5062 × 10−3 6.2557 × 10−4 2.6478 × 10−4

2−7 50 1.1120 × 10−1 2.8842 × 10−2 1.1237 × 10−2 3.5721 × 10−3 1.1214 × 10−3 3.9296 × 10−4 1.6141 × 10−4

100 1.0748 × 10−1 2.8066 × 10−2 1.1374 × 10−2 4.6676 × 10−3 1.8575 × 10−3 8.9909 × 10−4 4.2970 × 10−4

2−8 50 1.1289 × 10−1 2.7113 × 10−2 1.0495 × 10−2 3.2872 × 10−3 1.2105 × 10−3 4.5429 × 10−4 1.9634 × 10−4

100 1.1002 × 10−1 2.9689 × 10−2 1.2033 × 10−2 5.0398 × 10−3 2.4171 × 10−3 1.1748 × 10−3 5.8837 × 10−4

2−9 50 1.1361 × 10−1 2.6175 × 10−2 1.0085 × 10−2 3.2652 × 10−3 1.2404 × 10−3 5.0069 × 10−4 2.1944 × 10−4

100 1.1175 × 10−1 3.0602 × 10−2 1.2410 × 10−2 5.3361 × 10−3 2.5656 × 10−3 1.3340 × 10−3 6.5985 × 10−4

2−10 50 1.1395 × 10−1 2.5686 × 10−2 9.8700 × 10−3 3.3070 × 10−3 1.2620 × 10−3 5.1495 × 10−4 2.3576 × 10−4

100 1.1263 × 10−1 3.1082 × 10−2 1.2609 × 10−2 5.5213 × 10−3 2.6932 × 10−3 1.3756 × 10−3 7.0938 × 10−4

2−11 50 1.1411 × 10−1 2.5438 × 10−2 9.7602 × 10−3 3.3285 × 10−3 1.2731 × 10−3 5.2436 × 10−4 2.4101 × 10−4

100 1.1307 × 10−1 3.1327 × 10−2 1.2711 × 10−2 5.6167 × 10−3 2.7588 × 10−3 1.4141 × 10−3 7.2555 × 10−4

2−12 50 1.1418 × 10−1 2.5312 × 10−2 9.7046 × 10−3 3.3393 × 10−3 1.2787 × 10−3 5.2911 × 10−4 2.4429 × 10−4

100 1.1329 × 10−1 3.1451 × 10−2 1.2763 × 10−2 5.6650 × 10−3 2.7921 × 10−3 1.4321 × 10−3 7.3508 × 10−4

2−13 50 1.1422 × 10−1 2.5249 × 10−2 9.6767 × 10−3 3.3448 × 10−3 1.2815 × 10−3 5.3150 × 10−4 2.4594 × 10−4

100 1.1340 × 10−1 3.1514 × 10−2 1.2789 × 10−2 5.6894 × 10−3 2.8088 × 10−3 1.4416 × 10−3 7.3966 × 10−4

2−14 50 1.1424 × 10−1 2.5217 × 10−2 9.6627 × 10−3 3.3475 × 10−3 1.2829 × 10−3 5.3270 × 10−4 2.4679 × 10−4

100 1.1345 × 10−1 3.1545 × 10−2 1.2803 × 10−2 5.7016 × 10−3 2.8172 × 10−3 1.4469 × 10−3 7.4190 × 10−4

2−15 50 1.1425 × 10−1 2.5201 × 10−2 9.6557 × 10−3 3.3489 × 10−3 1.2836 × 10−3 5.3330 × 10−4 2.4725 × 10−4

100 1.1348 × 10−1 3.1561 × 10−2 1.2809 × 10−2 5.7077 × 10−3 2.8214 × 10−3 1.4496 × 10−3 7.4301 × 10−4

DN,k
x 50 1.1425 × 10−1 3.1740 × 10−2 1.2410 × 10−2 4.0043 × 10−3 1.2979 × 10−3 5.3330 × 10−4 2.4725 × 10−4

100 1.1348 × 10−1 3.1561 × 10−2 1.2809 × 10−2 5.7077 × 10−3 2.8214 × 10−3 1.4496 × 10−3 7.4301 × 10−4

rN,k 50 1.8478 × 100 1.3548 × 100 1.6319 × 100 1.6253 × 100 1.2832 × 100 1.1089 × 100 -
100 1.8462 × 100 1.3010 × 100 1.1662 × 100 1.0165 × 100 9.6076 × 10−1 9.6419 × 10−1 -

Figure 1. Numerical solution of Example 1.

