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Abstract: In practice, the cross-domain transfer of data distribution and the sample imbalance
of fault status are inevitable, but one or both are often ignored, which restricts the adaptability
and classification accuracy of the generated fault diagnosis (FD) model. Accordingly, an entropy-
optimized method is proposed in this paper based on an unsupervised domain-adaptive technique
to enhance FD model training. For the training, pseudosamples and labels corresponding to the
target samples are generated through data augmentation and self-training strategies to diminish the
distribution discrepancy between the source and target domains. Meanwhile, an adaptive conditional
entropy loss function is developed to improve the data quality of the semisupervised learning, with
which reliable samples are generated for the training. According to the experiment results, compared
with other state-of-the-art algorithms, our method can achieve significant accuracy improvement in
rolling bearing FD. Typically, the accuracy improvement compared with the baseline Convolutional
Neural Network (CNN) is achieved by over 13.23%.

Keywords: class imbalance; domain adaptation; entropy optimization; fault diagnosis (FD)

MSC: 68T01

1. Introduction

A rolling bearing is a widely used key component in mechanical equipment. It serves
under random noises, impact loads and thermal stresses persistently. Hence, failures
from some hidden faults are not rare. Effective fault diagnosis (FD) ensures the reliable
operation of rolling bearings and extends the service life of the equipment [1–4]. For
instance, Qin et al. [5] applied the joint signal components and the improved logistic
sigmoid units to diagnose the health condition of wind turbines. Shao et al. [6] introduced
multisource signals as training data to enhance the robustness and accuracy of the FD
model. Yang et al. [7] utilized graph theory for short-time Fourier transform and employed
a Laplacian matrix to represent different features for data classification of FD.

Currently, most research findings are obtained by assuming that the distributions of
the training and test data are consistent, as well as that the interclass data in the dataset
are balanced. In practical scenarios, the first assumption is not always promised due to the
varying working conditions and environment noises. Meanwhile, the fault-free data are
generally more than the faulty ones from the industrial operation sites, which indicates high
imbalance ratios (IRs) of the obtained data and a low possibility of the second assumption.
An example is given in Figure 1 to illustrate these situations, where the data in the training
and testing stages are set to cover the source domain and target domain, respectively. A
large number of normal data (blue square) and a small number of failure data (blue circle)
are chosen for the model training (Figure 1a). In a conventional way, the feature of the
majority data from the same family is learned by the trained model, while the feature of
the minority data is most probably ignored and incorrectly aligned into the family of the
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majority data (Figure 1b). These situations cause deviations between theory and practice.
It is necessary to establish an effective FD scheme for mechanical components with high
adaptability and strong classification ability.
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说明: Fig. xx. Simple illustration of imbalanced data. (a) Original 

imbalanced dataset. (b) Conventional classification result. (c) The result 

of the proposed method.

Source Target Correct Incorrect×✔ Class boundary

Figure 1. Illustration of FD methods with imbalanced data: (a) Original imbalanced dataset. (b) Con-
ventional FD classification result. (c) FD result of our proposed method.

The domain adaptation (DA) technique is an effective method to solve the distribution
shift issue that arose in the first assumption, as it applies the object’s health knowledge from
the source domain to the target domain, and the domain-invariant knowledge extracted
between the source and target domains improves the model performance on the testing
data [8,9]. Generally, the DA technique in the FD field contains adversarial-learning-
based and moment-matching-based approaches. The first type is inspired by generative
adversarial networks, which train the model antagonistically in two game classifiers and
make it difficult for the model to distinguish features between the source and target
domains [10]. The other type embeds various distance metrics into networks and minimizes
them to mitigate distribution discrepancies. For example, Cui et al. [11] proposed a new
feature distance metric method based on a stacked autoencoder (SAE) to minimize the
distribution discrepancy between the source and target data and utilized a support vector
machine as a classifier to detect faults. In [12], Qian et al. adopted the CORAL distance
metric method based on a convolution autoencoder to resist the classification loss and
diagnose the faults in the test data from the cross-domain bearings by combining the
CORAL loss and domain classification loss. A cross-domain FD model was developed by
Deng et al. [13] which extracts the features of a large number of source domain data based
on SAE and is then fine-tuned with a small number of target domain data.

