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Abstract: In the field of rough set, feature reduction is a hot topic. Up to now, to better guide
the explorations of this topic, various devices regarding feature reduction have been developed.
Nevertheless, some challenges regarding these devices should not be ignored: (1) the viewpoint
provided by a fixed measure is underabundant; (2) the final reduct based on single constraint is
sometimes powerless to data perturbation; (3) the efficiency in deriving the final reduct is inferior.
In this study, to improve the effectiveness and efficiency of feature reduction algorithms, a novel
framework named parallel selector for feature reduction is reported. Firstly, the granularity of
raw features is quantitatively characterized. Secondly, based on these granularity values, the raw
features are sorted. Thirdly, the reordered features are evaluated again. Finally, following these
two evaluations, the reordered features are divided into groups, and the features satisfying given
constraints are parallel selected. Our framework can not only guide a relatively stable feature
sequencing if data perturbation occurs but can also reduce time consumption for feature reduction.
The experimental results over 25 UCI data sets with four different ratios of noisy labels demonstrated
the superiority of our framework through a comparison with eight state-of-the-art algorithms.
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1. Introduction

In the real world, data play the role of recording abundant information from ob-
jects. Thus, an open issue is how to effectively obtain valuable information from high-
dimensional data.

Thus far, based on different deep learning models, various popular feature selection
devices with respect to this issue have been provided. For instance, Gui et al. [1] pro-
posed a neural network-based feature selection architecture by employing attention and
learning modules, which aimed to improve the computation complexity and stability on
noisy data. Li et al. [2] proposed a two-step nonparametric approach by combining the
strengths of both neural networks and feature screening, which aimed to overcome the
challenging problems if feature selection occurs in high-dimension, low-sample-size data.
Chen et al. [3] proposed a deep learning-based method, which aimed to select important
features for high-dimensional and low-sample size data. Xiao et al. [4] reported a federated
learning system with enhanced feature selection, which aimed to produce high recognition
accuracy to wearable sensor-based human activity recognition. In addition, based on
probability theory, some classical mathematical models were also used to obtain a qualified
feature subset. For example, the Bayesian model was employed in mixture model training
and feature selection [5]. The trace of the conditional covariance operator was also used to
perform feature selection [6].

Currently, in rough set theory [7–10], feature reduction [11–17] is drawing considerable
attention in regard to this topic by virtue of its high efficiency in alleviating the case of
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overfitting [18,19], reducing the complexity of learners [20–22], and so on. It has been
widely employed in general data preprocessing [23] because of its typical advantage in
that redundant features can be removed from data without influencing the structure of raw
features. A key point of traditional feature reduction devices is the search strategy. With an
extensive review, most of the accepted search strategies employed in previous devices can
be categorized into the following three fundamental aspects.

• Forward searching. The core of such a phase is to discriminate appropriate features in
each iteration and add them into a feature subset named the reduct pool. The specific
process of one popular forward search strategy named forward greedy searching
(FGS) [24–30] is a follows: (1) given a predefined constraint, each feature is evaluated
by a measure [31–34], and the most qualified feature is selected; (2) the selected feature
is added into a reduct pool; (3) if the constraint is satisfied, the search process is
terminated. Obviously, the most effective feature in each iteration constitutes the final
feature subset.

• Backward searching. The core of such a phase is to discriminate those features with
inferior quality and remove them from the raw features. The specific process of one
popular backward searching named backward greedy searching (BGS) [35,36] is as
follows: (1) given a predefined constraint, each object in raw feature is evaluated by a
measure, and those unqualified features are selected; (2) selected features from raw
features are removed; (3) if the constraint is satisfied by the remaining features, the
search process is terminated.

• Random searching. The core of such a phase is to randomly select qualified features from
candidate features and add them into a reduct pool. The specific process of one classic
random searching strategy is named simulated annealing (SA) [37,38] is as follows:
(1) for given a predefined constraint, a randomly generated binary sequence is used
to picture features (“1” indicates the corresponding feature is selected; “0” indicates
the corresponding feature is not selected; the number of binary digits represents the
number of raw features.); (2) multiple random changes are exerted upon the sequence,
the corresponding fitness values are recorded, i.e., the selected features are evaluated;
(3) the sequence turns into a new state with the highest fitness value; (4), (2), and
(3) are executed iteratively until the given constraint is satisfied.

Obviously, there mainly exist three limitations regarding the previous feature reduction
algorithms. (1) Lack of diverse evaluations. The evaluation originating from different measures
may have a disparity; that is, the features selected in single measure are likely to be
ineffective when evaluated by some other measures with different semantic explanations.
(2) Lack of stable selection. The previous selected feature(s) based on single constraint may
seriously mislead the subsequent selection if data perturbation occurs. (3) Lack of efficient
selection. For each iteration, all candidate features are required to be evaluated; thus, the
time consumption tends to be unsatisfactory with the increasing of feature dimensions.

Based on these three limitations discussed above, a novel framework named parallel
selector for feature reduction is reported in the context of this paper. Compared with previ-
ous research, our framework mainly consists of three differences: (1) more viewpoints for
evaluating features are introduced; that is, different measures are employed for acquiring
more qualified features; (2) data perturbation exerts no obvious effect on our framework
because the constraints related to different measures are employed and a stable feature
sequence sorted by granularity values also works; (3) the iterative selection process is
abandoned and replaced by a parallel selection mechanism, through which the efficiency
of deriving a final reduct is then improved.

Significantly, the detailed calculation process of our framework should also be plainly
expressed. Firstly, to reveal the distinguishing ability of different features over samples, the
granularity of feature is combined with our framework; that is, the granularity values of all
features are calculated respectively. Secondly, based on the obtained granularity values,
all features are sorted. Note that a smaller granularity value means that a corresponding
feature could make samples more distinguishable. Thirdly, another measure is used to
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evaluate the importance of the reordered features. Fourthly, features are divided into
groups by considering their comprehensive performance. Finally, the qualified features are
parallel selected from these groups according to the required constraints. Immediately, a
few distinct advantages emerge from such a framework.

• Providing diverse viewpoints for feature evaluation. In most existing search strategies,
the richness of the measure is hard to take into account; that is, the importance of
candidate features generated from single measure is usually deemed to be sufficient,
e.g., the final reduct of greedy-based forward searching algorithm which was proposed
by Hu et al. [39] is derived from a measure named dependency and a corresponding
constraint. From this point of view, the selected feature subset may be unqualified if
another independent measure is used to evaluate the importance of features. However,
in our framework, different measures are employed for evaluating features; thus, more
comprehensive evaluations about features can then be obtained. In view of this, our
framework is then more effective than are previous feature reduction strategies.

• Improving data stability for feature reduction. In previous studies, the reduct pool is
composed of the qualified features selected from each iteration, which indicates
the reduct pool is iteratively updated. Thus, it should be pointed out that for each
iteration, all features that have been added into the reduct pool are involved in the next
evaluation, e.g., the construction of final feature subset in feature reduction strategy
proposed by Yang et al. [40] is affected by the selected features. From this point
of view, if data perturbation occurs, the selected features will mislead subsequent
selection. However, in our framework, each feature is weighted by its granularity
value and a feature sequence is then obtained, which is relatively stable in the face of
data perturbation.

• Accelerating searching process for feature reduction. In most search strategies for selecting
features, e.g., heuristic algorithm and backward greedy algorithm, all iterative features
should be evaluated for characterizing their importance. However, the redundancy
of evaluation is inevitable in the iteration. This will bring extra time consumption if
selection occurs in higher dimensional data. However, in our framework, according to
different measures, the process of feature evaluation should be respectively carried
out only once. Moreover, the introduction of a grouping mechanism makes it possible
to select qualified features in parallel.

In summary, the main contributions regarding our framework are listed as follows:
(1) a diverse evaluation mechanism is designed, which can produce different viewpoints
for evaluating features; (2) granularity is used for not only evaluating features but also for
providing the stability of the selection results if data perturbation occurs; (3) an efficient
parallel selection mechanism is developed to accelerate the process of deriving a final reduct;
(4) a novel feature reduction framework is reported, which can be combined with various
existing feature reduction strategies to improve the quality of their final reduct.

The remainder of this paper is organized as follows. Section 2 provides the reviews
of some basic concepts concerning feature reduction. Section 3 details basic contents of
our framework and elaborates its application regarding feature reduction. The results of
comparative experiments and the corresponding analysis are reported in Section 4. Finally,
conclusions and future prospects are outlined in Section 5.

2. Preliminaries
2.1. Neighborhood Rough Set

In rough set field, a decision system can be represented by a pair such that DS =〈
U, AT ∪ {d}

〉
. U = {xi|1 ≤ i ≤ n} is a nonempty set of samples, AT = {ak|1 ≤ k ≤ m} is

a nonempty set of conditional features, and d is a specific feature which aims to unlock the
labels of samples. Particularly, the set of all distinguished labels in DS is L = {lp|1 ≤ p ≤
q}(q ≥ 2). ∀xi ∈ U, d(xi) ∈ L represents the label of sample xi.

Given a decision system DS , assume that a classification task is considered, an
equivalence relation over U can be established with d such that IND(d) = {(xi, xj) ∈
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U2|d(xi) = d(xj)}. Immediately, U is separated into a set of disjoint blocks such that
U/IND(d) = {X1, X2, . . . , Xq}. ∀Xp ∈ U/IND(d); it is the p-th decision class that contains
all samples with label lp. This process is considered to be the information granulation in
the field of granular computing [41–44].

Nevertheless, equivalence relation may be powerless to perform information gran-
ulation if conditional features are introduced, mainly because continuous values instead
of categorical values are frequently recorded over such type of features. In view of this,
various substitutions have been proposed. For instance, fuzzy relation [45,46] induced
by kernel function and neighborhood relation [47,48] based on distance function are two
widely accepted devices. Both of them are equipped with an advantage of performing
information granulation in respect to different scales. The parameter used in these two
binary relations is the key to offering multiple scales. Given a decision system DS , δ is a
radius such that δ ≥ 0, ∀A ⊆ AT, and a neighborhood relation over A is

δA = {(xi, xj) ∈ U2|∆A(xi, xj) ≤ δ}, (1)

in which ∆A(xi, xj) is a distance between xi and xj over A.
A higher value of δ will produce a large-sized neighborhood. Conversely, a smaller

value of δ will generate a small-sized neighborhood. The detailed formulation of neighbor-
hood is then given by δA(xi) = {xj ∈ U|(xi, xj) ∈ δA}.

In the field of rough set, one of the important tasks is to approximate the objective by
the result of information granulation. Generally speaking, the objectives which should be
approximated are decision classes in U/IND(d). The details of lower and upper approxi-
mations which are based on the neighborhood are then shown in the following. Given a
decision system DS and a radius δ ≥ 0, ∀A ⊆ AT, ∀lp ∈ L, Xp is the p-th decision class
related to label lp, and neighborhood lower and upper approximations of Xp are

δA(Xp) = {xi ∈ U|δ(xi) ⊆ Xp}, (2)

δA(Xp) = {xi ∈ U|δ(xi) ∩ Xp 6= ∅}. (3)

Following the above definition, it is not difficult to present the following approxima-
tions related to the specific feature d. Given a decision system DS and a radius δ ≥ 0,
∀A ⊆ AT, and the neighborhood lower and upper approximations of d are

δA(d) =
q⋃

p=1

δA(Xp), (4)

δA(d) =
q⋃

p=1

δA(Xp). (5)

2.2. Neighborhood-Based Measures
2.2.1. Granularity

Information granules with adjustable granularity are becoming one of the most gen-
uine goals of data transformation due to two fundamental reasons: (1) fitting granularity-
based granular computing leads to processing that is less time-demanding when dealing
with detailed numeric problems; (2) information granules with fitted granularity have
emerged as a sound conceptual and algorithmic vehicle because of their way of offering a
more overall view of the data to support an appropriate level of abstraction aligned with
the nature of specific problems. Thus, granularity has becomes a significant concept, and
various models regarding it can be developed and utilized.

Given a pair S =
〈
U, R

〉
in which U is a finite nonempty set of samples, and R is a

binary relation over U, ∀xi ∈ U, the R-related set [34] of xi is

R(xi) = {xj ∈ U : (xi, xj) ∈ R}. (6)
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Given a pair S =
〈
U, R

〉
, the granularity [49] related to R can be defined as

GR(U) =
∑xi∈U |R(xi)|
|U|2 , (7)

in which |X| is the cardinality of set X.
Following Equation (7), it is not difficult to see that 0 ≤ GR(U) ≤ 1. Without loss

of generality, the binary relation R can be regarded as one of the most intuitive represen-
tations of information granulation over U. The granularity corresponding to the binary
relation R then plainly reveals the discriminability of the information granulation re-
sults (all R-correlation sets). A smaller GR(U) value contains fewer ordered pairs, which
means R becomes more discriminative; that is, most samples in U can be distinguished
from each other.

Note that δA mentioned in Equation (1) is also supposed to be a kind of binary relation,
which furnishes the possibility of proposing the following concept of granularity based on
neighborhood relation. Given a decision system DS and a radius δ ≥ 0, ∀A ⊆ AT, the δA
based granularity can be defined as follows:

Gδ(A, U) =
∑xi∈U |δA(xi)|

|U|2 . (8)

Granularity characterizes the inherent performance of information granulation from
the perspective of the distinguishability of features. However, it should be emphasized that
the labels of samples do not participate in the process of feature evaluation, which may
bring some potential limitations to subsequent learning tasks. In view of this, a classical
measure called conditional entropy can be considered.

2.2.2. Conditional Entropy

The conditional entropy is another important measure corresponding to neighborhood
rough set, which can characterize the discriminating performance of ∀A ⊆ AT with respect
to d. Thus far, various forms of conditional entropy [50–53] have been proposed in respect
to different requirements. A special form which is widely used is shown below.

