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Abstract: In this paper, with the use of newly defined class up and down log–convex fuzzy-number
valued mappings, we offer a few new and original mappings defined by applying some mild
restrictions over the definition of up and down log–convex fuzzy-number valued mapping. With the
use of these mappings, we are able to develop partners of Fejér-type inequalities for up and down
log–convexity, which improve upon certain previously established findings. The discussion also
includes these mappings’ characteristics. Moreover, some nontrivial examples are also provided to
prove the validation of our main results.
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1. Introduction

Convex sets and convex mappings have contributed significantly and fundamentally
to the growth of numerous domains in the pure and practical sciences. Convexity theory
describes a wide range of extremely intriguing breakthroughs, including a connection
between many areas of mathematics, physics, economics, and engineering sciences. Convex
sets, and their numerous extensions and generalizations have been thought about and
investigated recently utilizing novel concepts and methodologies. The concept of invex
mappings was first introduced to mathematical programming by Hanson [1], and it sparked
a lot of interest. Ben-Israel and Mond [2] introduced invex sets and preinvex mappings.
They demonstrated that the differentiable preinvex mappings are invex mappings and that,
under some circumstances, the opposite is also true. Noor [3] showed that variational-
like inequalities describe the minimum of the differentiable preinvex mappings. See [4,5]
and the references therein for further information on preinvex mappings’ applications,
numerical techniques, variational-like inequalities, and other features. The log–convex
mappings are known to yield inequalities more precisely than the convex mappings do. We
also have the idea of exponentially convex (concave) mappings, which is closely related to
log–convex mappings and has its roots in Bernstein [6]. Exponentially preinvex mappings
and their variant forms were introduced, and many aspects of them were covered by Noor
and Noor [7,8]. Big data analysis, machine learning, statistics, and information theory all
heavily rely on exponentially convex mappings. See, for instance, the references in [9–13].

Recent research by Noor et al. [14] investigated the comparable formulation of log–
convex mappings and demonstrated that they have many of the same characteristics
as convex mappings. For instance, the mapping ex is not convex but is a log–convex
mapping. Log–convex mappings, which include hypergeometric mappings such as Gamma
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and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
biconvex mappings were first discussed by Noor and Noor [15], who also looked at
their characterization. It is demonstrated that the bivariational inequalities are a novel
generalization of the variational inequalities that can be used to describe the optimality
conditions of the biconvex mappings.

One of the most well-known inequalities in the theory of convex mappings, the
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a
geometrical meaning and several applications.

One of the most beneficial findings in mathematical analysis is the H-H inequality. It
is also known as the classical equation of the H-H inequality.

The H-H inequality for convex mapping S : K → R on an interval K = [ς,
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of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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intervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of
the interval-valued analysis was to account for the error estimates of finite-state machine
numerical solutions. Interval analysis, which Moore first proposed in his well-known
book [17], is one of the most important methods in numerical analysis. As a result, it has
found applications in a wide range of industries, including computer graphics [18,19],
differential equations for intervals [20], neural network output optimization [21], and
many more.

On the other hand, a number of significant inequalities, including Hermite–Hadamard
and Ostrowski, have recently been investigated for interval-valued mappings. Using
the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. discovered
Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-Flores et al.
established the inequalities of Minkowski and Beckenbach for interval-valued mappings
in [24]. Please refer to [25–28] for the others. However, for more generic set-valued maps,
inequalities were investigated. Sadowska provided the Hermite–Hadamard inequality, for
instance, in [29]. Results related to log–convex fuzzy-number valued mappings see [30–32].
Interested readers can view [33,34] for the other investigations. For more information,
see [35–64] and the references therein.

The article is set up as follows: We discuss log fuzzy-number valued convex mappings
with numerical estimates and related fuzzy Aunnam integral inequalities in Section 3 after
examining the prerequisite material and important details on inequalities and interval-
valued analysis in Section 2. Section 4 then derives Jensen and Schur’s inequalities for
log fuzzy-number valued convex mappings. To decide whether the predefined results
are advantageous, examples and numerical estimations are also taken into consideration.
Section 4 explores a quick conclusion and potential study directions connected to the
findings in this work before we wrap things up.
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2. Preliminaries

This section reloads key findings and terminology necessary for understanding the
core outcomes. Let XC be the space of all closed and bounded intervals of R and
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∗] is referred to as a positive interval. The set of
all positive intervals is denoted by X+

C and defined as

X+
C = {[
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by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 

∗ −
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it is an inclusion interval or up and down (UD) order relation.
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all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)
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Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 

∗] ∈ XC, the Hausdorff–Pompeiu distance between intervals [
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It is a familiar fact that (XC, dH) is a complete metric space [41,44,45].

Definition 1 ([41,42]). A fuzzy subset L ofR+ is distinguished by a mapping
∼
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𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] | < δ;
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only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 
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Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
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 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 
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It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
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(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] ∈ R+, and ∂ ∈ [0, 1]

(4)
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denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
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) > 0
}

is compact. We

appoint ΩC to denote the set of all fuzzy numbers of R+.

Definition 2 ([42]). Given
∼

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 15 
 

 

consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 

∈ ΩC, the level sets or cut sets are given by[∼

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 15 
 

 

consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 

]i
=

{

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 15 
 

 

consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 

∈ R+

∣∣∣∣∼

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 15 
 

 

consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 

(

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 15 
 

 

consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 

) > i
}

for all i ∈ [0, 1] and by
[∼

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 15 
 

 

consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 

]0
=

{

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 15 
 

 

consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 

∈ R+

∣∣∣∣∼

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 15 
 

 

consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 

(

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 15 
 

 

consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 

) > 0
}

.

These sets are known as i-level sets or i-cut sets of
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, for every i ∈ [0, 1],

it is a partial-order or left and right relation.

Proposition 2 ([35]). Let
∼
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, for every i ∈ [0, 1],

it is an up-and-down fuzzy inclusion relation.

Remember the approaching notions which are offered in the literature. If
∼
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These operations follow directly from Equations (4), (6) and (7), respectively.

Theorem 1 ([41]). The space ΩC dealing with a supremum metric i.e., for
∼

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 15 
 

 

consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 

,
∼

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 15 
 

 

consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] ∈ ΩC

d∞

(∼

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 15 
 

 

consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 

,
∼

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 15 
 

 

consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] )
= sup

0≤i≤1
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, (12)

is a complete metric space, where H denotes the well-known Hausdorff metric on space
of intervals.

Now we define and discuss some properties of Riemann integral operators of interval-
and fuzzy-number valued mappings.
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Theorem 2 ([41,43]). If S : [
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convex mappings and demonstrated that they have many of the same characteristics as 
convex mappings. For instance, the mapping ex is not convex but is a log–convex map-
ping. Log–convex mappings, which include hypergeometric mappings such as Gamma 
and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
biconvex mappings were first discussed by Noor and Noor [15], who also looked at their 
characterization. It is demonstrated that the bivariational inequalities are a novel gener-
alization of the variational inequalities that can be used to describe the optimality condi-
tions of the biconvex mappings. 

One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 

The H-H inequality for convex mapping 𝔖: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ⱴ]  
 𝔖 ቀⱴାచଶ ቁ ≤ ଵⱴିచ ׬ 𝔖(𝔵)𝑑𝔵ⱴచ ≤ 𝔖(ⱴ) ା 𝔖(చ)ଶ , (1)

for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
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convex mappings and demonstrated that they have many of the same characteristics as 
convex mappings. For instance, the mapping ex is not convex but is a log–convex map-
ping. Log–convex mappings, which include hypergeometric mappings such as Gamma 
and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
biconvex mappings were first discussed by Noor and Noor [15], who also looked at their 
characterization. It is demonstrated that the bivariational inequalities are a novel gener-
alization of the variational inequalities that can be used to describe the optimality condi-
tions of the biconvex mappings. 