Concerning the imbalance issue that arose in the second assumption, only a few solu-
tions have been proposed based on the aspects of data and algorithms [14–18]. Data-related
methods focus on changing the data distribution, whereas algorithm-related methods tend
to improve the precision of minority samples based on new algorithms [19,20]. For the
algorithm aspect, the semisupervised learning (SSL) technique has been developed as an
effective way to address the class-imbalanced issue of samples. Ge et al. [21] used an
affinity propagation and spatial constraint algorithm that expanded the small number of
labeled sample sets by selecting unlabeled samples with high confidence. Zhao et al. [22]
proposed a new entropy perception algorithm to improve the self-training reliability on a
small number of labels and limited node classification performance. In [23], an associative
self-training classification approach is developed based on the ant colony optimization,
which produces higher accuracy than the traditional self-training classification by using
the correlation among the attribute values. From the related findings, it is found that the
quality of the constructed pseudosample in the self-training algorithm is commonly poor,
and hence the representation learning of the model would be misled.

To address the aforementioned issues, we consider eliminating the effect of the IRs
for the target samples without obtaining additional samples in the process of applying the
source knowledge to the target dataset (Figure 1c). To this end, an unsupervised-DA-based
entropy optimization (UDA-EO) method is proposed for the FD of rolling bearings in
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this paper. In detail, a number of reliable pseudosamples are automatically constructed
via a predicted consistency strategy; then, an entropy optimization algorithm under a
leveraged entropy objective is designed to ensure the prediction consistency between
the true and pseudosamples and minimize the distribution discrepancy across domains;
and finally, the classification for FD is achieved, and the performance is improved by a
progressively updated model, where the impacts from the class imbalance and distribution
shift on the model are effectively reduced. Comparative experiments are performed to
illustrate the effectiveness of the proposed UDA-EO method on the benchmarks of two
industrial datasets. The results of 16 experiments indicate that UDA-EO has strong FD
ability and robustness under different IRs and can handle the data in the processes with
class imbalance. The main contributions of this study are listed as follows:

(1) The issues of class imbalance and distribution discrepancy in datasets under different
working conditions are simultaneously and effectively addressed.

(2) The UDA-EO FD method is developed under a leveraged entropy objective that
ensures prediction consistency.

(3) By means of applying the source knowledge to the target samples, the predictive
entropy of pseudosamples is selectively minimized to improve confidence on highly
consistent target data.

The remainder of this paper is organized as follows. Section 2 introduces the ba-
sic knowledge and the motivation. In Section 3, the main methodologies are provided.
Comparative experiments are presented in Section 4 to illustrate the effectiveness and
superiority of the proposed method. Section 5 concludes the paper.

2. Preliminaries
2.1. Convolutional Neural Network

During the past decades, CNNs have been widely used for image processing and
machine vision. As a mainstream of the deep learning network techniques, the CNN
includes a structure of convolutional, pooling, fully connected and classification layers.
In a convolutional layer, filters are used to perform convolution operations to generate
the features of the input samples. The pooling layer is set for extracting the features. The
fully connected layer and the classification layer are responsible for outputting the proba-
bility and classification results of the network predictions, respectively. The convolution
operation is defined as

z(i) = g(wTx(i) + b),

where x(i) ∈ {x(1), x(2), x(3), . . . , x(n)} is an input datum, n denotes the length of the
input data, g(∗) represents an activation function of the rectified linear unit (ReLU), w
is a weight matrix, b indicates a bias and z(i) is the feature output learned from the
convolution kernel.

To reduce the dimension of the features extracted from the convolution layer, the
maximum pooling function is set as

pj(i) = max
j∈Rj
{zj(i)},

where zj(i) represents the feature extracted in the jth pooling layer, pj(i) is the pooling
value of the ith neuron and Rj indicates the pooling area.

2.2. Maximum Mean Discrepancy

In this study, the maximum mean discrepancy (MMD) technique is adopted to estimate
the distribution discrepancy. MMD is defined as

MMDH(XS, XT ) = ‖
1
n

n

∑
i=1

(φ(xS
i )− φ(xTi ))‖2

H ,
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and it is regarded as the distance metric of marginal distributions with kernel embedded,
where φ is the nonlinear mapping function of the reproducing kernel Hilbert space H [24],
S and T represent the source and target domains, respectively, and x∗i and X∗ from S or T
denote the data and the dataset, respectively. If the distributions of the source and target
domains are consistent, MMDH(XS, XT ) = 0.

In a DA process, MMD is usually considered as the regularization term of the repre-
sentation learning to minimize the discrepancy between different domains. In this study,
the embedding of multiple kernels is performed to ensure low testing errors. Additionally,
the MMD optimization objective LM between two datasets is given as

LM =
m

∑
k=1

MMDHk(XS, XT ), (1)

where MMDHk indicates that k Gaussian kernels are embedded in H.