Given a decision system DS , ∀A ⊆ AT, δ is a radius such that δ ≥ 0, and the
conditional entropy [54] of d with respect to A is defined as follows:

CEδ(A, d) = − 1
U ∑

xi∈U
|δA(xi) ∩ [xi]d| · log

|δA(xi) ∩ [xi]d|
|δA(xi)|

. (9)

Obviously, 0 ≤ CEδ(A, d) ≤ |U|/e holds. A lower value of conditional entropy
represents a better discrimination performance of A. Immediately, ∀A, B ⊆ AT. Supposing
A ⊆ B, we then have CEδ(A, d) ≥ CEδ(B, d); that is, the conditional entropy monotonously
decreases with the increasing scale of A.

2.3. Feature Reduction

In the field of rough set, one of the most significant tasks is to abandon redundant or
irrelevant conditional features, which can be considered to be feature reduction. Various
measures have been utilized to construct corresponding constraints with respect to differ-
ent requirements [55,56], with various feature reduction approaches subsequently being
explored. A general form of feature reduction presented by Yao et al. [57] is introduced
as follows.

Given a decision system DS , ∀A ⊆ AT, δ is a radius such that δ ≥ 0, Cρ-constraint
is a constraint based on the measure ⊂ which is related to radius δ, and A is referred to
as a Cρ-based qualified feature subset (Cρ-reduct) if and only if the following conditions
are satisfied:

1. A meets the Cρ-constraint;
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2. ∀B ⊆ A, B does not meet the Cρ-constraint.

It is not difficult to observe that A is actually a optimal and minimal subset of AT
and satisfies the Cρ-constraint. For the purpose of achieving such a subset, various search
strategies have been proposed. For example, an efficient searching strategy named forward
greedy searching is widely accepted, whose core process is to evaluate all candidate features
and select qualified features according to some measure and corresponding constraint.
Based on such a strategy, it is possible for us to determine which feature should be added
into or removed from A. For achieving more details about forward greedy searching
strategy, the readers can refer to [58].

3. The Construction of a Parallel Selector for Feature Reduction
3.1. Isotonic Regression

In the field of statistical analysis, isotonic regression [59,60] has become a typical topic
of statistical inference. For instance, concerning the medical clinical trial, it can be assumed
that as the dose of a drug increases, so to does its efficacy and toxicity. However, the
estimation of the ratio of patient toxicity at each dose level may be inaccurate; that is, the
probability of toxicity at the corresponding dose level may not be a nondecreasing function
with respect to the dose level, which will prevent the statistically observation of the average
reaction of patients with the increase in drug dosage. In view of this, isotonic regression
can then be employed in revealing the variation rule of clinical data. Generally, given a
nonempty and finite set θ= {θ1,θ2, . . . ,θm}, an ordering relation “�” over θ can be defined
as follows.

The ordering relation “�” is considered as a total-order over θ if and only if the
following entries are satisfied:

1. Reflexivity: θi � θi(1 ≤ i ≤ m).
2. Transitivity: θj � θk, θi � θj(1 ≤ i ≤ j ≤ k ≤ m).
3. Antisymmetry: ∀θi, θj ∈ θ, if θi � θj and θj � θi, then θi = θj.
4. Comparability: ∀θi, θj ∈ θ, we always have θi � θj or θj � θi.

Without loss of generality, the ordering relation “�” can be defined in similar way.
Specifically, if ordering relation “�” or “�” with respect to θ satisfies reflexivity, transitivity,
and Antisymmetry only, they will be considered as a semiorder. Now we take “�” into
discussion. Suppose that Θ = {θ = (θ1, θ2, . . . , θm)T ∈ Rm|θ1 � θ2 � . . . � θm}, the
definition of isotonic function can then be obtained as follows.

Given a function Y = (Y1, Y2, . . . , Ym)T such that Yk = Y(θk) which is based on
Θ = {θ = (θ1, θ2, . . . , θm)T ∈ Rm|θ1 � θ2 � . . . � θm}; if we have Y1 � Y2 � . . . � Ym,
then Y is called an isotonic function according to the ordering relation “�” over Θ.

Let Θall represent all isotonic functions over Θ such that Θall = {X ∈ Rm|X1 � X2 �
. . . � Xm}, then we can obtain the following definition of isotonic regression.

Given a function Y = (Y1, Y2, . . . , Ym)T , X∗ = (X1
∗, X2

∗, . . . , Xm
∗)T is the isotonic

regression of Y if it satisfies

m

∑
k=1

wk(Yk − Xk
∗)2 = min

m

∑
k=1

wk(Yk − Xk)
2, (10)

in which w = (w1, w2, . . . , wm)T is the weight coefficient and 0 ≤ wk ≤ 1.
Following Equation (10), we can observe that X∗, i.e., solutions of isotonic regression,

can be viewed as the projection of Y onto Θall when given the inner product
m
∑

k=1
wkXkYk.

Immediately, an open problem about how to find such a projection is then intuitively
revealed. Thus far, various algorithms [61,62] have been proposed to address such issue, the
pool adjacent violators algorithm (PAVA) proposed by Ayer et al. [62] is considered to be the
most widely utilized version under the situation of total order. The following Algorithm 1
gives us a detailed process of PAVA for obtaining the X∗ shown in Equation (10).
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Algorithm 1: Pool adjacent violators algorithm (PAVA).

Input: A function Y = (Y1, Y2, . . . , Ym)T , Θall = {X ∈ Rm|X1 � X2 � . . . � Xm};
Output: An isotonic regression X∗ = (X1

∗, X2
∗, . . . , Xm

∗)T of Y.
1 Initialize Ỹ = Y;
2 While Ỹ /∈ Θall Do
3 If ∃j s.t. Yj > Yj+1 Then
4 Set R = {j, j + 1};
5 Set YR = AV(R) =

Yjwj+Yj+1wj+1
wj+wj+1

, Ỹ = (Y1, . . . , Yj−1, YR, YR, Yj+2, . . . , Ym)T ;

6 Set wR = wj + wj+1, w̃ = (w1, . . . , wj−1, wR, wR, wj+2, . . . , wm)T ;
7 End
8 End
9 X∗ = Ỹ;

10 Return X∗.

For the process of updating values in Algorithm 1, it is not difficult to observe that
each Yj should be considered for value correction. In the worst case, if all elements of Y
need to be corrected, it follows that the time complexity of Algorithm 1 is O(m). To further
facilitate the understanding of the above process, an example will be presented.

Example 1. Let us introduce the statistical model through a medical example.

1. Suppose the dosage in a kind of animal is gradually increased such that

θ1 � θ2 � . . . � θr. (11)

N animals are tested corresponding to dosage θk(1 ≤ k ≤ r), and Ẋkj means the reaction of
the j-th animal regarding the dosage θk such that

Ẋkj =

{
1, active
0, inactive

. (12)

P̂k means that the active proportion at the dosage is θk, which is usually estimated from sample
proportion such that

P̂k =
1
N

N

∑
j=1

Ẋkj. (13)

2. Following Equation (11), suppose that P = (P1, P2, . . . , Pr)T has the same order such that

P1 � P2 � . . . � Pr. (14)

NP̂k follows binomial distribution and the likelihood function of P is

r

∏
k=1

PNP̂k
k (1− Pk)

N(1−P̂k). (15)

Note that when Equation (15) takes Equation (14) as a constraint, Equation (15) can obtain
the maximum, i.e., the maximum likelihood estimation(MLE) of P can be obtained. In view of
this, P̂k should have the same order as does Equation (14). If P̂k does not satisfy Equation (14),
P̂k and P̂k+1 should be merged as

P̂k = P̂k+1 = (Nk P̂k + Nk+1P̂k+1)/(Nk + Nk+1). (16)

3. To give a further explanation, suppose r = 5; the specific calculation process is shown in
Table 1.
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Table 1. A specific calculation process.

k 1 2 3 4 5

nk 25 14 10 20 22
P̂k 0.4 0.5 0.6 0.3 0.5

nk
(1) 39 30 22

P̂(1)
k

0.436 0.4 0.5

nk
(2) 39 52

P̂(2)
k

0.436 0.442

According to Table 1, we know that P̂k does not satisfy Equation (14), and so then we have

(a) 0.436 = (25× 0.4 + 14× 0.5)/(25 + 14);
(b) 0.442 = (30× 0.4 + 22× 0.5)/(30 + 22).

Due to 0.436 � 0.442, we have P̂(1)
1 = P̂(1)

2 = 0.436, P̂(2)
3 = P̂(2)

4 = P̂(2)
5 = 0.442; that is,

P1 = P2 = 0.436, P3 = P4 = P5 = 0.442, and so Equation (14) holds, which facilitates the
general statistical analysis of the medicine’s effects.

3.2. Isotonic Regression-Based Numerical Correction

It should be emphasized that isotonic regression can be understood as a kind of general
framework, which has been demonstrated to be valuable not only in providing inexpensive
technical supports for data analysis in the medical field but also in bringing new motivation
to other research in the academic community. Correspondingly, by reviewing the relevant
contents of two feature measures mentioned in Section 2.2, we find the following: although
two measures have been specifically introduced, the statistical correlation between them
still lacks explanation. Therefore, an interesting idea is then naturally guided: Can we
explore and analyze the statistical laws between these two measures by means of isotonic
regression? Moreover, it is not difficult to realize this kind of analysis.

Given a decision system DS , AT = {ak|1 ≤ k ≤ m}, and δ is a radius such that
δ ≥ 0, ∀ak ∈ AT, we then have δ-based granularity Gδ(ak, U) and conditional entropy
CEδ(ak, d). Now, we sort conditional features in ascending order by following their values
of granularity such that Gra = {G = (G1, G2, . . . , Gm)T ∈ Rm|G1 � G2 � . . . � Gm}. In
particular, a conditional entropy-based function Gce = (CE1, CE2, . . . , CEm)T according to
the same feature order of Gra can be obtained.

Definition 1. Given a function Gce = (CE1, CE2, . . . , CEm)T such that CEk = Gce(Gk) which
is based on Gra = {G = (G1, G2, . . . , Gm)T ∈ Rm|G1 � G2 � . . . � Gm}, if we have
CE1 � CE2 � . . . � CEm or CE1 � CE2 � . . . � CEm, then Gce is called an isotonic function
according to the ordering relation“�” over Gra.

Graall is employed in representing all isotonic functions over Gra such that Graall =
{X ∈ Rm|X1 � X2 � . . . � Xm or X1 � X2 � . . . � Xm}. Likewise, we can obtain the
following definition.

Definition 2. Given a function Gce = (CE1, CE2, . . . , CEm)T, Gce∗ = (Gce∗1 , Gce∗2 , . . . , Gce∗m)T

∈ Graall , is the isotonic regression of (Gce, w) if it satisfies

m

∑
k=1

wk(CEk − Gce∗k )
2 = min

m

∑
k=1

wk(CEk − Xk)
2, (17)

where w = (w1, w2, . . . , wm)T is the weight coefficient, 0 ≤ wk ≤ 1.
Similarly, we can still apply the PAVA shown in Section 3.1 to calculate Gce∗, which

can be denoted by Algorithm 2.
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Algorithm 2: Pool Adjacent Violators Algorithm for Feature Measure
(PAVA_FM).

Input: A function Gce = (CE1, CE2, . . . , CEm)T ,
Graall = {X ∈ Rm|X1 � X2 � . . . � Xm or X1 � X2 � . . . � Xm};

Output: An isotonic regression Gce∗ = (Gce1
∗, Gce2

∗, . . . , Gcem
∗)T .

1 Initialize G̃ce = Gce, w̃ = w.
2 While G̃ce /∈ Graall Do
3 If ∃j s.t. CEj > CEj+1 Then
4 Set Rindex = {j, j + 1};
5 Set CERindex = AV(Rindex) =

CEjwj+CEj+1wj+1
wj+wj+1

,

6 We have G̃ce = (CE1, . . . , CEj−1, CERindex, CERindex, CEj+2, . . . , CEm)T ;
7 Set wRindex = wj + wj+1,
8 We have w̃ = (w1, . . . , wj−1, wRindex, wRindex, wj+2, . . . , wm)T ;
9 End

10 End
11 Gce∗ = G̃ce;
12 Return Gce∗.

Following the process of Algorithm 2, the time complexity of Algorithm 2 is similar to
that of Algorithm 1, i.e., O(m). Specifically, the time complexity of Algorithm 2 can also be
written as O(|AT|) because m represents the number of raw features.

3.3. Isotonic Regression-Based Parallel Selection

By reviewing what has been discussed of traditional feature reduction algorithms,
we can observe that all candidate features should be evaluated in the process of selecting
qualified features, which result in a redundant evaluation process. Additionally, although
various measures have been explored and corresponding constraints can be constructed,
the fact that the single viewpoint of evaluation is underabundant and the reducts derived
by single constraint are relatively unstable should not be forgetting. Rather, how to explore
the relevant resolution with respect to the above issues becomes significantly urgent. In
view of this, motivated by Section 3.2, we introduce the framework for feature reduction.

1. Calculate the granularity of each conditional feature in turn, sort these features
in ascending order by granularity value, and record the original location index of
sorted features.

2. Based on 1, calculate the conditional entropy of each sorted feature according to the
recorded location index.

3. Based on 2, obtain the isotonic regression of conditional entropy according to Def-
initions (12) and (13). Inspired by Example 1, we group features through updated
conditional entropy; that is, features with the same value of conditional entropy are
placed into one group. Assume that the number of groups is Ng ∈ [1, m], and m is the
number of raw features.

4. Based on 3, when Ng becomes too large, i.e., Ng approaches m, the grouping mech-
anism is obviously meaningless. To prevent this from happening, we propose a
mechanism to reduce the number of groups. That is, to begin with Group1, cal-
culate D-value DVi(1 ≤ i ≤ Ng − 1) between Groupi and Groupi+1 (the value of
a group means the corrected value of the conditional entropy of features in the
group arrived via isotonic regression), obtain the sum of all D-values such that
DVsum = DV1 + . . .+DVi + . . .+DVNg−1, and calculate the mean D-value MeanD of
DVsum. To begin with Group1 again, if DVi < MeanD, merge Groupi with Groupi+1.