One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 

The H-H inequality for convex mapping 𝔖: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ⱴ]  
 𝔖 ቀⱴାచଶ ቁ ≤ ଵⱴିచ ׬ 𝔖(𝔵)𝑑𝔵ⱴచ ≤ 𝔖(ⱴ) ା 𝔖(చ)ଶ , (1)

for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 

,
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Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 
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consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  
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convex mappings and demonstrated that they have many of the same characteristics as 
convex mappings. For instance, the mapping ex is not convex but is a log–convex map-
ping. Log–convex mappings, which include hypergeometric mappings such as Gamma 
and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
biconvex mappings were first discussed by Noor and Noor [15], who also looked at their 
characterization. It is demonstrated that the bivariational inequalities are a novel gener-
alization of the variational inequalities that can be used to describe the optimality condi-
tions of the biconvex mappings. 

One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 

The H-H inequality for convex mapping 𝔖: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ⱴ]  
 𝔖 ቀⱴାచଶ ቁ ≤ ଵⱴିచ ׬ 𝔖(𝔵)𝑑𝔵ⱴచ ≤ 𝔖(ⱴ) ା 𝔖(చ)ଶ , (1)

for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 
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 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 
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convex mappings and demonstrated that they have many of the same characteristics as 
convex mappings. For instance, the mapping ex is not convex but is a log–convex map-
ping. Log–convex mappings, which include hypergeometric mappings such as Gamma 
and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
biconvex mappings were first discussed by Noor and Noor [15], who also looked at their 
characterization. It is demonstrated that the bivariational inequalities are a novel gener-
alization of the variational inequalities that can be used to describe the optimality condi-
tions of the biconvex mappings. 

One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 

The H-H inequality for convex mapping 𝔖: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ⱴ]  
 𝔖 ቀⱴାచଶ ቁ ≤ ଵⱴିచ ׬ 𝔖(𝔵)𝑑𝔵ⱴచ ≤ 𝔖(ⱴ) ା 𝔖(చ)ଶ , (1)

for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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convex mappings and demonstrated that they have many of the same characteristics as 
convex mappings. For instance, the mapping ex is not convex but is a log–convex map-
ping. Log–convex mappings, which include hypergeometric mappings such as Gamma 
and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
biconvex mappings were first discussed by Noor and Noor [15], who also looked at their 
characterization. It is demonstrated that the bivariational inequalities are a novel gener-
alization of the variational inequalities that can be used to describe the optimality condi-
tions of the biconvex mappings. 

One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 

The H-H inequality for convex mapping 𝔖: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ⱴ]  
 𝔖 ቀⱴାచଶ ቁ ≤ ଵⱴିచ ׬ 𝔖(𝔵)𝑑𝔵ⱴచ ≤ 𝔖(ⱴ) ା 𝔖(చ)ଶ , (1)

for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 
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interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 
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Definition 3 ([43]). Let
∼
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convex mappings and demonstrated that they have many of the same characteristics as 
convex mappings. For instance, the mapping ex is not convex but is a log–convex map-
ping. Log–convex mappings, which include hypergeometric mappings such as Gamma 
and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
biconvex mappings were first discussed by Noor and Noor [15], who also looked at their 
characterization. It is demonstrated that the bivariational inequalities are a novel gener-
alization of the variational inequalities that can be used to describe the optimality condi-
tions of the biconvex mappings. 

One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 

The H-H inequality for convex mapping 𝔖: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ⱴ]  
 𝔖 ቀⱴାచଶ ቁ ≤ ଵⱴିచ ׬ 𝔖(𝔵)𝑑𝔵ⱴచ ≤ 𝔖(ⱴ) ା 𝔖(చ)ଶ , (1)

for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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] ⊂ R→ ΩC is fuzzy number valued mapping (FNVM),
whose parametrized form is given by Si : [c, d] ⊂ R→ KC and defined as
Si(
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only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
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 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 
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convex mappings and demonstrated that they have many of the same characteristics as 
convex mappings. For instance, the mapping ex is not convex but is a log–convex map-
ping. Log–convex mappings, which include hypergeometric mappings such as Gamma 
and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
biconvex mappings were first discussed by Noor and Noor [15], who also looked at their 
characterization. It is demonstrated that the bivariational inequalities are a novel gener-
alization of the variational inequalities that can be used to describe the optimality condi-
tions of the biconvex mappings. 

One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 

The H-H inequality for convex mapping 𝔖: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ⱴ]  
 𝔖 ቀⱴାచଶ ቁ ≤ ଵⱴିచ ׬ 𝔖(𝔵)𝑑𝔵ⱴచ ≤ 𝔖(ⱴ) ା 𝔖(చ)ଶ , (1)

for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 
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of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 
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and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
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fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 
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convex mappings and demonstrated that they have many of the same characteristics as 
convex mappings. For instance, the mapping ex is not convex but is a log–convex map-
ping. Log–convex mappings, which include hypergeometric mappings such as Gamma 
and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
biconvex mappings were first discussed by Noor and Noor [15], who also looked at their 
characterization. It is demonstrated that the bivariational inequalities are a novel gener-
alization of the variational inequalities that can be used to describe the optimality condi-
tions of the biconvex mappings. 

One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 

The H-H inequality for convex mapping 𝔖: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ⱴ]  
 𝔖 ቀⱴାచଶ ቁ ≤ ଵⱴିచ ׬ 𝔖(𝔵)𝑑𝔵ⱴచ ≤ 𝔖(ⱴ) ା 𝔖(చ)ଶ , (1)

for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 

The H-H inequality for convex mapping 𝔖: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ⱴ]  
 𝔖 ቀⱴାచଶ ቁ ≤ ଵⱴିచ ׬ 𝔖(𝔵)𝑑𝔵ⱴచ ≤ 𝔖(ⱴ) ା 𝔖(చ)ଶ , (1)

for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 
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, i) ∈ S(Si)
}

,
(14)

where S(Si) = {S(., i)→ R : S(., i)is integrable and S(
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convex mappings and demonstrated that they have many of the same characteristics as 
convex mappings. For instance, the mapping ex is not convex but is a log–convex map-
ping. Log–convex mappings, which include hypergeometric mappings such as Gamma 
and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
biconvex mappings were first discussed by Noor and Noor [15], who also looked at their 
characterization. It is demonstrated that the bivariational inequalities are a novel gener-
alization of the variational inequalities that can be used to describe the optimality condi-
tions of the biconvex mappings. 

One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 

The H-H inequality for convex mapping 𝔖: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ⱴ]  
 𝔖 ቀⱴାచଶ ቁ ≤ ଵⱴିచ ׬ 𝔖(𝔵)𝑑𝔵ⱴచ ≤ 𝔖(ⱴ) ା 𝔖(చ)ଶ , (1)

for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 
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It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 

∈ ΩC.

Theorem 3 ([26]). Let
∼
S : [
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convex mappings and demonstrated that they have many of the same characteristics as 
convex mappings. For instance, the mapping ex is not convex but is a log–convex map-
ping. Log–convex mappings, which include hypergeometric mappings such as Gamma 
and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
biconvex mappings were first discussed by Noor and Noor [15], who also looked at their 
characterization. It is demonstrated that the bivariational inequalities are a novel gener-
alization of the variational inequalities that can be used to describe the optimality condi-
tions of the biconvex mappings. 

One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 

The H-H inequality for convex mapping 𝔖: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ⱴ]  
 𝔖 ቀⱴାచଶ ቁ ≤ ଵⱴିచ ׬ 𝔖(𝔵)𝑑𝔵ⱴచ ≤ 𝔖(ⱴ) ା 𝔖(చ)ଶ , (1)

for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 
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denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 
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convex mappings and demonstrated that they have many of the same characteristics as 
convex mappings. For instance, the mapping ex is not convex but is a log–convex map-
ping. Log–convex mappings, which include hypergeometric mappings such as Gamma 
and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
biconvex mappings were first discussed by Noor and Noor [15], who also looked at their 
characterization. It is demonstrated that the bivariational inequalities are a novel gener-
alization of the variational inequalities that can be used to describe the optimality condi-
tions of the biconvex mappings. 

One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 

The H-H inequality for convex mapping 𝔖: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ⱴ]  
 𝔖 ቀⱴାచଶ ቁ ≤ ଵⱴିచ ׬ 𝔖(𝔵)𝑑𝔵ⱴచ ≤ 𝔖(ⱴ) ା 𝔖(చ)ଶ , (1)

for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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consideration. Section 4 explores a quick conclusion and potential study directions con-
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core outcomes. 
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It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 
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tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 
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convex mappings and demonstrated that they have many of the same characteristics as 
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and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
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characterization. It is demonstrated that the bivariational inequalities are a novel gener-
alization of the variational inequalities that can be used to describe the optimality condi-
tions of the biconvex mappings. 