2.3. Self-Training

Self-training is a kind of semisupervised learning and a promising way for training a
classifier to expand the labeled samples. In the original dataset, only a small proportion of
labeled samples are contained by comparing them with the unlabeled ones. Traditional self-
training methods take labeled samples (A) as training data to generate an initial classifier
(C). With the initial classifier (C), the most reliable samples (B′) are selected from the
unlabeled samples (B) and then classified as labeled ones (A). By restarting a new training
process based on the updated labeled samples (A), the final classifier (C) is obtained [25].

2.4. Motivation

In practical applications, data imbalance and distribution shifts of collected data are
always present, but they are partially ignored in most of the FD research findings. Only
a focus on one situation may result in weak model generalization ability and poor FD
performance. Accordingly, dealing with these two issues simultaneously is necessary,
which gives birth to this study. Decreasing IRs and using the DA technique will balance
the interclass distributions and reduce the discrepancy between distributions, respectively.
Hence, our goal is to solve the mentioned issues by fusing these measures to obtain the
health condition of rolling bearings in the target domain. More details are given as below.

3. Methodology
3.1. Notations

Define an input space X, the input random variable x, the set of n health conditions
Y = {1, 2, 3, . . . , n} and the output random variable y. The CNN classifier is given as
y = f (x) (mapping f : X → Y). The joint probability distributions of X and Y are set as
P(X, Y), and the joint probability distributions of the source domain S and target domain T
are given as PS(X, Y) and PT (X, Y), respectively. For the data from the source domain, the
output probability predicted by the model is denoted as p(y|x); for the data in the target
domain, the estimated pseudolabel ŷ represents max p(y|xT ).

In a UDA process, we have access to the labeled source sample (xs, ys) ∼ PS(X, Y)
and unlabeled target sample (xT ) ∼ PT (X). Concerning the data distribution shift case, it
is known that PT (Y|X = x) = PS(Y|X = x), but PT (X) 6= PS(X). In the class-imbalanced
domain, it gives PT (X|Y = y) and PT (Y) 6= PS(Y).

3.2. Overall Architecture

To realize our purpose, it is required to classify the imbalanced samples from the
target domain into the correct fault statuses by decreasing the IRs between the majority
and minority classes. The pipeline of the UDA-EO method consists of two parts, i.e., to
learn the knowledge from S and to optimize the entropy objective from T , as shown in
Algorithm 1. For the first part, UDA-EO learns the sample features in S and obtains a fault
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classifier. For the second part, it performs two steps to selectively minimize the predictive
entropy of the pseudosamples and improve confidence on highly consistent target data.
Firstly, UDA-EO constructs pseudosamples and labels of target samples with the data
augmentation and self-training strategies to eliminate the IRs effects. Then, pseudosamples
with high confidence are employed to train the model, with which the health condition in
T is consequently classified. These two steps are executed continuously until the maximal
epoch is reached.

Algorithm 1 Training of the UDA-EO model

Require: source domain data XS, source domain label YS, unlabeled target domain
data XT .

Ensure: the network model y = f (x) and the predicted health conditions for the target data.

1: Train an initial deep network on source dataset (XS, YS).
2: Obtain the cross-entropy loss LM.
3: while maximum epochs do
4: Initial m and n and predict the pseudolabels ˆyT = arg max p(y|xT ) for the target data.

5: Obtain {r1(xT ), r2(xT ), r3(xT ), . . . , ri(xT )} from RandAugment, prediction+, and
prediction−

6: if prediction+ then
7: LEO = Lprediction+

based on Equation (6)
8: else
9: LEO = Lprediction− based on Equation (6)

10: end if
11: Minimize the loss function defined in Equation (8).
12: Update the network parameters by back propagation.
13: end while

The framework of the proposed method used for cross-domain FD with imbalanced
data is shown in Figure 2. By concerning the available source dataset under multiple
working conditions for data preprocessing, the samples from each condition are all put
into the network. Reshaping operations are conducted based on Gramian angular field
(GAF) technique for all input data to generate a 2D image [26–28]. Note that the following
UDA-EO framework still works if no GAF-based preprocessing is given.

Considering the domain generalization error and the imbalanced class distribution, the
feature extractor (FE), consistency discriminator (CD) and fault classifier (FC) are designed
core components of the framework, as shown in Figure 2. A CNN backbone is customized
to realize the functions of the above core components. In detail, FE is a combination of
a 7× 7 convolutional layer, batch normalization (BN) layers, ReLU activation functions
and block modules, which extracts domain-invariant features to alleviate the distribution
discrepancies between domains. The CD is composed of data augmentation and a decider,
which is trained by the proposed entropy-optimized objective function and aimed to reduce
the interclass IRs and improve the reliability of pseudolabels from the unlabeled target
samples. The FC consists of a linear layer, ReLU, and max pooling, which is applied to
decrease the generalization error and identify the status of the target data. The pseudosam-
ples augmented in CD and the truth samples are input into the FE via EO to extract features
and to train the FC, with which it finally obtains a domain-adaptation classifier that focuses
on the feature information of the minority class. The backbone could be adapted to other
CNN models, e.g., LeNet.
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Figure 2. Framework of the UDA-EO.
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3.3. Entropy-Optimized Strategy