The main contributions of the above framework are as follows: (1) different measures
can be combined in the form of grouping and (2) a parallel selection mechanism to select
features is provided. Furthermore, the related reduction strategy is called isotonic regression-
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based fast feature reduction (IRFFR), and the process of IRFFR is a follows: (1) from Group1
to GroupNg/2, select features with the minimum of granularity in each group and put
them into a reduct pool; (2) from group GroupNg/2+1 to GroupNg , select features with the
minimum of original conditional entropy in each group and put them into a reduct pool.

Based on the above discussion, further details of IRFFR are shown in Algorithm 3.

Algorithm 3: Isotonic Regression-based Fast Feature Reduction (IRFFR).
Input: DS , δ > 0, Graall ;
Output: A reduct red.

1 Initialize red = ∅, kall = 0;
2 ∀ak ∈ AT, calculate Gδ(ak, U);
3 Sort features by an increasing order of values of granularity, obtain

Gra = {G = ( f1, f2, . . . , fm)T ∈ Rm| f1 � f2 � . . . � fm};
4 Calculate CEδ by following the order of Gra such that

Gce = (CE1, CE2, . . . , CEm)T ;
5 Acquire the isotonic regression of Gce such that Gce∗ by using Algorithm 2;
6 Divide features with the same value in Gce∗ into the same group such that

Group = {Group1, Group2, . . . , GroupNg};
7 for i = 1, 2, . . . , Ng − 1 do
8 DVi = Groupi − Groupi+1;
9 Kall = Kall + DKi;

10 end
11 MeanD = Kall/(Ng − 1);
12 If Ng > m/2 Then
13 for j = 1, 2, . . . , Ng − 1 do
14 If DVj < MeanD Then
15 Combine Groupj and Groupj+1;
16 jbegin = j + 2;
17 Let j jump to jbegin;
18 End
19 end
20 End
21 Update the number of groups such that Ngnew;
22 for k = 1, 2, . . . , Ngnew/2 do
23 red = red ∪ { f ′| f ′ ∈ Groupk and it owns minimum of granularity};
24 end
25 for l = Ngnew/2 + 1, Ngnew/2 + 2, . . . , Ngnew do
26 red = red ∪ { f ′′| f ′′ ∈

Groupk and it owns minimum of original conditional entropy};
27 end
28 Return red.

Obviously, different from what occurs in the greedy-based forward searching strategy,
the raw features are added in groups. Notably, IRFFR offers a pattern of parallel selection
which can reduce corresponding time consumption greatly.

The time complexity of IRFFR mainly comprises three components: obtaining the
isotonic regression feature sequence and dividing features into groups in Steps 2 to 6; in
the worst case, all features in AT are required to be queried, and then the scanning times
for feature sorting is |AT|+ (|AT − 1|) + (|AT − 2|) + . . . + 1, i.e., |AT|·(|AT|−1)

2 , the time
complexity of such a phase is O(|AT|2), where AT is raw conditional features over DS.
Updating the number of groups in Steps 7 to 21, in the worst case, considering Ng < |AT|
holds, the time complexity of such a phase can be ignored. Selecting feature from groups
in Steps 22–27 requires Ngnew times (Ngnew < |AT|), and the time complexity of such a
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phase can also be ignored. Therefore, in general, the time complexity of IRFFR is O(m2).
It is worth noting that the time complexity of the forward greedy searching strategy is
O(n2 ·m2) [16]. From this point of view, the efficiency of feature reduction can be improved.

Example 2. The following example of data which contains 12 samples and 11 features is given to
further explain Algorithm 3; all samples are classified into four categories by d (see Table 2).

Table 2. A Toy Data.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 d

x1 0.3305 0.4533 0.0240 0.0260 0.1378 0.0486 0.1105 0.1906 0.4186 0.2415 0.2608 l1
x2 0.3388 0.3466 0.0361 0.0153 0.0996 0.0486 0.1220 0.1791 0.4496 0.1348 0.2028 l1
x3 0.3057 0.2800 0.2168 0.0843 0.1029 0.0555 0.2211 0.2060 0.4883 0.3258 0.3623 l1
x4 0.3305 0.1400 0.1746 0.0391 0.0581 0.1388 0.2557 0.0852 0.4031 0.0730 0.5072 l1
x5 0.3223 0.2333 0.6024 0.2967 0.0382 0.1423 0.3640 0.1987 0.4418 0.1573 0.5797 l2
x6 0.3057 0.1667 0.1686 0.0659 0.0548 0.0694 0.3433 0.1299 0.4961 0.1966 0.4202 l2
x7 0.3305 0.3333 0.0120 0.0214 0.1063 0.0277 0.0276 0.1868 0.4961 0.1966 0.2173 l3
x8 0.3884 0.1333 0.3373 0.0184 0.1378 0.1180 0.2235 0.1887 0.4496 0.2977 0.3623 l3
x9 0.2314 0.0533 0.2409 0.0138 0.0581 0.1631 0.3156 0.0788 0.6356 0.1685 0.6376 l3
x10 0.1983 0.3866 0.2891 0.0092 0.0332 0.0972 0.1589 0.0402 0.4728 0.0955 0.6956 l4
x11 0.2479 0.1200 0.2530 0.0168 0.0664 0.1388 0.2672 0.1135 0.5813 0.1460 0.3623 l4
x12 0.2148 0.1600 0.2108 0.0644 0.0348 0.1145 0.2188 0.0788 0.4961 0.2134 0.6521 l4

1. For each feature, we have Gδ( f1, U) = 0.0667, Gδ( f2, U) = 0.6583, Gδ( f3, U) = 0.3655,
Gδ( f4, U) = 0.0679, Gδ( f5, U) = 0.0417, Gδ( f6, U) = 0.1917, Gδ( f7, U) = 0.3155,
Gδ( f8, U) = 0.2155, Gδ( f9, U) = 0.1750, Gδ( f10, U) = 0.5083, Gδ( f11, U) = 0.4917.

2. Sort features in ascending order such that G1 = Gδ( f5, U), G2 = Gδ( f1, U), G3 =
Gδ( f4, U), G4 = Gδ( f9, U), G5 = Gδ( f6, U), G6 = Gδ( f8, U), G7 = Gδ( f7, U), G8 =
Gδ( f3, U), G9 = Gδ( f11, U), G10 = Gδ( f10, U), G11 = Gδ( f2, U).

3. Calculate the corresponding conditional entropy such that CE1 = 2.8666, CE2 = 2.1805,
CE3 = 3.1327, CE4 = 2.4333, CE5 = 2.3917, CE6 = 2.0387, CE7 = 1.3463, CE8 =
1.2591, CE9 = 0.9972, CE10 = 1.7841, CE11 = 1.1557.

4. The isotonic regression of Gce is Gce∗ = (2.8666, 2.6566, 2.6566, 2.4125, 2.4125, 1.6925, 1.6925,
1.3468, 1.3468, 1.3468, 1.1557)T , then Group1 = { f5}, Group2 = { f1, f4}, Group3 =
{ f9, f6}, Group4 = { f8, f7, f10}, Group5 = { f3, f11}, Group6 = { f2}.

5. DV1 = 0.21, DV2 = 0.2441, DV3 = 0.72, DV4 = 0.3457, DV5 = 0.1911, MeanD =
0.3422, we then have Groupnew1 = { f5, f1, f4}, Groupnew2 = { f9, f6}, Groupnew3 =
{ f8, f7, f10}, Groupnew4 = { f3, f11, f2}.

6. For Groupnew1 → Groupnew2, we put f5 and f9 into a reduct pool; for Groupnew3 →
Groupnew4, we put f10 and f2 into a reduct pool. That is, we have the final reduct { f2, f5, f9, f10}.

4. Experiments
4.1. Datasets

To demonstrate the effectiveness of our proposed framework for feature reduction,
the 25 UCI data sets were used to conduct the experiments. The following Table 3 shows
the details of these data sets.

During the experiments, each dataset participates in the calculation in the form of a
two-dimensional table. Specifically, the “rows” of these tables represent “samples”, and the
number of rows reveals how many samples participate in the calculation; the “columns”
of these tables represent different features of samples, and the number of columns reveals
how many features a sample has.
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Table 3. Data description.

ID Datasets # Samples # Features # Labels Domain Feature Type

1 Breast Cancer Wisconsin (Diagnostic) 569 32 2 Life Real
2 Cardiotocography 2126 21 10 Medicine Real
3 Contraceptive Method 1473 9 3 Life Integer & Real
4 Diabetic Retinopathy Debrecen 1151 19 2 Biology Integer & Real
5 Forest Type Mapping 523 27 4 Geography Integer & Real
6 Ionosphere 351 34 2 Physical Integer & Real
7 Libras Movement 360 90 15 N/A Real
8 LSVT Voice Rehabilitation 126 309 2 Life Real
9 Musk (Version 1) 476 168 2 Physical Integer

10 Parkinson Multiple Sound Recording 1208 26 2 Medicine Real
11 Pen-Based Recognition of Handwritten Digits 10,992 16 10 Computer Integer
12 QSAR Biodegradation 1055 41 2 Biology Integer & Real
13 Quality Assessment of Digital Colposcopies 287 62 2 Life Real
14 Sonar 208 60 2 Physics Real
15 SPECTF Heart 267 44 2 Biology Real
16 Statlog (Image Segmentation) 2310 18 7 Geography Real
17 Statlog (Vehicle Silhouettes) 846 18 4 Physical Integer
18 Steel Plates Faults 1941 33 2 Physical Integer & Real
19 Synthetic Control Chart Time Series 600 60 6 N/A Real
20 Twonorm 7400 20 2 Historical Real
21 Urban Land Cover 675 147 9 Geography Real
22 Wall-Following Robot Navigation 5456 24 4 Computer Real
23 Website Phishing 1353 10 2 Computer Integer
24 Wine Quality 6497 11 7 Physical Real
25 Wireless Indoor Localization 2000 7 4 Computer Real

It is worth noting that in practical applications, data perturbation is sometimes in-
evitable. Therefore, when data perturbation occurs, it is necessary to investigate immunity
of the proposed algorithm. In our experiments, the label noise is used to generate data
perturbation. Specifically, the perturbated labels are used to inject into raw labels, and if the
perturbation ratio is given as β%, the injection is realized by randomly selecting β% number
of samples and injecting white Gaussian noise(WGN) [63] into their labels. It should be
emphasized that excessive WGN ratio of raw labels will lead to the data losing their original
semantics. From this point of view, the experimental results may be meaningless. Thus, in
the following experiments, to better observe the performance of our proposed algorithm in
response to the increasing noise ratio of raw labels, we conduct 4 WGN ratios such that
10%, 20%, 30% and 40%.

4.2. Experimental Configuration

In the context of this experiment, the neighborhood rough set is constructed by 20 different
neighborhood radii such that δ = 0.02, 0.04, . . . , 0.4. Moreover, 10-fold cross-validation [64]
is applied to the calculation of each reduct, whose details are as follows: (1) each data set is
randomly partitioned into two groups with the same size of samples, with the first group being
regarded as the testing samples and the second group being regarded as the training samples;
(2) the set of training samples is further partitioned into 10 groups with the same size such that
U1, U2, . . . , U10, and for the first round of computation, U2, U3, . . . , U10 is combined such that
U2 ∪U3 ∪ . . . ∪U10, which is used to derive reduct, with derived reduct then being used to
predict the labels of testing samples; . . .; for the last round of computation, U1 ∪U2 ∪ . . . ∪U9
is used to derive the reduct. In the same way, the derived reduct is used to predict the labels of
the testing samples.

All experiments were carried out on a personal computer with Windows 10 and an
Intel Core i9-10885H CPU (2.40 GHz) with 16.00 GB memory. The programming language
used was MATLAB R2017b.
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4.3. The First Group of Experiments

In the first group of experiments, to perform IRFFR, Algorithm 3 is employed in
conducting the final reducts. Based on the final reducts, we verifies the effectiveness of our
IRFFR by comparing it with six state-of-art feature reduction methods from three aspects:
classification accuracy, classification stability, and elapsed time. It is worth noting that the
comparative method “Ensemble Selector for Attribute Reduction (ESAR)” is based on the
ensemble [65] framework. The comparative methods are as follows:

1. Knowledge Change Rate(KCR) [33].
2. Forward Greedy Searching(FGS) [39].
3. Self Information(SI) [32].
4. Attribute Group(AG) [66].
5. Ensemble Selector for Attribute Reduction(ESAR) [40].
6. Novel Fitness Evaluation-based Feature Reduction(NFEFR) [67].

4.3.1. Comparison of Classification Accuracy

The index called classification accuracy was employed to measure the classification
performance of the seven algorithms. Two classic classifiers named KNN (K-nearest
neighbor, K = 3) [68], CART (classification and regression tree) [69], and SVM (support
vector machine) [70] were employed to reflect the classification performance. Generally,
given a decision system DS , assuming that the set U is divided into z (Note that as 10-
folds cross-validation was employed in this experiment, z = 10 holds) groups which are
disjointed and with the same size, i.e., U1, . . . , Uτ , . . . , Uz (1 ≤ τ ≤ z). The classification
accuracy related to reduct redτ (redτ is the reduct derived over U −Uτ) which is

Accredτ
=
|{x ∈ redτ |Preredτ

(x) = d(x)}|
|Uτ |

, (18)

in which Preredτ
(x) is the predicted label of x through employing reduct redτ .

The mean values of the classification accuracies are the radar charts shown in Figures 1–3,
in which four different colors are used to represent four different ratios of noisy labels.
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Figure 1. Classification accuracies (KNN).
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Figure 2. Classification accuracies (CART).
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Figure 3. Classification accuracies (SVM).
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Based on the specific experimental results expressed by Figures 1–3, the following
becomes apparent.