One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 
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for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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(15)

for every i ∈ [0, 1].

Definition 4 ([51]). A mapping S : T→ R is referred to as log–convex mapping if

S(v
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, y ∈ T, v ∈ [0, 1], (16)
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) ≥ 0, where T is a convex set. If (16) is inverted, then S is referred to as
log-concave.

Definition 5 ([49]). Let T be a convex set. Then FNVM
∼
S : T→ ΩC is referred to as

convex FNVM on T if

∼
S(v
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Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
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It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
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 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 
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convex mappings and demonstrated that they have many of the same characteristics as 
convex mappings. For instance, the mapping ex is not convex but is a log–convex map-
ping. Log–convex mappings, which include hypergeometric mappings such as Gamma 
and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
biconvex mappings were first discussed by Noor and Noor [15], who also looked at their 
characterization. It is demonstrated that the bivariational inequalities are a novel gener-
alization of the variational inequalities that can be used to describe the optimality condi-
tions of the biconvex mappings. 

One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 

The H-H inequality for convex mapping 𝔖: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ⱴ]  
 𝔖 ቀⱴାచଶ ቁ ≤ ଵⱴିచ ׬ 𝔖(𝔵)𝑑𝔵ⱴచ ≤ 𝔖(ⱴ) ା 𝔖(చ)ଶ , (1)

for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 

,
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valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 

].
∼
S is affine if and only if it is both convex FNVM and concave

FNVM.

Definition 6 ([25]). Let T be a convex set. Then FNVM
∼
S : T→ ΩC is referred to as log

convex FNVM (L-convex FNVM) on T if

∼
S(v
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+ (1− v)y) ≤F
∼
S(
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)
v

⊗
∼
S(y)

(1−v)
, (18)



Mathematics 2023, 11, 2043 6 of 16

for all

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 15 
 

 

consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 

, y ∈ T, v ∈ [0, 1], where
∼
S(
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) ≥F
∼
0. If (18) is inverted, then

∼
S is referred to as

L-concave FNVM on [
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convex mappings and demonstrated that they have many of the same characteristics as 
convex mappings. For instance, the mapping ex is not convex but is a log–convex map-
ping. Log–convex mappings, which include hypergeometric mappings such as Gamma 
and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
biconvex mappings were first discussed by Noor and Noor [15], who also looked at their 
characterization. It is demonstrated that the bivariational inequalities are a novel gener-
alization of the variational inequalities that can be used to describe the optimality condi-
tions of the biconvex mappings. 

One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 

The H-H inequality for convex mapping 𝔖: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ⱴ]  
 𝔖 ቀⱴାచଶ ቁ ≤ ଵⱴିచ ׬ 𝔖(𝔵)𝑑𝔵ⱴచ ≤ 𝔖(ⱴ) ା 𝔖(చ)ଶ , (1)

for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 

,

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 15 
 

 

convex mappings and demonstrated that they have many of the same characteristics as 
convex mappings. For instance, the mapping ex is not convex but is a log–convex map-
ping. Log–convex mappings, which include hypergeometric mappings such as Gamma 
and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
biconvex mappings were first discussed by Noor and Noor [15], who also looked at their 
characterization. It is demonstrated that the bivariational inequalities are a novel gener-
alization of the variational inequalities that can be used to describe the optimality condi-
tions of the biconvex mappings. 

One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 

The H-H inequality for convex mapping 𝔖: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ⱴ]  
 𝔖 ቀⱴାచଶ ቁ ≤ ଵⱴିచ ׬ 𝔖(𝔵)𝑑𝔵ⱴచ ≤ 𝔖(ⱴ) ା 𝔖(చ)ଶ , (1)

for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 

].
∼
S is L-affine if and only if it is both L-convex FNVM and

L-concave FNVM.

Definition 7. Let T be a convex set. Then FNVM
∼
S : T→ ΩC is referred to as up and

down log convex FNVM (UDL-convex FNVM) on T if

∼
S(v
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consideration. Section 4 explores a quick conclusion and potential study directions con-
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(3) Ʌ෩ should be fuzzy convex that is 
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+ (1− v)y) ⊇F
∼
S(
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)
v

⊗
∼
S(y)

(1−v)
, (19)

for all
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, y ∈ T, v ∈ [0, 1], where
∼
S(
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) ≥F
∼
0. If (19) is inverted, then

∼
S is referred to as

UDL-concave FNVM on [
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convex mappings and demonstrated that they have many of the same characteristics as 
convex mappings. For instance, the mapping ex is not convex but is a log–convex map-
ping. Log–convex mappings, which include hypergeometric mappings such as Gamma 
and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
biconvex mappings were first discussed by Noor and Noor [15], who also looked at their 
characterization. It is demonstrated that the bivariational inequalities are a novel gener-
alization of the variational inequalities that can be used to describe the optimality condi-
tions of the biconvex mappings. 

One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 
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for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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].
∼
S is UDL-affine if and only if it is both UDL-convex

FNVM and UDL-concave FNVM.

Remark 2. If
∼
S is UDL-convex FNVM, then g

∼
S is also UDL-convex FNVM for g ≥ 0.

If
∼
S and

∼
J both are UDL-convex FNVMs, then max

(∼
S(
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∼
J (

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 15 
 

 

consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 

)

)
is also UDL-

convex FNVM.

Theorem 4. Let T be a convex set and
∼
S : T→ ΩC be a FNVM with

∼
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parametrized form is given by Si : T ⊂ R→ K+
C ⊂ KC and defined as

Si(
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S is UDL-convex on T, if and only if, for all

i ∈ (0, 1], S*(
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denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
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(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 
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, y ∈ T and v ∈ [0, 1], we have

∼
S(v
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+ (1− v)y) ⊇F
∼
S(
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)
v

⊗
∼
S(y)

(1−v)
. (21)

Therefore, from (20) and Proposition 2, we have
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Example 1. We consider the ℱN𝒱ℳ 𝔖෩: [1, 8] → Ωେ established by, 

𝔖෩(ϣ)(𝚜) =
⎩⎪⎪
⎨⎪
⎪⎧ 𝚜 − eଵϣ92  − eଵϣ     𝚜 ∈ ൤eଵϣ, 92൨ ;

10ϣ − 𝚜10ϣ − 92  𝚜 ∈ ൬92 , 10ϣ൨ ; 0    otherwise.
 (23)

Then, for each i ∈ (0, 1], we have 𝔖i(ϣ) = ൤(1 − i)eభϣ + ଽ2 i, 10(1 − i)ϣ + ଽ2 i൨. Since end-
point mappings 𝔖∗(ϣ, i), 𝔖∗(ϣ, i) are ℒ-convex and ℒ-concave mappings for each i ∈(0, 1], respectively, then by Theorem 4, 𝔖෩(ϣ) is U𝒟ℒ-convex ℱN𝒱ℳ.  

Remark 3. If 𝔖∗(ϣ, i) = 𝔖∗(ϣ, i) with i = 1, then U𝒟ℒ-convex ℱN𝒱ℳ becomes classical U𝒟ℒ-convex mapping [3]. 

3. Main Results 
This section summarizes the study’s principal findings. There are two subsections in 

this section. In the opening subsection, we present very fuzzy Aunnam integrals that are 
critical for estimating the Hermite–Hadamard (H-H) type inequality’s inaccuracy for 𝑈𝒟ℒ-convex ℱ𝑁𝒱ℳ. In the second subsection, we find the results related to Jensen’s and 
Schur’s inequalities. Moreover, some exceptional cases are also acquired. 

3.1. Hermite–Hadamard Type Inequalities 
Theorem 5. Let 𝔖෩: [ϛ, ⱴ] → Ωେ  be a U𝒟ℒ -convex ℱN𝒱ℳ , whose parametrized form is 
given by 𝔖୧: [ϛ, ⱴ] ⊂ ℝ → 𝒦ୋ and provided as 𝔖୧(ϣ) = [𝔖∗(ϣ, i), 𝔖∗(ϣ, i)] for all ϣ ∈ [ϛ, ⱴ] 
and for all i ∈ (0, 1]. If 𝔖෩ ∈ ℱ𝒜([ϛ,ⱴ],୧), then 

  𝔖෩ ቀϛାⱴଶ ቁ ⊇𝔽 exp ቂ ଵⱴିϛ ⊙ (FA) ׬ ln𝔖෩(ϣ)dϣⱴϛ ቃ ⊇𝔽 ඥ𝔖෩(ϛ) ⊗ 𝔖෩(ⱴ). (24)

If 𝔖෩  is U𝒟ℒ-concave, then (24) is inverted. 