The goal of UDA-EO in CD is to decrease the IRs impact on the target data by using the
data augmentation and self-training techniques. RandAugment [29], the data augmentation
technique adopted in this paper, is a useful way to promote the reliability of the model
because of its diversity and randomness [30]. It has 14 predefined transformations of
available images. We define set P = {r1(xT ), r2(xT ), r3(xT ), . . . , ri(xT )} as the generated
pseudosamples (see Figure 3), where i ∈ [1, 14].

Rotate ShearX

TranslateX Sharpness

… … …

RandAugmentx
r1(x)

rn(x)

Figure 3. Examples for RandAugment in UDA-EO.

If the pseudosamples from the real target data are directly utilized to train the model,
the prediction performance of the model is not stable, since the quality of the constructed
pseudosamples cannot be guaranteed. With high-quality pseudosamples, the performance
is positively confirmed, whereas low-quality pseudosamples could lead to wrong learning
directions and result in poor prediction accuracy.

In traditional UDA research, the FD method based on UDA is sufficient to address
the data distribution shift problem while achieving mediocre results on the imbalanced
class problems [31]. Concerning this situation, the method based on conditional entropy
minimization (CEM) is able to achieve good results. By denoting the moving average q(ŷ)
(ŷ ∈ [1, 2, 3, . . . , n]) as an approximation of p(y|xT ), the entropy objective Le is given as

Le = Ex∼PT

[
n

∑
i=1

p(y|xT ) log
1

q(ŷ)

]
(2)

By minimizing Le, a model with good initialization performs well on class-imbalanced
problems, because it leads the model to learn data features in the right direction. Once
the model is initialized in a negative direction, minimizing Le causes a catastrophic result,
as the prediction error and the confidence of the wrong prediction are simultaneously
increased, whereas the confidence of the correct target sample is decreased.

Accordingly, an entropy-optimized strategy with two steps is proposed to ensure that
the high-quality pseudosamples are selected for model training, where the estimation of
the prediction consistency between the pseudo and true labels is generated.

3.3.1. Decreasing IRs in the Target Domain

Given the samples of batch B, for each x in B, its pseudosample set P = {r1(xT ),
r2(xT ), r3(xT ), . . . , ri(xT )} is generated in the data augmentation strategy under the CD
module. The predicted labels and pseudolabels of the unlabeled truth sample x and
pseudosample set P in B are predicted in the FC module, respectively. Define n and m to
represent the degree of consistency between predicted labels and predicted pseudolabels,
respectively. If the predicted label of x and all the corresponding predicted pseudolabels in
P are the same, n counts; otherwise, m counts. The prediction consistency is evaluated by a
majority strategy, that is, {

prediction+, if n > m,
prediction−, if n ≤ m,

(3)
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where prediction+ measures the prediction accuracy between the true and pseudolabels,
and prediction− measures the prediction inaccuracy. A larger n indicates that the prediction
results of pseudosamples are more consistent with the true samples. Explicitly, if the
predictions are consistent, i.e., the majority of the prediction results falls into prediction+,
more reliable samples will be noticed by the proposed EO function. Its prediction entropy
will be minimized, which boosts the model to learn the features of the minority classes.
The objective of the positive entropy minimization Lprediction+

can be defined as

Lprediction+
=

m

∑
i=1

n

∑
j=1

p(y = j|ri(xT )) log
1

p(ŷ = j|ri(xT ))
(4)

Conversely, if the predictions are inconsistent, i.e., the negative observation dominates
the results, the entropy objective will be maximized by EO, which reduces the model
learning of data features in a wrong direction. The objective of the negative entropy
minimization Lprediction− can be defined as

Lprediction− = −
m

∑
i=1

n

∑
j=1

p(y = j|ri(xT )) log
1

p(ŷ = j|ri(xT ))
. (5)

With the above selection process for prediction consistency, the complete entropy
minimization objective LEO can be defined as

LEO =

{
Lprediction+

, if prediction+

Lprediction− , if prediction−
(6)

By this means, not only can the class-imbalanced issue be efficiently addressed, but
more consistent samples can also be encouraged to be a group by the selection strategy.
Moreover, the misleading of the model by incorrect pseudolabels and the overfitting of
minority data samples can be reduced.