1. For most of data sets, no matter which ratio of label noise is injected into the raw data,
compared with six popular algorithms, the predictions generated through the reducts
derived by our IRFFR possess superiorities. The essential reason is that the feature
sequence regarding granularity is helpful for selecting out more stable features. In the
example of “Parkinson Multiple Sound Recording” (ID-10, Figure 1j)’, all classification
accuracies of IRFFR over four label noise ratios are greater than 0.6; in contrast,
when the label noise ratio reaches 20%, 30%, and 40%, all classification accuracies of
the six comparative algorithms are less than 0.6. Moreover, for some data sets, no
matter which classifier is adopted, the classification accuracies regarding our IRFFR
are greatly superior to the six comparative algorithms. The essential reason is that
diverse evaluations do bring more qualified features out. With the example of “QSAR
Biodegradation” (ID-12, Figures 1l and 2l)’, in KNN, all classification accuracies of
IRFFR are greater than 0.66 over four label noise ratios; in contrast, the classification
accuracies of all comparative algorithms are less than 0.66 over these noise ratios.
In CART, all classification accuracies of IRFFR are greater than 0.67 over four label
noise ratios; in contrast, the classification accuracies of all comparative algorithms are
less than 0.67 over these noise ratios. In SVM, with “Sonar” (ID-14, Figure 3n) as an
example, all classification accuracies of IRFFR are greater than 0.76 over four label
noise ratios; in contrast, the classification accuracies of all comparative algorithms are
around 0.68 over these noise ratios. Therefore, it can be observed that our IRFFR can
derive the reducts with outstanding classification accuracy.

2. For most data sets, a higher label noise ratio led to a negative impact on the clas-
sification accuracies of all seven algorithms. In other words, with the increase in
the label noise ratio (β increases from 10 to 40), the classification accuracies of all
seven algorithms show a significant decrease, which can be seen in Figures 1–3. With
“Twonorm” (ID-20, Figure 1t and 2t)’ as an example, the increase of β does discrimi-
nate the stripes with different colors. However, it should be noted that for some data
sets, such as “LSVT Voice Rehabilitation” (ID-8, Figures 1h and 2h) and “SPECTF
Heart” (ID-15, Figure 1o and 2o) and “QSAR Biodegradation” (ID-12, Figure 3l, the
changes in these figures are quite unexpected, which can be attributed to a higher label
noise ratio leading to the lower stability of the classification results. Furthermore, for
some data sets, such as “Diabetic Retinopathy Debrecen” (ID-4, Figures 1d and 2d)’,
“Parkinson Multiple Sound Recording” (ID-10, Figures 1j, 2j and 3j)’, and “Statlog”
(Vehicle Silhouettes) (ID-17, Figures 1q and 2q)’, the increasing label noise ratio does
not have a significant effect on the classification accuracies of our IRFFR. In other
words, compared with other algorithms, our IRFFR has a better antinoise ability.

4.3.2. Comparison of Classification Stability

In this subsection, the classification stability [40] is discussed, which was obtained
over different classification results with respect to all seven algorithms. Similar to the
classification accuracy, all experimental results are based on the CART, KNN, and SVM
classifiers. Given a decision system DS , suppose that the set U is divided into z (10-folds
cross-validation is employed; S thus, z = 10) groups which are disjoint and with the same
size such that U1, . . . , Uτ , . . . , Uz (1 ≤ τ ≤ z). Then, the classification stability related to
reduct redτ (redτ is the reduct derived over U −Uτ), which is

Stabclassi f ication =
2

z · (z− 1)

z−1

∑
τ=1

z

∑
τ′=τ+1

Exa(redτ , redτ′), (19)

in which Exa(redτ , redτ′) represents the agreement of the classification results and can be
defined based on Table 4.
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Table 4. Joint distribution of classification results.

Preredτ
(x) = d(x) Preredτ

(x) 6= d(x)

Prered′τ (x) = d(x) ψ1 ψ2
Prered′τ (x) 6= d(x) ψ3 ψ4

In Table 4, Preredτ
(x) means the predicted label of x obtained by redτ . ψ1, ψ2, ψ3, and

ψ4 represents the number of samples meeting the corresponding conditions in Table 4.
Following this, Exa(redτ , redτ′) is

Exa(redτ , redτ′) =
ψ1 + ψ4

ψ1 + ψ2 + ψ3 + ψ4
. (20)

It should be emphasized that the index of classification stability describes the degree of
deviation of the predicted labels if data perturbation occurs. A higher value of classification
stability indicates that the predicted labels are more stable, i.e., the corresponding reduct
has better quality. As for what follows, the mean values of the classification stabilities are
shown in Figures 4–6.
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Figure 4. Classification stabilities (KNN).
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Figure 5. Classification stabilities (CART).
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Figure 6. Classification stabilities (SVM).
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Based on the experimental results reported in Figures 4–6, it is not difficult to conclude
the following.

1. For most of data sets, regardless of which ratio of label noise was injected into raw
data, compared with six popular algorithms, the classification stabilities of the reducts
derived by our IRFFR were not the greatest out-performers in SVM; rather, the classi-
fication stabilities in KNN and CART were superior. Especially, for some data sets,
the predictions conducted by the reducts of our IRRFR obtained absolute dominance.
With “Musk” (Version 1)(ID-9, Figure 4i and Figure 5i) as an example, regarding KNN
and CART, the classification stabilities of our IRFFR are respectively greater than 0.66
and 0.65; S in contrast, the classification stabilities of the six comparative algorithms
are only around 0.56 and 0.58. Therefore, it can be observed that by introducing the
new grouping mechanism proposed in Section 3.3, from the viewpoint of both stability
and accuracy, our IRFFR is effective in improving the classification performance.

2. Following Figures 4 and 5, similar to the classification accuracy, we can also observe
that a higher ratio does have a negative impact on the classification stability. Moreover,
the classification stability regarding our IRFFR has superior antinoise ability that is
similar to that of the classification accuracy. With “Parkinson Multiple Sound Record-
ing” (ID-10, Figures 4j and 5j)” and “QSAR Biodegradation” (ID-12, Figures 4l and 5l)”
as examples, although the increasing ratio of label noise was injected into the raw
data, the classification stabilities corresponding to our IRFFR over four different label
noise ratios do not show dramatic change.

4.3.3. Comparison of Elapsed Time

In this section, the elapsed time for deriving reducts by employing different approaches
are compared. The detailed results are shown in the following Tables 5 and 6. The bold
texts indicate the optimal method for each row.

With a deep investigation of Tables 5 and 6, it is not difficult to arrive at the following
conclusions.

1. The time consumption for selecting features by our IRFFR was much less than that
of all the comparative algorithms. The essential reason is that IRFFR can reduce the
searching space for candidate features, which indicates that our IRFFR has superior
efficiency. With the “Wine quality” (ID-24, Table 5)” data set as an example, if β = 10,
the time consumption to obtain the reducts of IRFFR, KCR, FGS, SI, AG, ESAR,
and NFEFR are 2.5880, 59.9067, 1480.2454, 19.2041, 9.1134, 10.0511, and 98.9501 s,
respectively. Our IRFFR requires only 2.5880 s.

2. It should be pointed out that for IRFFR and FGS, the time consumption has the
largest difference. With “Pen-Based Recognition of Handwritten Digits” (ID-11) as
an example, the elapsed time of our IRFFR over four different noisy label ratios are
25.2519, 17.5276, 16.1564, and 19.5612 s respectively; in contrast, the elapsed time
of the FGS over four different noisy label ratios are 1083.2167, 4033.1561, 4023.1564,
and 4057.2135 s, respectively. Therefore, the mechanism of parallel selection can
significantly improve the efficiency in selecting features.

3. With the increase in the label noise ratio, the elapsed time of seven different algorithms
express different change tendencies. For example, when β increases from 10 to 20,
all elapsed time according to seven algorithms over the data set of “Breast Cancer
Wisconsin” (Diagnostic) (ID-1) show a downward tendency. However, when β is
30, the case is quite different, as is the case when β is 40. That is, some algorithms
require more time for reduct construction. In addition, we can observe that for the
average elapsed time, the change of six comparative algorithms is gradual. On the
contrary, the elapsed time of our IRFFR shows a clear descending trend. Therefore,
the increase in the noisy label ratio does not significantly affect the time consumption
of our IRFFR.
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Table 5. The elapsed time of deriving reducts (noisy label ratio of 10% and 20%)(s).

β ID IRFFR KCR FGS SI AG ESAR NFEFR

β = 10

1 0.0536 0.7782 0.7163 0.4309 0.1933 0.2366 4.3213
2 0.3441 28.8755 12.1876 9.9088 3.2336 3.7912 37.8901
3 0.0688 0.9308 1.0216 0.4289 0.2293 0.2286 2.9642
4 0.0937 1.7850 2.1746 0.7978 0.4394 0.4718 9.2432
5 0.0285 1.1619 0.6590 0.7516 0.2087 0.2622 2.8259
6 0.0207 0.3110 0.2639 0.4131 0.0776 0.1074 1.4439
7 0.0877 1.3412 0.9288 1.6358 0.3757 0.4650 13.4194
8 0.0692 0.9497 0.9542 0.7542 0.2887 0.3210 10.4971
9 0.1662 3.3097 3.0787 2.2836 0.8185 0.9544 56.8696
10 0.1316 2.8113 3.0106 1.3394 0.6109 0.7706 16.3750
11 25.2519 251.1537 4083.2167 139.3251 80.3628 111.3182 864.9137
12 0.1582 3.7813 4.2592 1.7390 0.8326 0.9802 28.2335
13 0.0176 0.3975 0.3412 0.4415 0.1302 0.1509 1.8344
14 0.0205 0.3544 0.3153 0.3123 0.0845 0.1121 1.4849
15 0.0199 0.3656 0.3079 0.1735 0.0912 0.1174 1.6289
16 0.3597 37.4184 9.7542 5.0382 2.6134 2.8379 26.8831
17 0.0506 1.5741 0.9303 0.5577 0.2569 0.3081 3.6622
18 0.1344 11.4536 7.1114 4.7126 2.3747 4.1211 22.7714
19 0.2144 16.1564 3.1614 3.8465 2.4617 5.1545 49.2311
20 18.5196 174.6279 838.6248 88.3156 56.7514 77.2156 557.3168
21 0.3085 20.2897 5.9909 5.2205 2.8539 4.6020 76.5475
22 2.7307 83.4015 167.8977 39.8466 11.0354 14.2905 263.3195
23 0.0608 0.5849 0.8442 0.2917 0.1719 0.1667 2.9786
24 2.5880 59.9067 148.2454 19.2041 9.1134 10.0511 98.9501
25 0.1248 1.7158 2.4156 0.9829 0.5993 0.4756 8.1322

AVE 2.0649 28.2174 255.9365 13.1501 7.0484 9.5804 86.5495

β = 20

1 0.0452 0.5909 0.5424 0.3048 0.1488 0.1932 3.3916
2 0.3431 26.1039 11.0641 9.6548 3.0425 3.5674 35.6682
3 0.0694 0.9199 1.0003 0.4512 0.2255 0.2217 2.8017
4 0.0931 1.6936 2.0875 0.7222 0.4199 0.4312 9.0950
5 0.0292 0.8807 0.5102 0.7246 0.1662 0.2043 2.2947
6 0.0202 0.2956 0.2449 0.4147 0.0696 0.0979 1.3670
7 0.0736 1.3963 0.8492 1.4892 0.2840 0.3811 12.5079
8 0.0661 0.9041 0.8549 0.7762 0.2701 0.2983 9.9450
9 0.1650 3.2286 2.9890 2.4350 0.7940 0.9160 55.3699
10 0.1308 2.2509 2.4461 1.1042 0.5276 0.6114 13.6189
11 17.5276 268.2813 4033.1561 142.8134 83.4129 121.3421 871.3185
12 0.1641 3.2625 3.6797 1.2514 0.7245 0.8604 25.0494
13 0.0028 0.4147 0.2734 0.3857 0.1075 0.0635 1.9477
14 0.0199 0.3360 0.3026 0.3273 0.0778 0.0989 1.4706
15 0.0196 0.3436 0.2994 0.1520 0.0831 0.1029 1.5284
16 0.3666 17.2910 9.8411 6.2131 2.5054 2.6535 26.5666
17 0.0515 1.5593 0.9236 0.5482 0.2309 0.2957 3.5708
18 0.1348 11.4658 7.0604 4.6848 2.3096 4.0948 22.8890
19 0.2138 16.2287 3.0204 3.7783 2.3523 5.1122 48.4254
20 12.1955 170.1989 1922.1891 80.7466 51.5930 70.7186 558.6663
21 0.3085 19.9418 6.2093 12.2543 2.8679 4.2509 77.9080
22 2.7500 78.1211 152.9137 40.2533 11.8096 13.1762 242.1188
23 0.0629 0.5696 0.8556 0.2918 0.1695 0.1671 2.8427
24 4.1455 81.0404 165.8189 29.7028 13.0710 14.3930 159.9506
25 0.1127 1.6159 2.3784 0.9381 0.5337 0.4157 7.8566

AVE 1.5645 28.3574 253.2604 13.6967 7.1119 9.7867 87.9268
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Table 6. The elapsed time of deriving reducts (noisy label ratio of 30% and 40%)(s).