Proof. Let 𝔖෩: [ϛ, ⱴ] → Ω஼, 𝑈𝒟ℒ-convex ℱ𝑁𝒱ℳ. Then, by hypothesis, we have 𝔖෩ ൬ϛ + ⱴ2 ൰ ⊇𝔽 ൣ𝔖෩(𝔳ϛ + (1 − 𝔳)ⱴ)൧ଵଶ ⊗ ൣ𝔖෩൫(1 − 𝔳)ϛ + 𝔳ⱴ൯൧ଵଶ. 
Therefore, for every 𝑖 ∈ (0, 1], we have 

It follows that S*(v
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Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 
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(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
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from the (19), it follows that
∼
S(

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 15 
 

 

consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 

) is UDL-convex FNVM. �

Example 1. We consider the FNVM
∼
S : [1, 8]→ ΩC established by,

∼
S(
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0 otherwise.
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, i) with i = 1, then UDL-convexFNVM becomes classical
UDL-convex mapping [3].

3. Main Results

This section summarizes the study’s principal findings. There are two subsections
in this section. In the opening subsection, we present very fuzzy Aunnam integrals that
are critical for estimating the Hermite–Hadamard (H-H) type inequality’s inaccuracy for
UDL-convex FNVM. In the second subsection, we find the results related to Jensen’s and
Schur’s inequalities. Moreover, some exceptional cases are also acquired.

3.1. Hermite–Hadamard Type Inequalities

Theorem 5.
∼
S : [
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convex mappings and demonstrated that they have many of the same characteristics as 
convex mappings. For instance, the mapping ex is not convex but is a log–convex map-
ping. Log–convex mappings, which include hypergeometric mappings such as Gamma 
and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
biconvex mappings were first discussed by Noor and Noor [15], who also looked at their 
characterization. It is demonstrated that the bivariational inequalities are a novel gener-
alization of the variational inequalities that can be used to describe the optimality condi-
tions of the biconvex mappings. 

One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 

The H-H inequality for convex mapping 𝔖: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ⱴ]  
 𝔖 ቀⱴାచଶ ቁ ≤ ଵⱴିచ ׬ 𝔖(𝔵)𝑑𝔵ⱴచ ≤ 𝔖(ⱴ) ା 𝔖(చ)ଶ , (1)

for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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convex mappings and demonstrated that they have many of the same characteristics as 
convex mappings. For instance, the mapping ex is not convex but is a log–convex map-
ping. Log–convex mappings, which include hypergeometric mappings such as Gamma 
and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
biconvex mappings were first discussed by Noor and Noor [15], who also looked at their 
characterization. It is demonstrated that the bivariational inequalities are a novel gener-
alization of the variational inequalities that can be used to describe the optimality condi-
tions of the biconvex mappings. 

One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 

The H-H inequality for convex mapping 𝔖: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ⱴ]  
 𝔖 ቀⱴାచଶ ቁ ≤ ଵⱴିచ ׬ 𝔖(𝔵)𝑑𝔵ⱴచ ≤ 𝔖(ⱴ) ା 𝔖(చ)ଶ , (1)

for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 

,
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and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 
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convex mappings and demonstrated that they have many of the same characteristics as 
convex mappings. For instance, the mapping ex is not convex but is a log–convex map-
ping. Log–convex mappings, which include hypergeometric mappings such as Gamma 
and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
biconvex mappings were first discussed by Noor and Noor [15], who also looked at their 
characterization. It is demonstrated that the bivariational inequalities are a novel gener-
alization of the variational inequalities that can be used to describe the optimality condi-
tions of the biconvex mappings. 

One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 

The H-H inequality for convex mapping 𝔖: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ⱴ]  
 𝔖 ቀⱴାచଶ ቁ ≤ ଵⱴିచ ׬ 𝔖(𝔵)𝑑𝔵ⱴచ ≤ 𝔖(ⱴ) ା 𝔖(చ)ଶ , (1)

for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
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interval variables as opposed to point variables and expresses computation results as in-
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book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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Hadamard and Ostrowski, have recently been investigated for interval-valued map-
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Taking logarithms on both sides of (25), then we obtain
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consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 
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book [17], is one of the most important methods in numerical analysis. As a result, it has 
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On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 
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consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 
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)
,
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convex mappings and demonstrated that they have many of the same characteristics as 
convex mappings. For instance, the mapping ex is not convex but is a log–convex map-
ping. Log–convex mappings, which include hypergeometric mappings such as Gamma 
and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
biconvex mappings were first discussed by Noor and Noor [15], who also looked at their 
characterization. It is demonstrated that the bivariational inequalities are a novel gener-
alization of the variational inequalities that can be used to describe the optimality condi-
tions of the biconvex mappings. 

One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 

The H-H inequality for convex mapping 𝔖: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ⱴ]  
 𝔖 ቀⱴାచଶ ቁ ≤ ଵⱴିచ ׬ 𝔖(𝔵)𝑑𝔵ⱴచ ≤ 𝔖(ⱴ) ା 𝔖(చ)ଶ , (1)

for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
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It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 
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convex mappings and demonstrated that they have many of the same characteristics as 
convex mappings. For instance, the mapping ex is not convex but is a log–convex map-
ping. Log–convex mappings, which include hypergeometric mappings such as Gamma 
and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
biconvex mappings were first discussed by Noor and Noor [15], who also looked at their 
characterization. It is demonstrated that the bivariational inequalities are a novel gener-
alization of the variational inequalities that can be used to describe the optimality condi-
tions of the biconvex mappings. 

One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 

The H-H inequality for convex mapping 𝔖: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ⱴ]  
 𝔖 ቀⱴାచଶ ቁ ≤ ଵⱴିచ ׬ 𝔖(𝔵)𝑑𝔵ⱴచ ≤ 𝔖(ⱴ) ା 𝔖(చ)ଶ , (1)

for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 
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book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
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Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
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pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
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and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
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𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 
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geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 

The H-H inequality for convex mapping 𝔖: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ⱴ]  
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for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 
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. (26)

In a similar way as above, we have
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The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 
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It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 
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convex mappings and demonstrated that they have many of the same characteristics as 
convex mappings. For instance, the mapping ex is not convex but is a log–convex map-
ping. Log–convex mappings, which include hypergeometric mappings such as Gamma 
and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
biconvex mappings were first discussed by Noor and Noor [15], who also looked at their 
characterization. It is demonstrated that the bivariational inequalities are a novel gener-
alization of the variational inequalities that can be used to describe the optimality condi-
tions of the biconvex mappings. 

One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 

The H-H inequality for convex mapping 𝔖: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ⱴ]  
 𝔖 ቀⱴାచଶ ቁ ≤ ଵⱴିచ ׬ 𝔖(𝔵)𝑑𝔵ⱴచ ≤ 𝔖(ⱴ) ା 𝔖(చ)ଶ , (1)

for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 
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found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 
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convex mappings and demonstrated that they have many of the same characteristics as 
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for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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Here, we achieve H-H Fejér type inequality for UDL-convex FNVM To obtain H-H
Fejér inequality for UDL-convex FNVM. Initially, we find the right part of H-H Fejér
inequality. In the next Theorem 5, we will acquire the left part of H-H Fejér inequality.

Theorem 6. Let
∼
S : [
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qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 
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It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 

) ≥ 0, symmetric
with respect to
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cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 

)
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fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 
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convex mappings and demonstrated that they have many of the same characteristics as 
convex mappings. For instance, the mapping ex is not convex but is a log–convex map-
ping. Log–convex mappings, which include hypergeometric mappings such as Gamma 
and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
biconvex mappings were first discussed by Noor and Noor [15], who also looked at their 
characterization. It is demonstrated that the bivariational inequalities are a novel gener-
alization of the variational inequalities that can be used to describe the optimality condi-
tions of the biconvex mappings. 