3.3.2. Object Function Optimization

Provided with the source labeled data, a standard cross-entropy loss LC of the classifier
FC is given as

LC = − 1
n

n

∑
i=1

m

∑
j=1

y∗ij log yij (7)

to correctly identify the data classes, where m is the total number of samples and y∗ij denotes
the ground-truth label.

The integrated entropy objective of the model is defined as

min Lfinal = LC + αLM + βLe + γLEO (8)

where α, β and γ denote the penalty coefficients. The default value of α is set to 1 [8].
Back propagation is employed to transfer the loss parameters and update the network
parameters in every epoch.

4. Case Study
4.1. Dataset Description

(1) Case Western Reserve University (CWRU) Dataset: The CWRU dataset is obtained
from [32]. In the experiment, the single-point damage of the electrodischarge machining
(EDM) was artificially made. The signals from the bearings (model SKF6205) were collected
at a sampling frequency of 12 kHz over 3 different rotational speeds of a motor drive.
Except the normal state, the faults are set as the damages on the inner race, outer race and
ball, where the damage diameters of 0.007, 0.014, 0.021 and 0.028 inches are contained. By
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considering the correspondences between the damage places and diameters, the 11 fault
statuses shown in Table 1 are adopted.

Table 1. Fault statuses of the bearings from the CWRU dataset.

Bearing Condition Fault Diameters
(inch) Label Working Condition

Normal 0 0

1HP: 1772 rpm
2HP: 1750 rpm
3HP: 1730 rpm

Ball 0.007 1
Outer race 0.007 2

Ball 0.0014 3
Inner race 0.0014 4
Outer race 0.0014 5

Ball 0.0021 6
Inner race 0.0021 7
Outer race 0.0021 8

Ball 0.0028 9
Inner race 0.0028 10

(2) Xi’an Jiaotong University (XJTU) Dataset: The XJTU dataset is obtained from [33].
During the accelerated lifetime test, the data from the bearings (model LDK UER204) were
collected at a sampling frequency of 64 kHz over 3 different working conditions of an AC
motor. The faults are set as the damages on the outer race, inner race and cage. Three
fault statuses are considered, as listed in Table 2. By comparison with the CWRU dataset,
the rotational speeds from the XJTU dataset obviously change between different working
conditions, which results in significant distribution differences in the collected data.

Table 2. Fault statuses of the bearings from the XJTU dataset.

Fault Outer Race Inner Race Cage

Fault label 0 1 2

Working condition
1HP: 2100 rpm, 12 KN
2HP: 2250 rpm, 11 KN
3HP: 2400 rpm, 10 KN

4.2. Detailed Settings

(1) CWRU Dataset: With this dataset, experiments covering 1HP→ 2HP (C12), 2HP→
1HP (C21), 2HP→ 3HP (C23) and 3HP→ 2HP (C32) are designed for the 11 fault statuses.
For each experiment situation, 1.8 million sampling points are collected, where 80% of the
data are used for training and the rest of the data are used for testing. A range of datasets
with different IRs from these data are further designed. IR , Nmax−class/Nmin−class is
subject to a power-law distribution [34], since some categories are more likely to occur
than others, where Nmax−class and Nmin−class represent, respectively, the maximum and
minimum numbers of samples from the fault classes. Detailed information is listed in
Tables 3 and 4.

(2) XJTU Dataset: With this dataset, experiments covering 1HP→ 2HP (X12), 2HP→
1HP (X21), 2HP→ 3HP (X23) and 3HP→ 2HP (X32) are designed for the 3 fault statuses.
For each experiment, 0.5 million sampling points are collected. The detailed information is
also listed in Table 4, which implements similar settings to that of the CWRU dataset.

In the model training procedure, the detailed parameter settings of UDA-EO are given
as listed in Table 5, where the optimizer is set as the stochastic gradient descent (SGD).



Mathematics 2023, 11, 2110 10 of 18

Table 3. Detailed data distributions (%) of Imbalance settings.

Label IR1 IR2 IR3

0 22.30 26.28 28.92

1 17.72 19.65 20.64

2 14.05 14.69 14.95

3 11.15 10.98 10.75

4 8.84 8.21 7.72

5 7.01 6.13 5.55

6 5.56 4.58 3.99

7 4.41 3.43 2.87

8 3.50 2.56 2.06

9 3.17 2.01 1.48

10 2.19 1.43 1.07

Table 4. Detailed information of diagnosis experiments.

Transfer experiment C12, C21, C23, C32, X12, X21, X23, X32

Data division 80% for training and 20% for testing

IRs IR1: 10.16; IR2: 18.38; IR3: 27.03

Table 5. Detailed parameters of UDA-EO in the experiments.