β ID IRFFR KCR FGS SI AG ESAR NFEFR

β = 30

1 0.0474 0.5990 0.5494 0.2736 0.1360 0.1867 3.5187
2 0.3374 25.0034 10.6129 9.8791 2.8190 3.4207 32.9282
3 0.0684 0.8996 0.9426 0.4494 0.2200 0.2126 2.6851
4 0.0966 1.6500 2.0918 0.7303 0.3952 0.3970 8.8716
5 0.0293 0.8955 0.5394 0.7472 0.1550 0.2005 2.2598
6 0.0211 0.3043 0.2611 0.4264 0.0737 0.1026 1.3970
7 0.0732 1.4337 0.7981 1.4789 0.2350 0.2868 12.3809
8 0.0715 0.9460 0.9289 0.3575 0.2745 0.3130 10.0617
9 0.1746 3.3834 3.1107 2.7393 0.8036 0.9633 57.5430
10 0.1319 2.1473 2.3723 0.9770 0.4789 0.5942 13.1255
11 16.1564 267.4983 4023.1564 138.4983 80.9853 119.2531 870.4638
12 0.1642 3.1912 3.5769 1.3367 0.6314 0.8159 24.4300
13 0.0059 0.3292 0.2229 0.3393 0.0179 0.0344 2.0627
14 0.0200 0.3218 0.2730 0.3349 0.0755 0.0935 1.3827
15 0.0206 0.3401 0.2887 0.1474 0.0741 0.0956 1.4982
16 0.3571 16.8586 10.0374 6.8824 2.4172 2.5327 26.8768
17 0.0519 1.4422 0.8571 0.5823 0.2200 0.2771 3.3948
18 0.1372 11.3884 7.0711 4.6152 2.1914 4.1006 22.8787
19 0.2055 16.1867 2.9679 3.6706 2.2534 5.1159 47.4915
20 10.4985 168.6851 1901.9933 81.5166 58.6844 75.3100 540.0020
21 0.3095 19.8291 6.4364 5.2514 2.7627 3.7103 81.5410
22 2.8341 76.7897 152.5695 42.3649 9.9306 12.9020 237.2487
23 0.0586 0.5311 0.8019 0.2688 0.1635 0.1563 2.5599
24 4.3277 80.8440 171.6118 29.1230 13.0709 14.2647 161.9921
25 0.1000 1.6625 2.2242 0.8286 0.4491 0.4181 8.1859

AVE 1.4519 28.1264 252.2518 13.3528 7.1807 9.8303 87.0712

β = 40

1 0.0477 0.5750 0.5143 0.2659 0.1271 0.1733 3.2591
2 0.3416 24.3643 10.4060 9.7229 2.6469 3.3132 32.6536
3 0.0692 0.8752 0.9655 0.4341 0.2196 0.2125 2.6402
4 0.0936 1.5387 1.9316 0.6998 0.3433 0.3651 8.2427
5 0.0297 0.8927 0.5093 0.7516 0.1552 0.2040 2.2548
6 0.0201 0.2853 0.2343 0.3221 0.0634 0.0856 1.3058
7 0.0591 1.3633 0.7513 1.4581 0.2067 0.1697 12.6555
8 0.0678 0.8898 0.8115 0.3315 0.2606 0.2894 9.5256
9 0.1871 3.4483 3.3549 2.6639 0.8415 0.9867 59.1489
10 0.1420 2.2963 2.5092 0.9748 0.4825 0.6393 13.6530
11 19.5612 277.1566 4057.2135 144.2356 80.9851 119.3544 871.1983
12 0.1814 3.1453 3.5566 1.3475 0.5905 0.8007 23.6727
13 0.0029 0.3144 0.1955 0.2347 0.0045 0.0695 2.0031
14 0.0227 0.3232 0.2736 0.3419 0.0745 0.0939 1.3458
15 0.0196 0.3147 0.2692 0.1352 0.0718 0.0885 1.4129
16 0.5885 23.7795 18.6242 10.0813 3.3244 3.6619 45.9315
17 0.0497 1.4368 0.8528 0.5397 0.2122 0.2552 3.3861
18 0.1255 11.4535 6.9874 4.6026 2.1267 4.1127 23.1883
19 0.1944 16.1517 2.9665 3.5403 2.2440 5.0574 46.6051
20 9.7851 160.5344 1855.4531 78.2101 59.5111 71.1651 520.6933
21 0.3118 18.6813 6.1723 5.1530 2.6032 3.3897 76.1348
22 2.7809 73.5303 151.6155 41.7967 8.9678 12.0370 232.5254
23 0.0588 0.5055 0.8270 0.2831 0.1672 0.1566 2.3377
24 4.3872 80.4337 172.5754 30.0218 13.4168 14.1845 167.2978
25 0.0908 1.6617 2.2339 0.7634 0.4651 0.3579 7.0799

AVE 1.5687 28.2381 252.0722 13.5565 7.2045 9.6490 86.8061

To further show the superiority of our IRFFR, the values of speed-up ratio are further
presented in Tables 7 and 8.



Mathematics 2023, 11, 2084 21 of 33

Table 7. The speed-up ratio related to the elapsed time of obtaining reducts (noisy label ratios of 10%
and 20%).

β ID IRFFR & KCR IRFFR & FGS IRFFR & SI IRFFR & AG IRFFR & ESAR IRFFR & NFEFR

β = 10

1 0.9311 0.9252 0.8756 0.7227 0.7735 0.9876
2 0.9881 0.9718 0.9653 0.8936 0.9092 0.9909
3 0.9261 0.9327 0.8396 0.7000 0.6990 0.9768
4 0.9475 0.9569 0.8826 0.7868 0.8014 0.9899
5 0.9755 0.9568 0.9621 0.8634 0.8913 0.9899
6 0.9334 0.9216 0.9499 0.7332 0.8073 0.9857
7 0.9346 0.9056 0.9464 0.7666 0.8114 0.9935
8 0.9271 0.9275 0.9082 0.7603 0.7844 0.9934
9 0.9498 0.9460 0.9272 0.7969 0.8259 0.9971
10 0.9532 0.9563 0.9017 0.7846 0.8292 0.9920
11 0.8995 0.9938 0.8188 0.6858 0.7732 0.9708
12 0.9582 0.9629 0.9090 0.8100 0.8386 0.9944
13 0.9557 0.9484 0.9601 0.8648 0.8834 0.9904
14 0.9422 0.9350 0.9344 0.7574 0.8171 0.9862
15 0.9456 0.9354 0.8853 0.7818 0.8305 0.9878
16 0.9904 0.9631 0.9286 0.8624 0.8733 0.9866
17 0.9679 0.9456 0.9093 0.8030 0.8358 0.9862
18 0.9883 0.9811 0.9715 0.9434 0.9674 0.9941
19 0.9867 0.9322 0.9443 0.9129 0.9584 0.9956
20 0.8939 0.9904 0.7903 0.6737 0.7602 0.9668
21 0.9848 0.9485 0.9409 0.8919 0.9330 0.9960
22 0.9673 0.9837 0.9315 0.7526 0.8089 0.9896
23 0.8961 0.9280 0.7916 0.6463 0.6353 0.9796
24 0.9568 0.9983 0.8652 0.7160 0.7425 0.9738
25 0.9273 0.9483 0.8730 0.7918 0.7376 0.9847

AVE 0.9491 0.9518 0.9045 0.7881 0.8211 0.9872

β = 20

1 0.9235 0.9167 0.8517 0.6962 0.7660 0.9867
2 0.9869 0.9690 0.9645 0.8872 0.9038 0.9904
3 0.9246 0.9306 0.8462 0.6922 0.6870 0.9752
4 0.9450 0.9554 0.8711 0.7783 0.7841 0.9898
5 0.9668 0.9428 0.9597 0.8243 0.8571 0.9873
6 0.9317 0.9175 0.9513 0.7098 0.7937 0.9852
7 0.9473 0.9133 0.9506 0.7408 0.8069 0.9941
8 0.9269 0.9227 0.9148 0.7553 0.7784 0.9934
9 0.9489 0.9448 0.9322 0.7922 0.8199 0.9970
10 0.9419 0.9465 0.8815 0.7521 0.7861 0.9904
11 0.9347 0.9957 0.8773 0.7899 0.8556 0.9799
12 0.9497 0.9554 0.8689 0.7735 0.8093 0.9934
13 0.9932 0.9898 0.9927 0.9740 0.9559 0.9986
14 0.9408 0.9342 0.9392 0.7442 0.7988 0.9865
15 0.9430 0.9345 0.8711 0.7641 0.8095 0.9872
16 0.9788 0.9627 0.9410 0.8537 0.8618 0.9862
17 0.9670 0.9442 0.9061 0.7770 0.8258 0.9856
18 0.9882 0.9809 0.9712 0.9416 0.9671 0.9941
19 0.9868 0.9292 0.9434 0.9091 0.9582 0.9956
20 0.9283 0.9937 0.8490 0.7636 0.8275 0.9782
21 0.9845 0.9503 0.9748 0.8924 0.9274 0.9960
22 0.9648 0.9820 0.9317 0.7671 0.7913 0.9886
23 0.8896 0.9265 0.7844 0.6289 0.6236 0.9779
24 0.9488 0.9750 0.8604 0.6828 0.7120 0.9741
25 0.9303 0.9526 0.8799 0.7888 0.7289 0.9857

AVE 0.9509 0.9506 0.9086 0.7872 0.8174 0.9879
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Table 8. The speed-up ratio related to the elapsed time of obtaining reducts (noisy label ratios of 30%
and 40%).

β ID IRFFR & KCR IRFFR & FGS IRFFR & SI IRFFR & AG IRFFR & ESAR IRFFR & NFEFR

β = 30

1 0.9209 0.9137 0.8268 0.6515 0.7461 0.9865
2 0.9865 0.9682 0.9658 0.8803 0.9014 0.9898
3 0.9240 0.9274 0.8478 0.6891 0.6783 0.9745
4 0.9415 0.9538 0.8677 0.7556 0.7567 0.9891
5 0.9673 0.9457 0.9608 0.8110 0.8539 0.9870
6 0.9307 0.9192 0.9505 0.7137 0.7943 0.9849
7 0.9489 0.9083 0.9505 0.6885 0.7448 0.9941
8 0.9244 0.9230 0.8000 0.7395 0.7716 0.9929
9 0.9484 0.9439 0.9363 0.7827 0.8187 0.9970

10 0.9386 0.9444 0.8650 0.7246 0.7780 0.9900
11 0.9396 0.9960 0.8833 0.8005 0.8645 0.9814
12 0.9485 0.9541 0.8772 0.7399 0.7987 0.9933
13 0.9821 0.9735 0.9826 0.6704 0.8285 0.9971
14 0.9378 0.9267 0.9403 0.7351 0.7861 0.9855
15 0.9394 0.9286 0.8602 0.7220 0.7845 0.9863
16 0.9788 0.9644 0.9481 0.8523 0.8590 0.9867
17 0.9640 0.9394 0.9109 0.7641 0.8127 0.9847
18 0.9880 0.9806 0.9703 0.9374 0.9665 0.9940
19 0.9873 0.9308 0.9440 0.9088 0.9598 0.9957
20 0.9378 0.9945 0.8712 0.8211 0.8606 0.9806
21 0.9844 0.9519 0.9411 0.8880 0.9166 0.9962
22 0.9631 0.9814 0.9331 0.7146 0.7803 0.9881
23 0.8897 0.9269 0.7820 0.6416 0.6251 0.9771
24 0.9465 0.9748 0.8514 0.6689 0.6966 0.9733
25 0.9398 0.9550 0.8793 0.7773 0.7608 0.9878

AVE 0.9503 0.9491 0.9018 0.7631 0.8058 0.9877

β = 40

1 0.9170 0.9073 0.8206 0.6247 0.7248 0.9854
2 0.9860 0.9672 0.9649 0.8709 0.8969 0.9895
3 0.9209 0.9283 0.8406 0.6849 0.6744 0.9738
4 0.9392 0.9515 0.8662 0.7274 0.7436 0.9886
5 0.9667 0.9417 0.9605 0.8086 0.8544 0.9868
6 0.9295 0.9142 0.9376 0.6830 0.7652 0.9846
7 0.9566 0.9213 0.9595 0.7141 0.6517 0.9953
8 0.9238 0.9165 0.7955 0.7398 0.7657 0.9929
9 0.9457 0.9442 0.9298 0.7777 0.8104 0.9968

10 0.9382 0.9434 0.8543 0.7057 0.7779 0.9896
11 0.9294 0.9952 0.8644 0.7585 0.8361 0.9775
12 0.9423 0.9490 0.8654 0.6928 0.7734 0.9923
13 0.9908 0.9852 0.9876 0.3556 0.9583 0.9986
14 0.9298 0.9170 0.9336 0.6953 0.7583 0.9831
15 0.9377 0.9272 0.8550 0.7270 0.7785 0.9861
16 0.9753 0.9684 0.9416 0.8230 0.8393 0.9872
17 0.9654 0.9417 0.9079 0.7658 0.8053 0.9853
18 0.9890 0.9820 0.9727 0.9410 0.9695 0.9946
19 0.9880 0.9345 0.9451 0.9134 0.9616 0.9958
20 0.9390 0.9947 0.8749 0.8356 0.8625 0.9812
21 0.9833 0.9495 0.9395 0.8802 0.9080 0.9959
22 0.9622 0.9817 0.9335 0.6899 0.7690 0.9880
23 0.8837 0.9289 0.7923 0.6483 0.6245 0.9748
24 0.9455 0.9746 0.8539 0.6730 0.6907 0.9738
25 0.9454 0.9594 0.8811 0.8048 0.7463 0.9872

AVE 0.9492 0.9490 0.8991 0.7416 0.7978 0.9874

Following Tables 7 and 8, it is not difficult to observe that in the comparison with the
other six famous devices, not only are all the values of speed-up ratio with respect to four
different noisy labels over 25 data sets much higher than 35%, but all average values of the
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speed-up ratio exceed 45%. Therefore, our IRFFR does possess the ability to accelerate the
process of deriving reducts. Moreover, the Wilcoxon signed rank test [71] was also used to
compare the algorithms. As can be analyzed from the experimental results, the p-values
derived from our IRFFR and other six devices are all 8.8574× 10−5 please use scientific
notations throughout the text. which are obviously far less than 0.05. In addition, it can be
reasonably conjectured that there exists a tremendous difference between our IRFFR and
the other six state-of-the-art devices in terms of efficiency; therefore, the obtained p-values
reach the lower bound of Matlab.

On the whole, the conclusion of that our proposed IRFFR does possess a significant
advantage in time efficiency as seen by comparison with the other six algorithms can finally
be obtained.

4.4. The Second Group of Experiments

In the second group of experiments, to verify the performance of IRFFR, two famous
accelerators regarding feature reduction were employed to a conduct a comparison with
our framework.

1. Quick Random Sampling for Attribute Reduction (QRSAR) [58].
2. Dissimilarity-Based Searching for Attribute Reduction (DBSAR) [72].