One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 

The H-H inequality for convex mapping 𝔖: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ⱴ]  
 𝔖 ቀⱴାచଶ ቁ ≤ ଵⱴିచ ׬ 𝔖(𝔵)𝑑𝔵ⱴచ ≤ 𝔖(ⱴ) ା 𝔖(చ)ଶ , (1)

for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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׬    [𝑙𝑛 𝔖∗(𝔳ϛ + (1 − 𝔳)ⱴ, 𝑖)]𝔔(𝔳ϛ + (1 − 𝔳)ⱴ)ଵ଴ 𝑑𝔳              = ׬ ൣ𝑙𝑛 𝔖∗൫(1 − 𝔳)ϛ + 𝔳ⱴ, 𝑖൯൧𝔔൫(1 − 𝔳)ϛ + 𝔳ⱴ൯ଵ଴ 𝑑𝔳  = ଵⱴିϛ ׬ [𝑙𝑛 𝔖∗(ϣ, 𝑖)]𝔔(ϣ)𝑑ϣ,ⱴϛ ׬                  ൣ𝑙𝑛 𝔖∗൫(1 − 𝔳)ϛ + 𝔳ⱴ, 𝑖൯൧𝔔൫(1 − 𝔳)ϛ + 𝔳ⱴ൯ଵ଴ 𝑑𝔳            = ׬ [𝑙𝑛 𝔖∗(𝔳ϛ + (1 − 𝔳)ⱴ, 𝑖)]𝔔(𝔳ϛ + (1 − 𝔳)ⱴ)ଵ଴ 𝑑𝔳= ଵⱴିϛ ׬ [𝑙𝑛 𝔖∗(ϣ, 𝑖)]𝔔(ϣ)𝑑ϣⱴϛ .               
 (32)

From (31) and (32), we have From (31) and (32), we have
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Theorem 7. Let 𝔖෩: [ϛ, ⱴ] → Ωେ be a U𝒟ℒ-convex ℱN𝒱ℳ with ϛ < ⱴ, whose parametrized 
form is given by 𝔖୧: [ϛ, ⱴ] ⊂ ℝ → 𝒦ୋ and provided as 𝔖୧(ϣ) = [𝔖∗(ϣ, i), 𝔖∗(ϣ, i)] for all ϣ ∈ [ϛ, ⱴ]  and for all i ∈ (0, 1] . If 𝔖෩ ∈ ℱ𝒜([ϛ,ⱴ],୧)  and 𝔔: [ϛ, ⱴ] → ℝ, 𝔔(ϣ) ≥ 0,  symmetric 
with respect to ϛାⱴଶ , and ׬ 𝔔(ϣ)dϣ > 0ⱴϛ , then 

 𝑙𝑛𝔖෩ ቀϛାⱴଶ ቁ ⊇𝔽 ଵ׬ 𝔔(ϣ)ௗϣⱴϛ ⊙ (𝐹𝐴) ׬ ൣ𝑙𝑛𝔖෩(ϣ)൧𝔔(ϣ)𝑑ϣⱴϛ . (33)

If 𝔖෩  is a U𝒟ℒ-concave, then (33) is inverted. 

Proof. Since 𝔖 is a 𝑈𝒟ℒ-convex then, for 𝑖 ∈ (0, 1] we have 
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By multiplying (34) by 𝔔൫(1 − 𝔳)ϛ + 𝔳ⱴ൯ = 𝔔(𝔳ϛ + (1 − 𝔳)ⱴ) and integrate it by 𝔳 over [0, 1], we obtain 
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 (35)

Since 

This concludes the proof. �
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Now, we present the following solution for UDL-convex FNVM utilizing up and
down fuzzy inclusion relation, which is associated with the left portion classical H-H Fejér
type inequality.

Mathematics 2023, 11, x FOR PEER REVIEW 9 of 15 
 

 

  1ⱴ − ϛ න [𝑙𝑛 𝔖∗(ϣ, 𝑖)]𝔔(ϣ)𝑑ϣⱴϛ ≤ 𝑙𝑛[𝔖∗(ϛ, 𝑖) × 𝔖∗(ⱴ, 𝑖)] න 𝔳𝔔൫(1 − 𝔳)ϛ + 𝔳ⱴ൯ଵ
଴ 𝑑𝔳,1ⱴ − ϛ න ൣ𝑙𝑛 𝔖∗(ϣ, 𝑖)൧𝔔(ϣ)𝑑ϣⱴϛ ≥ 𝑙𝑛ൣ𝔖∗(ϛ, 𝑖) × 𝔖∗(ⱴ, 𝑖)൧ න 𝔳𝔔൫(1 − 𝔳)ϛ + 𝔳ⱴ൯ଵ
଴ 𝑑𝔳, 

that is ቂ ଵⱴିϛ ׬ [𝑙𝑛 𝔖∗(ϣ, 𝑖)]𝔔(ϣ)𝑑ϣⱴϛ , ଵⱴି ϛ ׬ [𝑙𝑛 𝔖∗(ϣ, 𝑖)]𝔔(ϣ)𝑑ϣⱴϛ ቃ  ⊇ூ ൣ𝑙𝑛 [𝔖∗(ϛ, 𝑖) × 𝔖∗(ⱴ, 𝑖)], 𝑙𝑛 [𝔖∗(ϛ, 𝑖) × 𝔖∗(ⱴ, 𝑖)]൧ ׬ 𝔳𝔔൫(1 − 𝔳)ϛ + 𝔳ⱴ൯ଵ଴ 𝑑𝔳,   
Hence 

 ଵⱴିϛ ⊙ (𝐹𝐴) ׬ ൣ𝑙𝑛𝔖෩(ϣ)൧𝔔(ϣ)𝑑ϣⱴϛ ⊇𝔽 𝑙𝑛ൣ𝔖෩(ϛ) ⊗ 𝔖෩(ⱴ)൧ ⊙ ׬ 𝔳𝔔൫(1 − 𝔳)ϛ + 𝔳ⱴ൯𝑑𝔳ଵ଴ . 
This concludes the proof. □ 

Now, we present the following solution for 𝑈𝒟ℒ-convex ℱ𝑁𝒱ℳ utilizing up and 
down fuzzy inclusion relation, which is associated with the left portion classical H-H 
Fejér type inequality. 

Theorem 7. Let 𝔖෩: [ϛ, ⱴ] → Ωେ be a U𝒟ℒ-convex ℱN𝒱ℳ with ϛ < ⱴ, whose parametrized 
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Then we complete the proof. □ 
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provided as 𝔖୧(ϣ) = [𝔖∗(ϣ, i), 𝔖∗(ϣ, i)] for all ϣ ∈ [ϛ, ⱴ] and for all i ∈ (0, 1]. Then 

 𝔖෩ ቀ ଵௐ𝓀 ∑ 𝑖𝒾𝓀𝒾ୀଵ ϣ𝒾ቁ ⊇𝔽 ∏ ൣ𝔖෩(ϣ𝒾)൧ ೔𝒾ೈ𝓀𝓀𝒾ୀଵ , (37)

where W𝓀 = ∑ i𝒾𝓀𝒾=ଵ . If 𝔖෩  is U𝒟ℒ-concave, then (37) is inverted. 

Proof. When 𝓀 = 2, then (37) holds. Consider (37) also holds for 𝓀 = 𝓇 − 1, then 

 𝔖෩ ቀ ଵ𝑊𝓇−భ ∑ 𝑖𝒾𝓇−ଵ𝒾=ଵ ϣ𝒾ቁ ⊇𝔽 ∏ ൣ𝔖෩൫ϣ𝒾൯൧ 𝑖𝒾𝑊𝓇−భ𝓇−ଵ𝒾=ଵ  

Now, let us prove that (37) holds for 𝓀 = 𝓇, we have 

 𝔖෩ ቀ ଵௐ𝓇 ∑ 𝑖𝒾𝓇𝒾ୀଵ ϣ𝒾ቁ = 𝔖෩ ቀௐ𝓇షమௐ𝓇 ଵௐ𝓇షమ ∑ 𝑖𝒾𝓇ିଶ𝒾ୀଵ ϣ𝒾 ⊕ ௜𝓇షభା௜𝓇ௐ𝓇 ( ௜𝓇షభ௜𝓇షభା௜𝓇 ϣ𝓇ିଵ + ௜𝓇௜𝓇షభା௜𝓇 ϣ𝓇ቁ. 
Therefore, for every 𝑖 ∈ (0, 1], we have 
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convex mappings and demonstrated that they have many of the same characteristics as 
convex mappings. For instance, the mapping ex is not convex but is a log–convex map-
ping. Log–convex mappings, which include hypergeometric mappings such as Gamma 
and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
biconvex mappings were first discussed by Noor and Noor [15], who also looked at their 
characterization. It is demonstrated that the bivariational inequalities are a novel gener-
alization of the variational inequalities that can be used to describe the optimality condi-
tions of the biconvex mappings. 