Learning Rate Optimizer Epoch Batch Size
Transformation Number Penalty Coefficients

i α β γ

0.001 SGD 90 16 3 1 0.1 1

4.3. Comparison Methods

All experiments are carried out on a PC with an Intel Core i9 CPU, 32 GB RAM and
GeForce RTX 2080Ti GPU. The programming platform is PyTorch. In this paper, a CNN
backbone is customized, where the last linear layer is replaced by a fully connected layer
with Xavier-initialized weights and no bias.

To validate the competitiveness of the proposed method, 5 other methods are im-
plemented below for comparisons, including the baseline CNN, domain adversarial NN
(DANN, [35]), deep coral [36], deep adaptation network (DAN, [37]) and conditional do-
main adversarial network (CDAN, [38]). According to the detailed settings shown in the
references, the experimental parameters of all the models are properly fine-tuned.

(1) DANN is a typical adversarial learning method and a way to solve transfer learning
under severe label imbalance.

(2) Deep coral is a DA model that utilizes the second-order statistics to align features
between the source and the target domains.

(3) DAN is an adaptive model that selects the optimal kernel in the multicore Hilbert
space to match the mean value of the distribution.

(4) CDAN is an adaptive model that improves the discrimination ability of classifiers
through multilinear conditions and conditional entropy.

4.4. Experimental Results

The overall average accuracy defined as the number of correctly identified samples
divided by the total number of test samples is adopted to measure the performance of



Mathematics 2023, 11, 2110 11 of 18

different methods. To eliminate the randomness in the experiments, the average values of
10 experimental results are collected for comparison.

(1) Result analyses between different methods in terms of different working conditions

The overall classification results of these two datasets on the imbalanced experiments
are listed in Tables 6–8 and shown in Figures 4–6. As listed in Table 6, the proposed UDA-EO
outperforms the other methods significantly at an average level of 8 transfer experiments
with IR1. The average accuracy of UDA-EO for all transfer experiments exceeds 97.96%,
which is a 6.49% more accurate performance than the second best method. As shown in
Figure 4, each method performs different degrees of fluctuations, among which CNN and
the proposed UDA-EO show the largest and smallest degrees, respectively. These results
indicate that the proposed UDA-EO is able to handle the class-imbalanced problem more
effectively under variable working conditions.

Table 6. Average accuracies (%) of IR1 in terms of different transfer scenarios.

Tasks CNN DANN DAN Deep Coral CDAN Proposed

C12 88.43 ± 1.93 81.79 ± 6.70 89.25 ± 2.03 90.46 ± 1.30 86.24 ± 3.31 96.94± 1.48
C21 91.39 ± 4.14 81.76 ± 5.67 87.00 ± 2.05 89.83 ± 2.58 80.00 ± 1.35 94.58 ± 0.68
C23 88.29 ± 3.02 84.12 ± 6.49 89.19 ± 1.05 89.59 ± 0.99 85.19 ± 4.08 97.28 ± 0.57
C32 94.30 ± 1.09 85.00 ± 9.24 89.36 ± 1.68 90.84 ± 1.24 83.96 ± 2.49 97.03 ± 0.69
X12 97.89 ± 1.89 82.88 ± 12.82 76.57 ± 3.86 100 ± 0.05 97.85 ± 1.32 100 ± 0.03
X21 50.11 ± 0.33 86.82 ± 5.41 89.96 ± 1.63 94.74 ± 0.73 68.89 ± 12.6 98.68 ± 0.55
X23 78.33 ± 7.65 82.98 ± 2.93 81.67 ± 4.12 76.52 ± 2.03 88.94 ± 4.41 99.26 ± 0.48
X32 89.12 ± 8.64 96.71 ± 2.19 90.68 ± 3.28 99.78 ± 0.26 82.32 ± 2.74 99.89 ± 0.33

Average 84.73 ± 14.11 85.26 ± 4.61 86.71 ± 4.66 91.47 ± 6.92 84.17 ± 7.66 97.96 ± 1.73

Table 7. Average accuracies (%) of IR2 in terms of different transfer scenarios.