4.4.1. Comparison of Elapsed Time

In this section, the elapsed time derived from all feature reduction algorithms are
compared. Tables 9–11 show the mean values of the different elapsed time obtained over
25 datasets.

Table 9. The elapsed time of deriving reducts (label noise ratio of 10% to 20%)(s).

ID
β = 10 β = 20

IRFFR QRSAR DBSAR IRFFR QRSAR DBSAR

1 0.0628 0.1769 0.3337 0.0521 0.1324 0.2892
2 0.3614 2.4125 2.9180 0.3407 2.6281 2.7269
3 0.0560 0.1306 0.2900 0.1177 0.1268 0.2862
4 0.0928 0.2987 0.5697 0.1453 0.3036 0.5502
5 0.0616 0.1744 0.3232 0.0565 0.1917 0.1507
6 0.0510 0.1712 0.1932 0.0155 0.1640 0.1852
7 0.4165 1.6451 1.2564 0.3827 1.6113 1.2226
8 0.0752 0.2814 0.3545 0.0802 0.1643 0.3359
9 0.1561 0.6201 1.2469 0.2057 0.5956 1.2224

10 0.1343 0.4787 0.8931 0.1300 0.3954 0.8098
11 16.2186 76.8057 99.5899 17.5167 51.8558 125.6400
12 0.1499 0.6312 0.8640 0.2179 0.5231 0.7559
13 0.3156 1.2615 1.0561 0.3887 1.3346 1.1292
14 0.0362 0.0771 0.0891 0.0242 0.0852 0.0824
15 0.0203 0.0790 0.1890 0.0543 0.0953 0.1809
16 0.3712 2.2313 3.0115 0.3655 2.1233 2.9035
17 0.0496 0.2182 0.3856 0.0741 0.1922 0.3596
18 1.2015 3.1645 2.9131 1.1425 3.1055 2.8541
19 0.2156 0.9115 1.2198 0.2294 0.9253 1.2336
20 11.7702 50.6085 78.1043 12.2331 35.4501 72.9459
21 0.3213 2.6717 2.6661 0.3802 2.6857 2.6801
22 2.7791 10.0723 17.7285 2.7587 6.8465 18.5027
23 0.0747 0.1382 0.5356 0.1073 0.1358 0.5332
24 2.5812 8.5460 9.7298 4.2021 12.5036 13.6874
25 0.1252 0.6667 0.5871 0.1928 0.7343 0.6547

AVE 1.5079 6.5789 10.0019 1.6566 4.9964 10.0769
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Table 10. The elapsed time of deriving reducts (label noise ratio of 30% to 40%)(s).

ID
β = 30 β = 40

IRFFR QRSAR DBSAR IRFFR QRSAR DBSAR

1 0.0887 0.1196 0.2764 0.0733 0.1107 0.2675
2 0.4025 2.4046 2.5034 0.4111 2.2325 2.3313
3 0.0982 0.1213 0.2807 0.0790 0.1209 0.2803
4 0.1327 0.2789 0.5255 0.0807 0.2270 0.4736
5 0.1023 0.1805 0.1395 0.0339 0.1807 0.1397
6 0.0708 0.1681 0.1893 0.0255 0.1578 0.1790
7 0.3220 1.5506 1.1619 0.3736 1.6022 1.2135
8 0.1098 0.1687 0.3403 0.0920 0.1548 0.3264
9 0.2361 0.6052 1.2320 0.1684 0.6431 1.2699

10 0.1998 0.3467 0.7611 0.2117 0.3503 0.7647
11 16.2165 49.4282 123.2124 19.5709 49.428 123.2122
12 0.2431 0.4300 0.6628 0.1811 0.3891 0.6219
13 0.2893 1.2352 1.0298 0.2976 1.2435 1.0381
14 0.0301 0.0829 0.0801 0.0120 0.0819 0.0791
15 0.0907 0.0863 0.1719 0.0242 0.0840 0.1696
16 0.3899 2.0351 2.8153 0.6680 2.9423 3.7225
17 0.0894 0.1813 0.3487 0.0802 0.1735 0.3409
18 1.1215 3.0845 2.8331 1.0330 2.9960 2.7446
19 0.2395 0.9354 1.2437 0.2970 0.9929 1.3012
20 10.5013 42.5415 80.0373 9.7713 43.3682 80.8640
21 0.3760 2.5805 2.5749 0.3225 2.4210 2.4154
22 2.8621 4.9675 16.6237 2.7941 4.0047 15.6609
23 0.1231 0.1298 0.5272 0.1149 0.1335 0.5309
24 4.4067 12.5035 13.6873 4.3774 12.8494 14.0332
25 0.1370 0.6785 0.5989 0.0373 0.5788 0.4992

AVE 1.5552 5.0738 10.1543 1.6452 5.0987 10.1792

Table 11. The speed-up ratio related to the elapsed time of obtaining reducts (label noise ratios of
10% to 40%).

ID
β = 10 β = 20 β = 30 β = 40

IRFFR vs.
QRSAR

IRFFR vs.
DBSAR

IRFFR vs.
QRSAR

IRFFR vs.
DBSAR

IRFFR vs.
QRSAR

IRFFR vs.
DBSAR

IRFFR vs.
QRSAR

IRFFR vs.
DBSAR

1 0.6450 0.8118 0.6065 0.8198 0.2584 0.6791 0.3379 0.7260
2 0.8502 0.8761 0.8704 0.8751 0.8326 0.8392 0.8159 0.8237
3 0.5712 0.8069 0.0718 0.5887 0.1904 0.6502 0.3466 0.7182
4 0.6893 0.8371 0.5214 0.7359 0.5242 0.7475 0.6445 0.8296
5 0.6468 0.8094 0.7053 0.6251 0.4332 0.2667 0.8124 0.7573
6 0.7021 0.7360 0.9055 0.9163 0.5788 0.6260 0.8384 0.8575
7 0.7468 0.6685 0.7625 0.6870 0.7923 0.7229 0.7668 0.6921
8 0.7328 0.7879 0.5119 0.7612 0.3491 0.6773 0.4057 0.7181
9 0.7483 0.8748 0.6546 0.8317 0.6099 0.8084 0.7381 0.8674

10 0.7194 0.8496 0.6712 0.8395 0.4237 0.7375 0.3957 0.7232
11 0.7888 0.8371 0.6622 0.8606 0.6719 0.8684 0.6041 0.8412
12 0.7625 0.8265 0.5834 0.7117 0.4347 0.6332 0.5346 0.7088
13 0.7498 0.7012 0.7088 0.6558 0.7658 0.7191 0.7607 0.7133
14 0.5305 0.5937 0.7160 0.7063 0.6369 0.6242 0.8535 0.8483
15 0.7430 0.8926 0.4302 0.6998 -0.0510 0.4724 0.7119 0.8573
16 0.8336 0.8767 0.8279 0.8741 0.8084 0.8615 0.7730 0.8206
17 0.7727 0.8714 0.6145 0.7939 0.5069 0.7436 0.5378 0.7647
18 0.6203 0.5876 0.6321 0.5997 0.6364 0.6041 0.6552 0.6236
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Table 11. Cont.

ID
β = 10 β = 20 β = 30 β = 40

IRFFR vs.
QRSAR

IRFFR vs.
DBSAR

IRFFR vs.
QRSAR

IRFFR vs.
DBSAR

IRFFR vs.
QRSAR

IRFFR vs.
DBSAR

IRFFR vs.
QRSAR

IRFFR vs.
DBSAR

19 0.7635 0.8232 0.7521 0.8140 0.7440 0.8074 0.7009 0.7717
20 0.7674 0.8493 0.6549 0.8323 0.7532 0.8688 0.7747 0.8792
21 0.8797 0.8795 0.8584 0.8581 0.8543 0.8540 0.8668 0.8665
22 0.7241 0.8432 0.5971 0.8509 0.4238 0.8278 0.3023 0.8216
23 0.4595 0.8605 0.2099 0.7988 0.0516 0.7665 0.1393 0.7836
24 0.6980 0.7347 0.6639 0.6930 0.6476 0.6780 0.6593 0.6881
25 0.8122 0.7867 0.7374 0.7055 0.7981 0.7712 0.9356 0.9253

AVE 0.7183 0.8009 0.6372 0.7654 0.5470 0.7142 0.6365 0.7851

With an in-depth analysis of Tables 9–11, it is not difficult to obtain the following
conclusions.

1. Compared with those of other advanced accelerators, the time consumptions for deriv-
ing the final reduct of our IRFFR were considerably superior, meaning the mechanism
of grouping and parallel selection does improve the efficiency of selecting features. In
other words, our IRFFR substantially reduces the time needed to complete the process
of selecting features. With the data set “Pen-Based Recognition of Handwritten Digits”
(ID-11)’ as an example, when β = 10, the elapsed time of the three algorithms are
16.2186, 76.8057, and 99.5899 s, respectively. Moreover, regarding three other ratios
(β = 20, 30, 40), the elapsed time also shows great differences.

2. With the examples of both IRFFR and QRSAR, the change of ratio does not bring
distinct oscillation to the elapsed time of our IRFFR. The essential reason for this is
that the mechanism of the diverse evaluation is especially significant for the selection
of more qualified features if data perturbation occurs. However, this mechanism does
not exist in QRSAR, which may results in some abnormal changes to QRSAR. For
instance, when β changes from 10 to 30, the elapsed times of QRSAR for “Twonorm”
(ID-20) are 50.6085, 35.4501, and 42.5415 s, respectively.

3. Although our IRFFR is not faster than the two comparative algorithms in all cases,
the speed-up ratios related to elapsed time of IRFFR are all higher than 40%. This is
mainly because IRFFR selects the qualified features in parallel; that is, IRFFR places
the optimal feature at a specific location in each group, and the final feature subset
is then derived. From this point of view, QRSAR and DBSAR are more complicated
than IRFFR.

4.4.2. Comparison of Classification Performances

In this section, the classification performances of the selected features with respect
to three feature reduction approaches are examined. The classification accuracies and
classification stabilities are recorded Tables 12–17. Note that the classifiers are KNN, CART
and SVM.

Observing Tables 12–17, it is not difficult to draw the following conclusions.

1. Compared with QRSAR and DBSAR, when β = 10, in KNN, our IRFFR achieves
slightly superior rising rates of classification accuracy such that 2.36% and 0.59% (see
Table 12). With the increase of β, the advantage of our IRFFR is gradually revealed. For
instance, when β = 20, regarding the KNN classifier, the rising rates of classification
accuracy with respect to the comparative algorithms are 6.93% and 4.49%, respectively,
which shows a significant increase. The essential reason is that the granularity has
been introduced into our framework, the corresponding feature sequence is achieved,
and the final subset is then relatively stable. Although the rising rates of QRSAR and
DBSAR are slightly lower when β increases from 30 to 40, compared with the case of
lower ratio of β, i.e., β = 10, our IRFFR does yield great success.
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2. Different from classification accuracy, regardless of which label noise ratio is injected
and which classifier employed, the classification stabilities of our IRFFR show steady
improvement (see Tables 15–17). Specifically, if β = 40, concerning all three classifiers,
all rising rates of average classification stabilities exceed 5.0 %. Such an improvement
is especially significant in a higher label noise ratio because diverse evaluation is
helpful for deriving a more stable reduct, and our IRFFR can then posses a better
classification performance if data perturbation occurs.

Table 12. The KNN classification accuracies (label noise ratio of 10% to 40%).

ID
β = 10 β = 20 β = 30 β = 40

IRFFR QRSAR DBSAR IRFFR QRSAR DBSAR IRFFR QRSAR DBSAR IRFFR QRSAR DBSAR

1 0.8984 0.9154 0.9159 0.9201 0.9267 0.9146 0.8873 0.9036 0.8983 0.9005 0.8534 0.8503
2 0.5501 0.5261 0.5121 0.5074 0.4144 0.3927 0.5128 0.3497 0.3291 0.4840 0.3137 0.2751
3 0.4033 0.4306 0.4301 0.4186 0.4274 0.4175 0.4018 0.4122 0.4119 0.4111 0.4032 0.4044
4 0.5665 0.5544 0.5522 0.5884 0.5373 0.5389 0.5674 0.5280 0.5278 0.5866 0.5318 0.5328
5 0.7421 0.5516 0.7401 0.7361 0.6795 0.6357 0.7532 0.4725 0.5476 0.7540 0.7548 0.7990
6 0.7598 0.7820 0.8308 0.8183 0.7805 0.7424 0.7696 0.7526 0.6507 0.7341 0.7700 0.7345
7 0.8310 0.8218 0.8049 0.8437 0.7850 0.8500 0.8250 0.7843 0.7817 0.8008 0.7680 0.7418
8 0.7437 0.6897 0.6815 0.7133 0.7121 0.7347 0.6609 0.6917 0.6419 0.6685 0.6529 0.6795
9 0.7744 0.7813 0.7625 0.7334 0.5849 0.5724 0.7508 0.5855 0.5752 0.7346 0.5795 0.5710

10 0.6341 0.5945 0.6430 0.6212 0.5462 0.5431 0.6099 0.5423 0.5382 0.6058 0.5368 0.5221
11 0.8011 0.7988 0.7850 0.7015 0.7145 0.7102 0.6632 0.6988 0.6712 0.6742 0.6868 0.6403
12 0.7030 0.7480 0.6999 0.7134 0.7204 0.7451 0.6183 0.6276 0.6098 0.6156 0.6197 0.6387
13 0.8812 0.9022 0.9154 0.7901 0.6404 0.8611 0.7761 0.5783 0.8488 0.7156 0.5718 0.7685
14 0.6848 0.6552 0.6911 0.6485 0.6145 0.6403 0.5652 0.5658 0.5765 0.5880 0.5652 0.5815
15 0.7295 0.7178 0.7161 0.6886 0.6898 0.6832 0.8041 0.7733 0.7710 0.7401 0.7302 0.7368
16 0.7604 0.7071 0.8358 0.7618 0.5641 0.7149 0.7507 0.4432 0.6725 0.7028 0.6866 0.5991
17 0.5907 0.5639 0.5359 0.5712 0.4740 0.4804 0.5463 0.4162 0.4126 0.5170 0.3825 0.3773
18 0.8365 0.8294 0.8161 0.7814 0.7880 0.8224 0.7617 0.7663 0.7525 0.7296 0.7260 0.7261
19 0.6563 0.5959 0.6340 0.6178 0.5803 0.5793 0.6512 0.6603 0.6346 0.6139 0.5507 0.5957
20 0.8316 0.8810 0.8454 0.7988 0.8270 0.8136 0.7780 0.7733 0.7790 0.7280 0.7302 0.7080
21 0.6058 0.5030 0.5375 0.5569 0.4856 0.5661 0.5326 0.4416 0.4872 0.5525 0.4675 0.4905
22 0.8116 0.7351 0.7132 0.7684 0.6447 0.5109 0.7592 0.5665 0.4491 0.7631 0.5315 0.4636
23 0.7651 0.8704 0.8718 0.7461 0.8495 0.8511 0.7865 0.8207 0.8284 0.7315 0.7624 0.7642
24 0.4354 0.4409 0.4165 0.4023 0.4147 0.4177 0.4351 0.4063 0.4100 0.4118 0.3814 0.3787
25 0.5829 0.5779 0.5905 0.5994 0.5422 0.5770 0.5889 0.5420 0.5282 0.5715 0.5187 0.5205

AVE 0.7032 0.6870 0.6991 0.6819 0.6377 0.6526 0.6702 0.6041 0.6133 0.6534 0.6030 0.6040
↑

2.36% ↑ 0.59% ↑
6.93%

↑
4.49%

↑
10.94%

↑
9.28%

↑
8.36% ↑ 8.18%

↑ indicates that the performance of IRFFR is better than the comparative method; ↓ indicates that the performance
of IRFFR is worse than the comparative method.