One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 

The H-H inequality for convex mapping 𝔖: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ⱴ]  
 𝔖 ቀⱴାచଶ ቁ ≤ ଵⱴିచ ׬ 𝔖(𝔵)𝑑𝔵ⱴచ ≤ 𝔖(ⱴ) ା 𝔖(చ)ଶ , (1)

for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 

)d
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Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
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� (FA)
∫

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 15 
 

 

convex mappings and demonstrated that they have many of the same characteristics as 
convex mappings. For instance, the mapping ex is not convex but is a log–convex map-
ping. Log–convex mappings, which include hypergeometric mappings such as Gamma 
and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
biconvex mappings were first discussed by Noor and Noor [15], who also looked at their 
characterization. It is demonstrated that the bivariational inequalities are a novel gener-
alization of the variational inequalities that can be used to describe the optimality condi-
tions of the biconvex mappings. 

One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 

The H-H inequality for convex mapping 𝔖: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ⱴ]  
 𝔖 ቀⱴାచଶ ቁ ≤ ଵⱴିచ ׬ 𝔖(𝔵)𝑑𝔵ⱴచ ≤ 𝔖(ⱴ) ା 𝔖(చ)ଶ , (1)

for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 

)

]
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.

Then we complete the proof. �
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From (35) and (36), we have 
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From which, we have 

 

  ቂ𝑙𝑛 𝔖∗ ቀϛ+ⱴଶ , 𝑖ቁ , 𝑙𝑛 𝔖∗ ቀϛ+ⱴଶ , 𝑖ቁቃ                                           ⊇𝐼 ଵ׬ 𝔔(ϣ)𝑑ϣⱴϛ ቂ׬ [𝑙𝑛 𝔖∗(ϣ, 𝑖)]𝔔(ϣ)𝑑ϣⱴϛ , ׬ ൣ𝑙𝑛 𝔖∗(ϣ, 𝑖)൧𝔔(ϣ)𝑑ϣⱴϛ ቃ ,               

that is 

 𝑙𝑛𝔖෩ ቀϛାⱴ2 ቁ ⊇𝔽 ׬1 𝔔(ϣ)ௗϣⱴϛ ⊙ (𝐹𝐴) ׬ [𝑙𝑛𝔖෩(ϣ)]𝔔(ϣ)𝑑ϣⱴϛ . 
Then we complete the proof. □ 

Remark 5. If 𝔖∗(ϛ, i) = 𝔖∗(ϛ, i) with i = 1, then from (30) and (35), the classical H-H Fejér 
inequality for ℒ-convex mapping can be acquired. 

3.2. Jensen’s and Schur’s Inequalities for Log Convex Fuzzy-Number Valued Mappings 
Here, we will prove Jensen’s and Schur’s inequality for 𝑈𝒟ℒ-convex ℱ𝑁𝒱ℳs. 

Theorem 8. Let i𝒾 ∈ ℝା , ϣ𝒾 ∈ [ϛ, ⱴ],  (𝒾 = 1, 2, 3, … , 𝓀, 𝓀 ≥ 2)  and 𝔖෩: [ϛ, ⱴ] → Ωେ  be a U𝒟ℒ-convex ℱN𝒱ℳ , whose parametrized form is given by 𝔖୧: [ϛ, ⱴ] ⊂ ℝ → 𝒦ୋ  and 
provided as 𝔖୧(ϣ) = [𝔖∗(ϣ, i), 𝔖∗(ϣ, i)] for all ϣ ∈ [ϛ, ⱴ] and for all i ∈ (0, 1]. Then 

 𝔖෩ ቀ ଵௐ𝓀 ∑ 𝑖𝒾𝓀𝒾ୀଵ ϣ𝒾ቁ ⊇𝔽 ∏ ൣ𝔖෩(ϣ𝒾)൧ ೔𝒾ೈ𝓀𝓀𝒾ୀଵ , (37)

where W𝓀 = ∑ i𝒾𝓀𝒾=ଵ . If 𝔖෩  is U𝒟ℒ-concave, then (37) is inverted. 

Proof. When 𝓀 = 2, then (37) holds. Consider (37) also holds for 𝓀 = 𝓇 − 1, then 

 𝔖෩ ቀ ଵ𝑊𝓇−భ ∑ 𝑖𝒾𝓇−ଵ𝒾=ଵ ϣ𝒾ቁ ⊇𝔽 ∏ ൣ𝔖෩൫ϣ𝒾൯൧ 𝑖𝒾𝑊𝓇−భ𝓇−ଵ𝒾=ଵ  

Now, let us prove that (37) holds for 𝓀 = 𝓇, we have 

 𝔖෩ ቀ ଵௐ𝓇 ∑ 𝑖𝒾𝓇𝒾ୀଵ ϣ𝒾ቁ = 𝔖෩ ቀௐ𝓇షమௐ𝓇 ଵௐ𝓇షమ ∑ 𝑖𝒾𝓇ିଶ𝒾ୀଵ ϣ𝒾 ⊕ ௜𝓇షభା௜𝓇ௐ𝓇 ( ௜𝓇షభ௜𝓇షభା௜𝓇 ϣ𝓇ିଵ + ௜𝓇௜𝓇షభା௜𝓇 ϣ𝓇ቁ. 
Therefore, for every 𝑖 ∈ (0, 1], we have 
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and the result follows. □ 

If 𝑖ଵ = 𝑖ଶ = 𝑖ଷ = ⋯ = 𝑖𝓀 = 1, then Theorem 8 reduces to the following result: 

Corollary 1. Let ϣ𝒾 ∈ [ϛ, ⱴ],  (𝒾 = 1, 2, 3, … , 𝓀, 𝓀 ≥ 2)  and 𝔖෩: [ϛ, ⱴ] → Ωେ  be a U𝒟ℒ -convex ℱN𝒱ℳ , whose parametrized form is given by 𝔖୧: [ϛ, ⱴ] ⊂ ℝ → 𝒦ୋ  and defined as 𝔖୧(ϣ) = [𝔖∗(ϣ, i), 𝔖∗(ϣ, i)] for all ϣ ∈ [ϛ, ⱴ] and for all i ∈ (0, 1]. Then, 

 𝔖෩ ቀଵ𝓀 ∑ ϣ𝒾𝓀𝒾ୀଵ ቁ ⊇𝔽 ∏ ൣ𝔖෩(ϣ𝒾)൧భ𝓀𝓀𝒾ୀଵ  (38)

If 𝔖෩  is a U𝒟ℒ-concave, then (38) is inverted. 

Now in upcoming results, with the help of 𝑈𝒟ℒ-convex ℱ𝑁𝒱ℳs, we will prove 
Schur’s inequality and its generalized form. 

Theorem 9. Let 𝔖෩: [ϛ, ⱴ] → Ωେ  be a ℱN𝒱ℳ , whose parametrized form is given by 𝔖୧: [ϛ, ⱴ] ⊂ ℝ → 𝒦ୋ and provided as 𝔖୧(ϣ) = [𝔖∗(ϣ, i), 𝔖∗(ϣ, i)] for all ϣ ∈ [ϛ, ⱴ] and for 
all i ∈ (0, 1]. If 𝔖෩  be a U𝒟ℒ-convex ℱN𝒱ℳ then, for ϣଵ, ϣଶ, ϣଷ ∈ [ϛ, ⱴ], ϣଵ <  ϣଶ < ϣଷ such 
that ϣଷ − ϣଵ, ϣଷ − ϣଶ, ϣଶ − ϣଵ ∈ [0, 1], we have 

 𝔖෩(ϣଶ)(ϣయିϣభ) ⊇𝔽 𝔖෩(ϣଵ)ϣయିϣమ ⊗ 𝔖෩(ϣଷ)ϣమିϣభ (39)

If 𝔖෩  is a U𝒟ℒ-concave, then (39) is inverted. 