Example 2. We examined another one-dimensional parabolic partial differential equation with a
line source, described by Equations (1)–(3). The given data for this problem were as follows:

u(x, 0) = 0, x ∈ Ω = (0, 1),

u(0, t) = 0, u(1, t) = 0, t ∈ [0, 1],

a(x) =
5 + x

5 + 3x2 + e−1/x2
; b(x) = 1; f (x, t) = e−

1
x +
√

t; g(t) = 1; z =
1
2

.
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Figure 2. Maximum error of Example 1, when M = 50.

Table 2 presents the maximum point-wise error and the associated convergence rate
for Example 2, when M = 50. The CPU run time for the error given in the table was
7.8426× 102 s. Additionally, as illustrated in Example 1, the graphs of numerical solu-
tion and point-wise maximum error of the problem are illustrated in Figures 3 and 4,
respectively.

Table 2. Maximum error and order of convergence for Example 2 with the number M = 50,100.

ε M N (Number of Grid Points)

↓ ↓ 26 27 28 29 210 211 212

2−6 50 2.1266 × 10−1 1.3349 × 10−1 7.0424 × 10−2 3.3712 × 10−2 1.5223 × 10−2 7.1724 × 10−3 3.4900 × 10−3

100 2.8109 × 10−1 2.2380 × 10−1 1.3696 × 10−1 7.0987 × 10−2 3.3312 × 10−2 1.5960 × 10−2 7.8452 × 10−3

2−7 50 3.5020 × 10−1 2.2511 × 10−1 1.2890 × 10−1 6.7146 × 10−2 3.3507 × 10−2 1.6344 × 10−2 7.8856 × 10−3

100 4.5196 × 10−1 3.8586 × 10−1 2.6099 × 10−1 1.4770 × 10−1 7.6575 × 10−2 3.8040 × 10−2 1.8516 × 10−2

2−8 50 4.4469 × 10−1 3.0061 × 10−1 1.7211 × 10−1 9.0480 × 10−2 4.6009 × 10−2 2.3068 × 10−2 1.1432 × 10−2

100 5.8200 × 10−1 5.2658 × 10−1 3.6716 × 10−1 2.1077 × 10−1 1.1126 × 10−1 5.6420 × 10−2 2.8120 × 10−2

2−9 50 5.0400 × 10−1 3.4278 × 10−1 1.9902 × 10−1 1.0568 × 10−1 5.3720 × 10−2 2.7130 × 10−2 1.3529 × 10−2

100 6.6504 × 10−1 6.0947 × 10−1 4.3599 × 10−1 2.5668 × 10−1 1.3564 × 10−1 6.9369 × 10−2 3.4832 × 10−2

2−10 50 5.3763 × 10−1 3.6934 × 10−1 2.1445 × 10−1 1.1366 × 10−1 5.8382 × 10−2 2.9379 × 10−2 1.4749 × 10−2

100 7.1658 × 10−1 6.5915 × 10−1 4.7996 × 10−1 2.8410 × 10−1 1.5157 × 10−1 7.7503 × 10−2 3.8981 × 10−2

2−11 50 5.5558 × 10−1 3.8344 × 10−1 2.2246 × 10−1 1.1819 × 10−1 6.0637 × 10−2 3.0661 × 10−2 1.5383 × 10−2

100 7.4477 × 10−1 6.8558 × 10−1 5.0407 × 10−1 3.0050 × 10−1 1.6044 × 10−1 8.2210 × 10−2 4.1429 × 10−2

2−12 50 5.6486 × 10−1 3.9071 × 10−1 2.2677 × 10−1 1.2054 × 10−1 6.1870 × 10−2 3.1290 × 10−2 1.5730 × 10−2

100 7.6104 × 10−1 6.9976 × 10−1 5.1666 × 10−1 3.0910 × 10−1 1.6535 × 10−1 8.4716 × 10−2 4.2767 × 10−2