Table 13. The CART classification accuracies (label noise ratio of 10% to 40%).

ID
β = 10 β = 20 β = 30 β = 40

IRFFR QRSAR DBSAR IRFFR QRSAR DBSAR IRFFR QRSAR DBSAR IRFFR QR-
SAR DBSAR

1 0.8908 0.9094 0.9093 0.9083 0.9300 0.9291 0.8913 0.9114 0.9109 0.8643 0.8928 0.8923
2 0.5899 0.6323 0.6239 0.5484 0.5141 0.4942 0.5528 0.4352 0.4446 0.5281 0.4028 0.3634
3 0.4204 0.4401 0.4409 0.4153 0.4275 0.4282 0.4140 0.4158 0.4121 0.4150 0.4035 0.4037
4 0.5799 0.5662 0.5736 0.5836 0.5507 0.5650 0.5742 0.5296 0.5351 0.5820 0.5231 0.5368
5 0.7590 0.5812 0.7893 0.7493 0.5441 0.7317 0.7240 0.5185 0.6637 0.6696 0.5104 0.6359
6 0.7658 0.7955 0.8170 0.7850 0.8038 0.7455 0.7844 0.8016 0.7091 0.8193 0.7953 0.7384
7 0.8318 0.8156 0.8011 0.8398 0.7809 0.8453 0.8194 0.7817 0.7823 0.7994 0.7626 0.7423
8 0.7201 0.6749 0.6731 0.6801 0.6513 0.6363 0.6893 0.7129 0.6539 0.7069 0.6281 0.6575
9 0.7366 0.6295 0.6567 0.7185 0.6281 0.6322 0.6451 0.6415 0.6363 0.6252 0.6314 0.6366
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Table 13. Cont.

ID
β = 10 β = 20 β = 30 β = 40

IRFFR QRSAR DBSAR IRFFR QRSAR DBSAR IRFFR QRSAR DBSAR IRFFR QR-
SAR DBSAR

10 0.6012 0.6112 0.6117 0.5946 0.5666 0.5621 0.6113 0.5594 0.5400 0.5654 0.5488 0.5247
11 0.9166 0.9256 0.9102 0.9006 0.8560 0.8610 0.8571 0.7974 0.8082 0.8144 0.7624 0.7833
12 0.7132 0.6553 0.6413 0.6522 0.6107 0.5783 0.6179 0.6023 0.5736 0.5563 0.5632 0.5613
13 0.7820 0.8960 0.9116 0.7862 0.6363 0.8564 0.7705 0.5757 0.8494 0.7142 0.5664 0.7690
14 0.7277 0.6499 0.6496 0.6917 0.6028 0.6542 0.6514 0.5672 0.5884 0.6892 0.5709 0.5962
15 0.7216 0.7117 0.7180 0.7056 0.7004 0.7024 0.7716 0.7604 0.7884 0.7325 0.7174 0.7316
16 0.7921 0.7614 0.9191 0.8102 0.6893 0.8852 0.7900 0.5658 0.8819 0.7682 0.5040 0.8148
17 0.6467 0.6397 0.6025 0.6146 0.6026 0.6013 0.5996 0.5247 0.5267 0.6030 0.5174 0.4734
18 0.8073 0.8232 0.8123 0.7775 0.7839 0.8177 0.7561 0.7637 0.7531 0.7282 0.7206 0.7266
19 0.6571 0.5897 0.6302 0.6139 0.5762 0.5746 0.6456 0.6577 0.6352 0.6125 0.5453 0.5962
20 0.8971 0.8971 0.9324 0.8644 0.8441 0.8512 0.8534 0.8136 0.8469 0.8370 0.7874 0.8169
21 0.7123 0.6362 0.6697 0.6873 0.6256 0.7017 0.6811 0.5990 0.6578 0.6905 0.6185 0.6744
22 0.9135 0.9410 0.9261 0.8936 0.8827 0.5917 0.9024 0.8516 0.5419 0.8940 0.8120 0.5406
23 0.8041 0.8348 0.8350 0.7710 0.7751 0.7730 0.7639 0.6853 0.6863 0.7071 0.6416 0.6545
24 0.4675 0.4959 0.4760 0.4711 0.4752 0.4781 0.4665 0.4553 0.4565 0.4425 0.4204 0.4246
25 0.5837 0.5717 0.5867 0.5955 0.5381 0.5723 0.5833 0.5394 0.5288 0.5701 0.5133 0.5210

AVE 0.7215 0.7074 0.7247 0.7063 0.6638 0.6827 0.6967 0.6427 0.6564 0.6774 0.6144 0.6326

↑ 1.99% ↓
0.044% ↑ 6.40% ↑ 3.46% ↑ 8.40% ↑ 6.14% ↑

10.25% ↑ 7.08%

Table 14. The SVM classification accuracies (label noise ratio of 10% to 40%).

ID
β = 10 β = 20 β = 30 β = 40

IRFFR QR-
SAR DBSAR IRFFR QRSAR DBSAR IRFFR QRSAR DBSAR IRFFR QRSAR DB-

SAR

1 0.8872 0.8960 0.8917 0.9058 0.9212 0.9208 0.8802 0.9207 0.9230 0.8686 0.8607 0.8559
2 0.6241 0.6475 0.6552 0.6073 0.5848 0.5800 0.5855 0.5512 0.5536 0.5872 0.5614 0.5597
3 0.6080 0.5873 0.5904 0.5909 0.5718 0.5714 0.5570 0.5408 0.5402 0.5687 0.5408 0.5402
4 0.5699 0.5634 0.5738 0.5819 0.5318 0.5605 0.5658 0.5152 0.5089 0.5627 0.5057 0.5033
5 0.7480 0.8147 0.7952 0.7378 0.6509 0.7189 0.7320 0.6439 0.6334 0.7375 0.6283 0.6016
6 0.8180 0.8073 0.7882 0.8262 0.7746 0.8335 0.8019 0.7575 0.7624 0.7920 0.7550 0.7246
7 0.6433 0.5814 0.6173 0.6003 0.5699 0.5628 0.6281 0.6335 0.6153 0.6051 0.5377 0.5785
8 0.6932 0.5833 0.5794 0.6532 0.5757 0.5717 0.6728 0.5660 0.5647 0.6751 0.5622 0.5598
9 0.6020 0.5812 0.5822 0.5882 0.5405 0.5346 0.5804 0.5322 0.5261 0.5852 0.5242 0.5032

10 0.8327 0.8337 0.8188 0.8035 0.7915 0.7828 0.7777 0.7478 0.7516 0.7213 0.7064 0.6955
11 0.6703 0.5880 0.5996 0.6688 0.5526 0.5399 0.6851 0.5485 0.5236 0.6288 0.5221 0.5029
12 0.6580 0.5853 0.6048 0.6433 0.5753 0.5826 0.6134 0.5825 0.5634 0.6095 0.5304 0.5376
13 0.7323 0.7129 0.7330 0.7289 0.7503 0.7456 0.7238 0.7380 0.7595 0.7077 0.7145 0.7400
14 0.7682 0.8877 0.8987 0.7726 0.6300 0.8446 0.7530 0.5515 0.8295 0.7068 0.5588 0.7513
15 0.6738 0.6666 0.6748 0.6704 0.6309 0.6469 0.6199 0.5754 0.5959 0.6198 0.5558 0.5551
16 0.7935 0.8149 0.7994 0.7639 0.7776 0.8059 0.7386 0.7395 0.7332 0.7208 0.7130 0.7089
17 0.7112 0.6052 0.6568 0.6895 0.6647 0.7209 0.6790 0.6418 0.6721 0.6646 0.6360 0.6697
18 0.8704 0.8736 0.7496 0.8465 0.8284 0.7322 0.8496 0.7779 0.6261 0.8449 0.7292 0.6319
19 0.8529 0.8105 0.8169 0.7975 0.7029 0.6985 0.7501 0.6029 0.5987 0.6764 0.5628 0.5568
20 0.5760 0.5869 0.5908 0.5814 0.5824 0.5875 0.5757 0.5683 0.5773 0.5687 0.5691 0.5638
21 0.8175 0.8125 0.7906 0.8274 0.7796 0.8336 0.8075 0.7628 0.7680 0.7933 0.7564 0.7304
22 0.7677 0.8929 0.9011 0.7738 0.6350 0.8447 0.7586 0.5568 0.8351 0.7081 0.5602 0.7571
23 0.7930 0.8201 0.8018 0.7651 0.7826 0.8060 0.7442 0.7448 0.7388 0.7221 0.7144 0.7147
24 0.6428 0.5866 0.6197 0.6015 0.5749 0.5629 0.6337 0.6388 0.6209 0.6064 0.5391 0.5843
25 0.5694 0.5686 0.5762 0.5831 0.5368 0.5606 0.5714 0.5205 0.5145 0.5640 0.5071 0.5091

AVE 0.7169 0.7083 0.7082 0.7044 0.6607 0.6860 0.6914 0.6383 0.6535 0.6738 0.6141 0.6254
↑ 1.21% ↑ 1.23% ↑ 6.61% ↑ 2.68% ↑ 8.32% ↑ 5.80% ↑ 9.72% ↑ 7.74%
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Table 15. The KNN classification stabilities (label noise ratio of 10% to 40%).

ID
β = 10 β = 20 β = 30 β = 40

IRFFR QRSAR DBSAR IRFFR QRSAR DBSAR IRFFR QRSAR DBSAR IRFFR QRSAR DBSAR

1 0.8929 0.9085 0.9102 0.9109 0.8883 0.8886 0.8765 0.9045 0.8912 0.8931 0.8359 0.8229
2 0.6087 0.6048 0.6071 0.5933 0.5820 0.5891 0.5803 0.5947 0.6007 0.5796 0.6090 0.6326
3 0.6276 0.6029 0.6024 0.6227 0.5750 0.5738 0.6028 0.5524 0.5529 0.6145 0.5479 0.5456
4 0.6010 0.5895 0.5926 0.5854 0.5275 0.5373 0.5876 0.5312 0.5285 0.5787 0.5196 0.5267
5 0.7518 0.7038 0.7572 0.7199 0.6240 0.6156 0.7238 0.6067 0.5555 0.7254 0.5926 0.5493
6 0.7677 0.8002 0.8724 0.8584 0.7930 0.8462 0.7683 0.7670 0.6680 0.7984 0.7730 0.8045
7 0.8289 0.8161 0.7987 0.8370 0.7811 0.8417 0.8212 0.7808 0.7795 0.7985 0.7592 0.7410
8 0.6849 0.6621 0.6435 0.6329 0.6013 0.5775 0.6401 0.6385 0.5951 0.5637 0.6001 0.6031
9 0.7439 0.5455 0.5457 0.7173 0.5295 0.5146 0.7197 0.5228 0.5239 0.6905 0.5342 0.5323

10 0.6563 0.5962 0.5965 0.6047 0.5253 0.5199 0.6048 0.5294 0.5336 0.6103 0.5362 0.5316
11 0.8885 0.8821 0.8747 0.8543 0.8360 0.8402 0.8029 0.7763 0.7802 0.7620 0.7358 0.7104
12 0.6780 0.5965 0.6353 0.6822 0.5932 0.5798 0.7045 0.6114 0.5967 0.6641 0.5874 0.6669
13 0.7791 0.8965 0.9092 0.7834 0.6365 0.8528 0.7723 0.5748 0.8466 0.7133 0.5630 0.7677
14 0.7231 0.6345 0.6262 0.6751 0.5848 0.5667 0.6023 0.5946 0.5608 0.6129 0.5606 0.5369
15 0.7484 0.7578 0.7640 0.7664 0.7445 0.7480 0.7764 0.7904 0.7524 0.7593 0.7555 0.7999
16 0.7515 0.8297 0.6526 0.7305 0.5816 0.6990 0.7127 0.5836 0.6686 0.6517 0.6020 0.6273
17 0.6455 0.6265 0.6379 0.6449 0.5729 0.5611 0.5997 0.5572 0.5680 0.5950 0.5469 0.5591
18 0.8044 0.8237 0.8099 0.7747 0.7841 0.8141 0.7579 0.7628 0.7503 0.7273 0.7172 0.7253
19 0.6542 0.5902 0.6278 0.6111 0.5764 0.5710 0.6474 0.6568 0.6324 0.6116 0.5419 0.5949
20 0.7396 0.7443 0.7758 0.7018 0.7365 0.7153 0.6890 0.6889 0.6862 0.6579 0.6501 0.6387
21 0.6368 0.5674 0.5895 0.6404 0.6129 0.6069 0.6018 0.5789 0.5707 0.6165 0.5866 0.5777
22 0.7666 0.7081 0.7152 0.7128 0.6171 0.7126 0.7065 0.5834 0.6013 0.7095 0.5654 0.6123
23 0.7397 0.8793 0.8779 0.7265 0.8417 0.8491 0.7737 0.7879 0.7981 0.6763 0.7230 0.7206
24 0.5792 0.5884 0.5910 0.5823 0.5742 0.5765 0.5811 0.5715 0.5737 0.5759 0.5791 0.5851
25 0.5808 0.5722 0.5843 0.5927 0.5383 0.5687 0.5851 0.5385 0.5260 0.5692 0.5099 0.5197

AVE 0.7152 0.7011 0.7039 0.7025 0.6503 0.6706 0.6895 0.6434 0.6456 0.6702 0.6213 0.6373
↑ 2.01% ↑ 1.61% ↑ 8.03% ↑ 4.76% ↑ 7.17% ↑ 6.82% ↑ 7.87% ↑ 5.16%

Table 16. The CART classification stabilities (label noise ratio of 10% to 40%).