Proof. Let ϣଵ, ϣଶ, ϣଷ ∈ [ϛ, ⱴ]  and ϣଷ − ϣଵ > 0.  Taking 𝜆 = ϣయିϣమϣయିϣభ , then ϣଶ = 𝜆ϣଵ + (1 − 𝜆)ϣଷ. Since 𝔖෩  is a 𝑈𝒟ℒ-convex ℱ𝑁𝒱ℳ then, by hypothesis, we have 

 𝔖∗(ϣଶ, 𝑖) ≤ [𝔖∗(ϣଵ, 𝑖)]ϣయషϣమϣయషϣభ[𝔖∗(ϣଷ, 𝑖)]  ϣమషϣభϣయషϣభ,𝔖∗(ϣଶ, 𝑖) ≥ [𝔖∗(ϣଵ, 𝑖)]ϣయషϣమϣయషϣభ[𝔖∗(ϣଷ, 𝑖)]ϣమషϣభϣయషϣభ. (40)

Taking “log” on both sides of (40), we have 
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If 𝔖෩  is a U𝒟ℒ-concave, then (38) is inverted. 

Now in upcoming results, with the help of 𝑈𝒟ℒ-convex ℱ𝑁𝒱ℳs, we will prove 
Schur’s inequality and its generalized form. 

Theorem 9. Let 𝔖෩: [ϛ, ⱴ] → Ωେ  be a ℱN𝒱ℳ , whose parametrized form is given by 𝔖୧: [ϛ, ⱴ] ⊂ ℝ → 𝒦ୋ and provided as 𝔖୧(ϣ) = [𝔖∗(ϣ, i), 𝔖∗(ϣ, i)] for all ϣ ∈ [ϛ, ⱴ] and for 
all i ∈ (0, 1]. If 𝔖෩  be a U𝒟ℒ-convex ℱN𝒱ℳ then, for ϣଵ, ϣଶ, ϣଷ ∈ [ϛ, ⱴ], ϣଵ <  ϣଶ < ϣଷ such 
that ϣଷ − ϣଵ, ϣଷ − ϣଶ, ϣଶ − ϣଵ ∈ [0, 1], we have 

 𝔖෩(ϣଶ)(ϣయିϣభ) ⊇𝔽 𝔖෩(ϣଵ)ϣయିϣమ ⊗ 𝔖෩(ϣଷ)ϣమିϣభ (39)

If 𝔖෩  is a U𝒟ℒ-concave, then (39) is inverted. 

Proof. Let ϣଵ, ϣଶ, ϣଷ ∈ [ϛ, ⱴ]  and ϣଷ − ϣଵ > 0.  Taking 𝜆 = ϣయିϣమϣయିϣభ , then ϣଶ = 𝜆ϣଵ + (1 − 𝜆)ϣଷ. Since 𝔖෩  is a 𝑈𝒟ℒ-convex ℱ𝑁𝒱ℳ then, by hypothesis, we have 
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Taking “log” on both sides of (40), we have 

and the result follows. �
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Now in upcoming results, with the help of 𝑈𝒟ℒ-convex ℱ𝑁𝒱ℳs, we will prove 
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Taking “log” on both sides of (40), we have 
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∼
S is a UDL-concave, then (38) is inverted.

Now in upcoming results, with the help of UDL-convex FNVMs, we will prove
Schur’s inequality and its generalized form.

Theorem 9. Let
∼
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convex mappings and demonstrated that they have many of the same characteristics as 
convex mappings. For instance, the mapping ex is not convex but is a log–convex map-
ping. Log–convex mappings, which include hypergeometric mappings such as Gamma 
and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
biconvex mappings were first discussed by Noor and Noor [15], who also looked at their 
characterization. It is demonstrated that the bivariational inequalities are a novel gener-
alization of the variational inequalities that can be used to describe the optimality condi-
tions of the biconvex mappings. 

One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 

The H-H inequality for convex mapping 𝔖: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ⱴ]  
 𝔖 ቀⱴାచଶ ቁ ≤ ଵⱴିచ ׬ 𝔖(𝔵)𝑑𝔵ⱴచ ≤ 𝔖(ⱴ) ା 𝔖(చ)ଶ , (1)

for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 

) =
[
S*(
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Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
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Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
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convex mappings and demonstrated that they have many of the same characteristics as 
convex mappings. For instance, the mapping ex is not convex but is a log–convex map-
ping. Log–convex mappings, which include hypergeometric mappings such as Gamma 
and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
biconvex mappings were first discussed by Noor and Noor [15], who also looked at their 
characterization. It is demonstrated that the bivariational inequalities are a novel gener-
alization of the variational inequalities that can be used to describe the optimality condi-
tions of the biconvex mappings. 

One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 

The H-H inequality for convex mapping 𝔖: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ⱴ]  
 𝔖 ቀⱴାచଶ ቁ ≤ ଵⱴିచ ׬ 𝔖(𝔵)𝑑𝔵ⱴచ ≤ 𝔖(ⱴ) ା 𝔖(చ)ଶ , (1)

for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 

,
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Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 
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convex mappings and demonstrated that they have many of the same characteristics as 
convex mappings. For instance, the mapping ex is not convex but is a log–convex map-
ping. Log–convex mappings, which include hypergeometric mappings such as Gamma 
and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
biconvex mappings were first discussed by Noor and Noor [15], who also looked at their 
characterization. It is demonstrated that the bivariational inequalities are a novel gener-
alization of the variational inequalities that can be used to describe the optimality condi-
tions of the biconvex mappings. 

One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 

The H-H inequality for convex mapping 𝔖: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ⱴ]  
 𝔖 ቀⱴାచଶ ቁ ≤ ଵⱴିచ ׬ 𝔖(𝔵)𝑑𝔵ⱴచ ≤ 𝔖(ⱴ) ା 𝔖(చ)ଶ , (1)

for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
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(39)

If
∼
S is a UDL-concave, then (39) is inverted.
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convex mappings and demonstrated that they have many of the same characteristics as 
convex mappings. For instance, the mapping ex is not convex but is a log–convex map-
ping. Log–convex mappings, which include hypergeometric mappings such as Gamma 
and Beta, are crucial in a number of fields of pure and practical sciences. Strongly log-
biconvex mappings were first discussed by Noor and Noor [15], who also looked at their 
characterization. It is demonstrated that the bivariational inequalities are a novel gener-
alization of the variational inequalities that can be used to describe the optimality condi-
tions of the biconvex mappings. 

One of the most well-known inequalities in the theory of convex mappings, the 
Hermite–Hadamard inequality, was found by C. Hermite and J. Hadamard [16]. It has a 
geometrical meaning and several applications. 

One of the most beneficial findings in mathematical analysis is the H-H inequality. 
It is also known as the classical equation of the H-H inequality. 

The H-H inequality for convex mapping 𝔖: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ⱴ]  
 𝔖 ቀⱴାచଶ ቁ ≤ ଵⱴିచ ׬ 𝔖(𝔵)𝑑𝔵ⱴచ ≤ 𝔖(ⱴ) ା 𝔖(చ)ଶ , (1)

for  ⱴ, 𝜍 ∈ 𝐾. 
We point out that the Hermite–Hadamard inequality is a straightforward extension 

of Jensen’s inequality and may be thought of as a refinement of the idea of convexity. Re-
cent years have seen a resurgence in interest in the Hermite–Hadamard inequality for 
convex mappings, and a stunning array of improvements and generalizations have been 
investigated. 

Interval analysis is a subset of set-valued analysis, which is the study of sets in the 
context of mathematics and general topology. The Archimedean approach, which in-
cludes determining the circumference of a circle, is a well-known example of interval en-
closure. 