2−13 50 5.6958 × 10−1 3.9441 × 10−1 2.2904 × 10−1 1.2175 × 10−1 6.2500 × 10−2 3.1619 × 10−2 1.5897 × 10−2

100 7.6927 × 10−1 7.0691 × 10−1 5.2310 × 10−1 3.1350 × 10−1 1.6788 × 10−1 8.6049 × 10−2 4.3442 × 10−2

2−14 50 5.7196 × 10−1 3.9627 × 10−1 2.3017 × 10−1 1.2236 × 10−1 6.2816 × 10−2 3.1785 × 10−2 1.5984 × 10−2

100 7.7341 × 10−1 7.1050 × 10−1 5.2636 × 10−1 3.1573 × 10−1 1.6915 × 10−1 8.6729 × 10−2 4.3793 × 10−2

2−15 50 5.7315 × 10−1 3.9720 × 10−1 2.3074 × 10−1 1.2267 × 10−1 6.2975 × 10−2 3.1868 × 10−2 1.6027 × 10−2

100 7.7548 × 10−1 7.1230 × 10−1 5.2803 × 10−1 3.1685 × 10−1 1.6980 × 10−1 8.7074 × 10−2 4.3971 × 10−2

DN,k
x 50 5.7315 × 10−1 3.9720 × 10−1 2.3074 × 10−1 1.2267 × 10−1 6.2975 × 10−2 3.1868 × 10−2 1.6027 × 10−2

100 7.7548 × 10−1 7.1230 × 10−1 5.2803 × 10−1 3.1685 × 10−1 1.6980 × 10−1 8.7074 × 10−2 4.3971 × 10−2

rN,k 50 5.2904 × 10−1 7.8358 × 10−1 9.1156 × 10−1 9.6189 × 10−1 9.8265 × 10−1 9.9160 × 10−1 -
100 1.2260 × 10−1 4.3187 × 10−1 7.3683 × 10−1 8.9999 × 10−1 9.6349 × 10−1 9.8568 × 10−1 -

From the above two Examples, 1 and 2, we see that the solutions of the problems
exhibited an interior layer at x = 1

2 and a boundary layer at x = 1.
Note: For the numerical computation, a system with the following configuration i7

processor, 8.00 GB RAM was used.
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Figure 3. Numerical solution of Example 2.

Figure 4. Maximum error of Example 2, when M = 50.

7. Conclusions

In this study, we analyzed 1D parabolic equations that were singularly perturbed and
contained a discontinuous source term on an interior line. Our objective was to discretize
the time derivative using the Euler backward method and apply SDFEM to the locally one-
dimensional stationary problems on Shishkin mesh. We aimed to determine the accuracy
order of the spatial arrangement and evaluate test problems in terms of their maximum
pointwise errors.

Our results showed that the accuracy order of the spatial arrangement was of second-
order nature, but, due to the presence of the first-order term ∆t in the error bound, the over-
all accuracy order was limited to first-order accuracy. These findings are presented as
Theorems 1 and 2. Examples 1 and 2 represent the test problems, and Figures 1 and 3
depict their solutions. The layer occurred at the interior line x = z and boundary line
x = 1, which is evident from these figures. Figures 2 and 4 represent the convergence of
the numerical solutions, that is, they illustrate that a higher value of N corresponded to a
lower maximum pointwise error.

We evaluated the test problems in terms of their maximum pointwise errors, presented
in Tables 1 and 2. From the tables we see that the computational order of convergence
was almost one, but Theorem 2 showed second-order convergence in space and first-order
convergence in time. This was due to the first-order term in the final result. Our results
demonstrated that the maximum pointwise error stabilized as parameter ε decreased and
decreased as parameter N increased.

It is worth noting that the results for SDFEM for ordinary differential equations,
together with discontinuous source terms, are already available in the literature, as in,
for example, [18], and, for the parabolic PDE without source line, in [3]. However, our
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results in this paper extend SDFEM to a parabolic PDE with a line source term, which is
a significant contribution to the field. The error estimates are presented using the above-
defined norm.

In summary, our study successfully achieved the objective of extending SDFEM to a
parabolic PDE with a line source term. We determined the accuracy order of the spatial
arrangement, evaluated the test problems in terms of their maximum pointwise errors,
and demonstrated the stability of the maximum pointwise error as the parameter ε decreases.
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