Tasks CNN DANN DAN Deep Coral CDAN Proposed

C12 88.53 ± 1.80 80.29 ± 8.73 87.75 ± 1.52 90.26 ± 1.57 84.86 ± 2.26 96.47 ± 0.73
C21 91.69 ± 3.05 75.30 ± 9.31 83.03 ± 2.44 86.11 ± 2.27 81.59 ± 3.71 94.96 ± 1.15
C23 89.35 ± 1.84 85.97 ± 5.98 89.71 ± 1.30 91.33 ± 1.43 90.06 ± 3.59 98.01 ± 0.62
C32 86.78 ± 0.56 84.80 ± 5.00 90.43 ± 1.79 91.47 ± 1.36 85.81 ± 1.68 97.13 ± 0.88
X12 98.34 ± 1.17 72.93 ± 10.32 69.24 ± 1.65 98.84 ± 1.37 100 ± 0.02 100 ± 0.02
X21 51.03 ± 1.00 41.01 ± 9.78 50.76 ± 1.34 34.14 ± 2.91 54.70 ± 12.44 99.47 ± 0.53
X23 68.51 ± 3.55 73.84 ± 3.30 68.89 ± 3.02 70.96 ± 2.31 73.74 ± 4.21 97.29 ± 1.54
X32 98.74 ± 0.94 84.64 ± 6.30 77.03 ± 2.27 99.45 ± 0.26 78.74 ± 2.34 99.97 ± 0.01

Average 84.12 ± 15.27 74.85 ± 13.68 77.11 ± 12.78 82.82 ± 20.18 81.19 ± 12.40 97.91 ± 1.69

Table 8. Average accuracies (%) of IR3 in terms of different transfer scenarios.

Tasks CNN DANN DAN Deep Coral CDAN Proposed

C12 91.34 ± 0.64 81.61 ± 3.54 86.79 ± 1.95 89.10 ± 1.56 83.34 ± 1.95 96.27 ± 0.76
C21 93.20 ± 2.85 81.62 ± 5.14 84.05 ± 2.91 86.83 ± 2.91 77.05 ± 0.76 94.81 ± 1.48
C23 87.57 ± 3.17 83.63 ± 6.80 89.12 ± 1.50 90.71 ± 1.43 83.11 ± 3.19 97.98 ± 0.41
C32 90.02 ± 0.40 78.96 ± 10.19 89.33 ± 2.22 89.22 ± 1.36 81.67 ± 4.94 96.25 ± 1.11
X12 95.28 ± 1.32 73.93 ± 11.18 64.44 ± 2.53 96.96 ± 1.43 99.90 ± 0.2 99.94 ± 0.12
X21 50.77 ± 0.46 43.22 ± 5.07 47.87 ± 0.74 32.12 ± 3.02 43.63 ± 1.98 98.51 ± 0.12
X23 85.83 ± 2.71 94.88 ± 1.06 72.32 ± 6.60 78.58 ± 3.27 78.48 ± 5.75 99.69 ± 0.27
X32 98.63 ± 0.83 79.39 ± 4.64 70.10 ± 4.33 82.12 ± 2.13 82.32 ± 2.74 99.82 ± 0.37

Average 86.58 ± 14.06 77.16 ± 13.99 75.50 ± 13.70 80.71 ± 19.07 76.87 ± 15.1 97.85 ± 1.91

In Table 7, the average accuracy of UDA-EO with IR2 for 8 transfer experiments
is more than 97.91%, which improves the average accuracy over the next competing



Mathematics 2023, 11, 2110 12 of 18

method by 15.09%. In Table 8, the classification accuracy of the proposed method with IR3
approximately reaches an 11.27% improvement compared with the baseline CNN method.
This shows that the proposed UDA-EO retains the capability of shared-class classification,
even with sharp IR in real applications. In addition, the proposed method still displays
more robust performance and keeps relatively stable classification accuracy in all eight
experiments, as shown in Figures 5 and 6.

Figure 4. Average accuracies (%) of IR1 in terms of different transfer scenarios.

Figure 5. Average accuracies (%) of IR2 in terms of different transfer scenarios.

It should be noted that accurate classification for the imbalanced data is yielded based
on two main reasons. Firstly, the proposed selection strategy promotes more reliable
pseudosamples for model training, ensuring that the feature of the minority class can be
effectively learned by the model on severely class-imbalanced conditions. Secondly, the
data features across domains are well-aligned, which guarantees that the sample categories
are correctly identified by the classifier.
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Figure 6. Average accuracies (%) of IR3 in terms of different transfer scenarios.

(2) Feature visualization

A result randomly selected from the C23 experiment under IR2 is processed to visual-
ize the classification effects. The 2D features are displayed by the t-SNE ([39]), as shown
in Figure 7. It is observed from Figure 7a–e that the comparison methods have limited
learning and separation effects on different health categories under severe class imbalance,
resulting in quite a few incorrect classifications of the fault types. However, the classes
shown in Figure 7f were effectively separated with a much clearer class boundary and a
more compact learned class feature based on the proposed UDA-EO. The reasons come
from the fact that UDA-EO well fits the distributions of the 11 fault types of the imbalanced
samples in T , and the overlaps of the class probability distributions are reduced under
the conditional entropy minimization. These results indicate the effectiveness and feasi-
bility of using the pseudolabel idea and the entropy minimization method to address the
class-imbalanced problem.