This theory addresses the interval uncertainty that exists in many computational 
and mathematical models of deterministic real-world systems. This method investigates 
interval variables as opposed to point variables and expresses computation results as in-
tervals, eliminating mistakes that lead to incorrect findings. One of the initial goals of the 
interval-valued analysis was to account for the error estimates of finite-state machine 
numerical solutions. Interval analysis, which Moore first proposed in his well-known 
book [17], is one of the most important methods in numerical analysis. As a result, it has 
found applications in a wide range of industries, including computer graphics [18,19], 
differential equations for intervals [20], neural network output optimization [21], and 
many more. 

On the other hand, a number of significant inequalities, including Hermite–
Hadamard and Ostrowski, have recently been investigated for interval-valued map-
pings. Using the Hukuhara derivative for interval-valued mappings, Chalco-Cano et al. 
discovered Ostrowski-type inequalities for interval-valued mappings in [22,23]. Román-
Flores et al. established the inequalities of Minkowski and Beckenbach for interval-
valued mappings in [24]. Please refer to [25–28] for the others. However, for more gener-
ic set-valued maps, inequalities were investigated. Sadowska provided the Hermite–
Hadamard inequality, for instance, in [29]. Results related to log–convex fuzzy-number 
valued mappings see [30–32]. Interested readers can view [33,34] for the other investiga-
tions. For more information, see [35–64] and the references therein. 

The article is set up as follows: We discuss log fuzzy-number valued convex map-
pings with numerical estimates and related fuzzy Aunnam integral inequalities in Sec-
tion 3 after examining the prerequisite material and important details on inequalities 
and interval-valued analysis in Section 2. Section 4 then derives Jensen and Schur’s ine-
qualities for log fuzzy-number valued convex mappings. To decide whether the prede-
fined results are advantageous, examples and numerical estimations are also taken into 
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denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 

1
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2 = λ
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1 +

(1− λ)
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3. Since
∼
S is a UDL-convex FNVM then, by hypothesis, we have

S∗(

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 15 
 

 

consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 

2, i) ≤ [S∗(
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Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 
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(40)

Taking “log” on both sides of (40), we have
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fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
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3, i).
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From (41), we have
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there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 

1)
.
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Thus, 
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Remark 6. If 𝔖∗(ϣ, i) = 𝔖∗(ϣ, i) with i = 1, then from (37), (38), and (39), we achieved the 
outcomes reduced for convex mapping, see [51]. 

4. Conclusions 
Using fuzzy Aumman integrals, we showed some new Hermite–Hadamard type 

inequalities for newly defined class up and down log–convex functions in the fuzzy en-
vironment. Furthermore, using the up-and-down log–convex fuzzy-number valued 
mappings, we established Jensen’s and Schur’s type inequalities. We used a mathemati-
cal example to demonstrate the correctness of the newly discovered results. We also 
demonstrated that the newly obtained results are an extension of previously established 
results in the literature. It is a novel problem in which future scholars can obtain equiva-
lent inequalities for fractal sets and coordinated convex functions. 
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consideration. Section 4 explores a quick conclusion and potential study directions con-
nected to the findings in this work before we wrap things up.  

2. Preliminaries 
This section reloads key findings and terminology necessary for understanding the 

core outcomes. 
Let 𝒳஼ be the space of all closed and bounded intervals of ℝ and Ʊ ∈ 𝒳஼ be defined 

by Ʊ = [Ʊ∗, Ʊ∗] = ሼϣ ∈ ℝ| Ʊ∗ ≤ ϣ ≤ Ʊ∗ሽ, (Ʊ∗, Ʊ∗ ∈ ℝ).  (2)

If Ʊ∗ = Ʊ∗, then Ʊ is referred to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Ʊ∗ ≥ 0, then [Ʊ∗, Ʊ∗] is referred to as a positive interval. The set of 
all positive intervals is denoted by 𝒳஼ା and defined as 𝒳஼ା = ሼ[Ʊ∗, Ʊ∗]: [Ʊ∗, Ʊ∗] ∈ 𝒳஼ and Ʊ∗ ≥ 0ሽ.  (3)

Let 𝑖 ∈ ℝ and 𝑖 ⋅ Ʊ be defined by 

𝑖 ⋅ Ʊ = ቐ  [𝑖Ʊ∗, 𝑖Ʊ∗]   if 𝑖 > 0,ሼ0ሽ       if 𝑖 = 0,[𝑖Ʊ∗, 𝑖Ʊ∗]  if 𝑖 < 0.  (4)

Then the Minkowski difference Ʋ − Ʊ, addition Ʊ + Ʋ and Ʊ × Ʋ for Ʊ, Ʋ ∈ 𝒳஼  are de-
fined by [Ʋ∗, Ʋ∗] + [Ʊ∗, Ʊ∗]  = [Ʋ∗ + Ʊ∗, Ʋ∗ + Ʊ∗], (5)[Ʋ∗, Ʋ∗] × [Ʊ∗, Ʊ∗] = [minሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ, maxሼƲ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗, Ʋ∗Ʊ∗ሽ] (6)[Ʋ∗, Ʋ∗] − [Ʊ∗, Ʊ∗]  = [Ʋ∗ − Ʊ∗, Ʋ∗ − Ʊ∗], (7)

Remark 1 ([48]). For given [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝ୍, we say that [Ʋ∗, Ʋ∗] ≤୍ [Ʊ∗, Ʊ∗] if and 
only if Ʋ∗ ≤ Ʊ∗, Ʋ∗ ≤ Ʊ∗, it is a partial interval or left and right order relation. 

If [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ ℝூ, we say that [Ʋ∗, Ʋ∗] ⊆ூ [Ʊ∗, Ʊ∗] if and only if Ʊ∗ ≤ Ʋ∗, Ʋ∗ ≤ Ʊ∗, 
it is an inclusion interval or up and down (𝑈𝒟) order relation. 

For [Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗] ∈ 𝒳஼,  the Hausdorff–Pompeiu distance between intervals [Ʋ∗, Ʋ∗], and [Ʊ∗, Ʊ∗] is defined by 𝑑ு([Ʋ∗, Ʋ∗], [Ʊ∗, Ʊ∗]) = 𝑚𝑎𝜘ሼ|Ʋ∗ −  Ʊ∗|, |Ʋ∗ − Ʊ∗|ሽ. (8)

It is a familiar fact that (𝒳஼, 𝑑ு) is a complete metric space [41,44,45]. 

Definition 1 ([41,42]). A fuzzy subset L of ℝା is distinguished by a mapping Ʌ෩: ℝା →[0,1] called the membership mapping of L. That is, a fuzzy subset L of ℝା is a mapping Ʌ෩: ℝା → [0, 1]. So, for further study, we have chosen this notation. We appoint Ω to 
denote the set of all fuzzy subsets of ℝା. 

Let Ʌ෩ ∈ Ω. Then, Ʌ෩ is referred to as a fuzzy number or fuzzy interval if the following 
properties are satisfied by Ʌ෩: 
(1) Ʌ෩ should be normal if there exists ϣ ∈ ℝା and Ʌ෩(ϣ) = 1; 
(2) Ʌ෩ should be upper semi-continuous on ℝା if for given ϣ ∈ ℝା, there exist 𝜀 > 0 

there exist 𝛿 > 0 such that Ʌ෩(ϣ) − Ʌ෩(ɷ) < 𝜀 for all ɷ ∈ ℝା with |ϣ − ɷ| < 𝛿; 
(3) Ʌ෩ should be fuzzy convex that is 

 Ʌ෩൫(1 − 𝜕)ϣ + 𝜕ɷ൯ ≥ 𝑚𝑖𝑛 ቀɅ෩(ϣ), Ʌ෩(ɷ)ቁ, for all ϣ, ɷ ∈ ℝା, and 𝜕 ∈ [0, 1] 

, i) = S*(
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, i) with i = 1, then from (37), (38), and (39), we achieved
the outcomes reduced for convex mapping, see [51].
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4. Conclusions

Using fuzzy Aumman integrals, we showed some new Hermite–Hadamard type in-
equalities for newly defined class up and down log–convex functions in the fuzzy environ-
ment. Furthermore, using the up-and-down log–convex fuzzy-number valued mappings,
we established Jensen’s and Schur’s type inequalities. We used a mathematical example to
demonstrate the correctness of the newly discovered results. We also demonstrated that the
newly obtained results are an extension of previously established results in the literature. It
is a novel problem in which future scholars can obtain equivalent inequalities for fractal
sets and coordinated convex functions.
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