ID
β = 10 β = 20 β = 30 β = 40

IRFFR QRSAR DB-
SAR IRFFR QRSAR DBSAR IRFFR QRSAR DBSAR IRFFR QR-

SAR
DB-

SAR

1 0.8916 0.8967 0.8887 0.9044 0.9202 0.9195 0.8846 0.9257 0.9256 0.8712 0.8643 0.8637
2 0.6285 0.6482 0.6522 0.6059 0.5838 0.5787 0.5899 0.5562 0.5562 0.5898 0.5650 0.5675
3 0.6124 0.5880 0.5874 0.5895 0.5708 0.5701 0.5614 0.5458 0.5428 0.5713 0.5444 0.5480
4 0.5743 0.5641 0.5708 0.5805 0.5308 0.5592 0.5702 0.5202 0.5115 0.5653 0.5093 0.5111
5 0.7524 0.8154 0.7922 0.7364 0.6499 0.7176 0.7364 0.6489 0.6360 0.7401 0.6319 0.6094
6 0.8224 0.8080 0.7852 0.8248 0.7736 0.8322 0.8063 0.7625 0.7650 0.7946 0.7586 0.7324
7 0.8219 0.8132 0.7876 0.8260 0.7786 0.8323 0.8119 0.7678 0.7706 0.7959 0.7600 0.7382
8 0.6477 0.5821 0.6143 0.5989 0.5689 0.5615 0.6325 0.6385 0.6179 0.6077 0.5413 0.5863
9 0.6976 0.5840 0.5764 0.6518 0.5747 0.5704 0.6772 0.5710 0.5673 0.6777 0.5658 0.5676

10 0.6064 0.5819 0.5792 0.5868 0.5395 0.5333 0.5848 0.5372 0.5287 0.5878 0.5278 0.5110
11 0.8371 0.8344 0.8158 0.8021 0.7905 0.7815 0.7821 0.7528 0.7542 0.7239 0.7100 0.7033
12 0.6747 0.5887 0.5966 0.6674 0.5516 0.5386 0.6895 0.5535 0.5262 0.6314 0.5257 0.5107
13 0.7721 0.8936 0.8981 0.7724 0.6340 0.8434 0.7630 0.5618 0.8377 0.7107 0.5638 0.7649
14 0.6624 0.5860 0.6018 0.6419 0.5743 0.5813 0.6178 0.5875 0.5660 0.6121 0.5340 0.5454
15 0.7367 0.7136 0.7300 0.7275 0.7493 0.7443 0.7282 0.7430 0.7621 0.7103 0.7181 0.7478
16 0.7726 0.8884 0.8957 0.7712 0.6290 0.8433 0.7574 0.5565 0.8321 0.7094 0.5624 0.7591
17 0.6782 0.6673 0.6718 0.6690 0.6299 0.6456 0.6243 0.5804 0.5985 0.6224 0.5594 0.5629
18 0.7974 0.8208 0.7988 0.7637 0.7816 0.8047 0.7486 0.7498 0.7414 0.7247 0.7180 0.7225
19 0.6472 0.5873 0.6167 0.6001 0.5739 0.5616 0.6381 0.6438 0.6235 0.6090 0.5427 0.5921
20 0.7979 0.8156 0.7964 0.7625 0.7766 0.8046 0.7430 0.7445 0.7358 0.7234 0.7166 0.7167
21 0.7156 0.6059 0.6538 0.6881 0.6637 0.7196 0.6834 0.6468 0.6747 0.6672 0.6396 0.6775
22 0.8748 0.8743 0.7466 0.8451 0.8274 0.7309 0.8540 0.7829 0.6287 0.8475 0.7328 0.6397
23 0.8573 0.8112 0.8139 0.7961 0.7019 0.6972 0.7545 0.6079 0.6013 0.6790 0.5664 0.5646
24 0.5804 0.5876 0.5878 0.5800 0.5814 0.5862 0.5801 0.5733 0.5799 0.5713 0.5727 0.5716
25 0.5738 0.5693 0.5732 0.5817 0.5358 0.5593 0.5758 0.5255 0.5171 0.5666 0.5107 0.5169

AVE 0.7213 0.7090 0.7052 0.7030 0.6597 0.6847 0.6958 0.6434 0.6560 0.6764 0.6177 0.6332
↑ 1.73% ↑ 2.28% ↑ 6.56% ↑ 2.67% ↑ 8.14% ↑ 6.07% ↑ 9.50% ↑ 6.82%
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Table 17. The SVM classification stabilities (label noise ratio of 10% to 40%).

ID
β = 10 β = 20 β = 30 β = 40

IRFFR QRSAR DBSAR IRFFR QRSAR DBSAR IRFFR QRSAR DBSAR IRFFR QRSAR DBSAR

1 0.8908 0.9170 0.9150 0.9070 0.9380 0.9259 0.8924 0.9123 0.9117 0.8616 0.8939 0.8957
2 0.5899 0.6399 0.6296 0.5471 0.5221 0.4910 0.5539 0.4361 0.4454 0.5254 0.4039 0.3668
3 0.4204 0.4477 0.4466 0.4140 0.4355 0.4250 0.4151 0.4167 0.4129 0.4123 0.4046 0.4071
4 0.5799 0.5738 0.5793 0.5823 0.5587 0.5618 0.5753 0.5305 0.5359 0.5793 0.5242 0.5402
5 0.7590 0.5888 0.7950 0.7480 0.5521 0.7285 0.7251 0.5194 0.6645 0.6669 0.5115 0.6393
6 0.7658 0.8031 0.8227 0.7837 0.8118 0.7423 0.7855 0.8025 0.7099 0.8166 0.7964 0.7418
7 0.7201 0.6825 0.6788 0.6788 0.6593 0.6331 0.6904 0.7138 0.6547 0.7042 0.6292 0.6609
8 0.7366 0.6371 0.6624 0.7172 0.6361 0.6290 0.6462 0.6424 0.6371 0.6225 0.6325 0.6400
9 0.6012 0.6188 0.6174 0.5933 0.5746 0.5589 0.6124 0.5603 0.5408 0.5627 0.5499 0.5281

10 0.9166 0.9332 0.9159 0.8993 0.8640 0.8578 0.8582 0.7983 0.8090 0.8117 0.7635 0.7867
11 0.7132 0.6629 0.6470 0.6509 0.6187 0.5751 0.6190 0.6032 0.5744 0.5536 0.5643 0.5647
12 0.7277 0.6575 0.6553 0.6904 0.6108 0.6510 0.6525 0.5681 0.5892 0.6865 0.5720 0.5996
13 0.7216 0.7193 0.7237 0.7043 0.7084 0.6992 0.7727 0.7613 0.7892 0.7298 0.7185 0.7350
14 0.7921 0.7690 0.9248 0.8089 0.6973 0.8820 0.7911 0.5667 0.8827 0.7655 0.5051 0.8182
15 0.6467 0.6473 0.6082 0.6133 0.6106 0.5981 0.6007 0.5256 0.5275 0.6003 0.5185 0.4768
16 0.8971 0.9047 0.9381 0.8631 0.8521 0.8480 0.8545 0.8145 0.8477 0.8343 0.7885 0.8203
17 0.7123 0.6438 0.6754 0.6860 0.6336 0.6985 0.6822 0.5999 0.6586 0.6878 0.6196 0.6778
18 0.9135 0.9486 0.9318 0.8923 0.8907 0.5885 0.9035 0.8525 0.5427 0.8913 0.8131 0.5440
19 0.8041 0.8424 0.8407 0.7697 0.7831 0.7698 0.7650 0.6862 0.6871 0.7044 0.6427 0.6579
20 0.4675 0.5035 0.4817 0.4698 0.4832 0.4749 0.4676 0.4562 0.4573 0.4398 0.4215 0.4280
21 0.8318 0.8232 0.8068 0.8385 0.7889 0.8421 0.8205 0.7826 0.7831 0.7967 0.7637 0.7457
22 0.7820 0.9036 0.9173 0.7849 0.6443 0.8532 0.7716 0.5766 0.8502 0.7115 0.5675 0.7724
23 0.8073 0.8308 0.8180 0.7762 0.7919 0.8145 0.7572 0.7646 0.7539 0.7255 0.7217 0.7300
24 0.6571 0.5973 0.6359 0.6126 0.5842 0.5714 0.6467 0.6586 0.6360 0.6098 0.5464 0.5996
25 0.5837 0.5793 0.5924 0.5942 0.5461 0.5691 0.5844 0.5403 0.5296 0.5674 0.5144 0.5244

AVE 0.7215 0.7150 0.7304 0.7050 0.6718 0.6795 0.6978 0.6435 0.6572 0.6747 0.6155 0.6360
↑ 0.91% ↑ 1.22% ↑ 4.94% ↑ 3.75% ↑ 8.44% ↑ 6.18% ↑ 9.62% ↑ 6.08%

In addition, Tables 18 and 19 show the counts of wins, ties, and losses regarding the
classification stabilities and accuracies in the different classifiers. As has been reported in
in [73], the number of wins in s the datasets obeys the normal distribution N( s

2 ,
√

s
2 ) under

the null hypothesis in the sign test for a given learning algorithm. We assert that the IRFFR
is significantly better than are those under the significance level α, when the number of
wins is at least s

2 + Z α
2
×
√

s
2 . In our experiments, s = 25, α = 0.1, then s

2 + Z α
2
×
√

s
2 ≈ 17.

This implies that our IRFFR will achieve statistical superiority if the number of wins and
ties over 25 datasets reaches 17.

Table 18. Counts of wins, ties, and losses regarding the classification stabilities.

Win/Tie/Loss
β = 10 β = 20 β = 30 β = 40

IRFFR vs.
QRSAR

IRFFR vs.
DBSAR

IRFFR vs.
QRSAR

IRFFR vs.
DBSAR

IRFFR vs.
QRSAR

IRFFR vs.
DBSAR

IRFFR vs.
QRSAR

IRFFR vs.
DBSAR

KNN (16/0/9) (15/0/10) (22/0/3) (20/0/5) (19/0/6) (21/0/4) (21/0/4) (17/0/8)

CART (17/0/8) (19/0/6) (20/0/5) (15/0/10) (19/0/6) (21/0/4) (23/0/2) (20/0/5)

SVM (12/0/13) (10/0/15) (18/0/7) (16/0/9) (19/0/6) (21/0/4) (22/0/3) (18/0/7)

Table 19. Counts of wins, ties and losses regarding classification accuracies.

Win/Tie/Loss
β = 10 β = 20 β = 30 β = 40

IRFFR vs.
QRSAR

IRFFR vs.
DBSAR

IRFFR vs.
QRSAR

IRFFR vs.
DBSAR

IRFFR vs.
QRSAR

IRFFR vs.
DBSAR

IRFFR vs.
QRSAR

IRFFR vs.
DBSAR

KNN (16/0/9) (15/0/10) (16/0/9) (15/0/10) (16/0/9) (18/0/7) (19/0/6) (19/0/6)

CART (13/1/11) (11/0/14) (19/0/6) (16/0/9) (19/0/6) (21/0/4) (22/0/3) (20/0/5)

SVM (15/0/10) (13/0/12) (20/0/5) (15/0/10) (19/0/6) (20/0/5) (23/0/2) (21/0/4)
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Considering the above discussions, we can clearly conclude that our IRFFR can not
only accelerate the process of deriving reducts but can also provide qualified reducts with
better classification performance.

5. Conclusions

In this study, considering the predictable shortcomings of the application of a single
feature measure, we developed a novel parallel selector which includes the following: (1)
the evaluation of features from diverse viewpoints and (2) a reliable paradigm which can be
used for improving the effectiveness and efficiency of final selected features. Therefore, the
additive time consumption with respect to incremental evaluation is then reduced. Different
from previous devices which only consider single measure-based constraints for deriving
qualified reducts, our selector pays considerable attention to the pattern of fusing different
measures for attaining reducts with better generalization performance. Furthermore, It
is worth emphasizing that our new selector can be seen as an effective framework which
can be easily combined with other recent measures and other acceleration strategies. The
results of the persuasive experiments and the corresponding analysis strongly prove the
superiority of our selector.

Many follow-up comparison studies can be proposed on the basis of our strategy, with
the items warranting further exploration being the following.

1. It should not be ignored that the problems caused by multilabeling have aroused
extensive discussion in the academic community. Therefore, it is urgent to further
introduce the proposed method to dimension reduction problems with multilabel
distributed data sets.

2. The type of data perturbation considered in this paper involves only the aspect of the
label. Therefore, can simulate other data perturbation forms, such as injecting feature
noise [74], to make the proposed algorithm more robust.
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