(a) (b) (c)

(d) (e) (f)

a：CNN；b:DeepCoral；c:DAN；d:DANN；e:CDAN；f:Our

0 1 2 3 4 5 6 7 8 9 10

Figure 7. Feature visualization of IR2 on C23 experiment: (a) CNN. (b) Deep coral. (c) DAN.
(d) DANN. (e) CDAN. (f) Ours. Numbers 0–10 represent the labels of different fault statuses.
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(3) Interclass performance study

To explore the detailed impact of the proposed framework on some minority class in
the class-imbalanced datasets under a cross-domain condition, a single-class performance
study is implemented on eight imbalanced experiments. By comparing with the baseline
CNN, the average accuracies of all classes can be seen in Figure 8a, where it corresponds to
the majority class, and the rest of the subfigures correspond to the minority classes. It is
observed that both methods perform stably on the majority class, but only the proposed
UDA-EO maintains good performances on the minority classes when IRs intensify; compar-
atively, the performances of the baseline CNN on the minority classes degrade significantly.
This indicates that the proposed method substantially improves the classification accuracy
of the minority classes while maintaining good classification ability on the majority class.

Figure 8. Performance improvements on different IRs in CWRU bearing datasets: (a) Healthy.
(b–e) are the classification results of experiments C12, C21, C23 and C32 on IR1, respectively. (f–i) are
the classification results of experiments C12, C21, C23 and C32 on IR2, respectively.

To display the role of the proposed UDA-EO more profoundly in T with imbalanced
samples, we randomly visualize one result from C23 by comparing with the baseline CNN,
as shown in Figure 9. Clearly, the proposed selection strategy achieves a 4/5 improvement
in classification accuracy over the baseline CNN. As has been discussed in Section 3.3,
UDA-EO is designed to assist the model in improving the confidence of pseudosamples
and overcoming the performance degradation caused by ignoring the minority classes
under class imbalance, which allows the model to maintain good classification ability in
severe class imbalance.

(4) Parameter sensitivity analysis

Because the penalty coefficients β and γ are critical for UDA-EO, these two hyper-
parameters are further discussed. Experimental results of X23 are listed in Table 9, which
indicate that the FD ability of the proposed method is relatively stable when β and γ vary
in [0, 1]. It is based on the fact that the model takes advantage of the predictive consistency
and robustness of the proposed EO and data augmentation strategies to select reliable
target samples for corresponding classes. The slight changes in the performances indicate
that the best parameters could be found, such as the ones around β = 0.1 and γ = 1.
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Table 9. Fault diagnosis performances under varying penalty coefficients.

Parameters β = 0.1 β = 0.3 β = 0.5 β = 1

γ = 0.1 89.41 95.19 91.63 97.99

γ = 0.5 98.82 99.19 99.56 97.65

γ = 1 99.59 99.41 98.30 98.64

(a) (b)

(c)

Figure 9. Performance on C23 experiment with IR1: (a) CNN. (b) UDA-EO. (c) The improvement on
per-class accuracy after using UDA-EO.

(5) Ablation case analysis

To evaluate the effectiveness of the proposed optimized-entropy algorithm, ablation
experiments are designed in this subsection. In particular, UDA-EO is compared with
the following modifications. (1) w/o conditional entropy: the CNN is trained without
conditional entropy loss function. (2) w/o LEO: the model is trained without the proposed
data augmentation strategy. (3) Ours: the proposed method is provided to train the model.
The ablation results with IR3 settings are listed in Table 10.
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Table 10. Ablation case on IR3.

Ablation Case C12 C21 C23 C32

W/o conditional entropy 91.34 93.20 87.57 90.02

W/o LEO 96.28 93.47 94.97 94.43

Ours 96.27 94.36 97.98 96.25

In Table 10, the results of (1–3) show that the proposed method obtains relatively
higher classification accuracy, which implies that the conditional entropy and the proposed
data augmentation strategy have positive impacts on the UDA-EO model and improve
FD precision with data imbalance settings. By comparing (2) with (3), it can be discovered
that the precision of 3/4 FD drops when the data augmentation strategy is removed from
the proposed method, which shows that the data augmentation strategy can effectively
alleviate the model’s negative learning of minority class feature information in the initial
state and improve the FD accuracy.

5. Conclusions

This paper investigated the application of the transfer learning technique for diagnos-
ing the faults of rolling bearings in a fault-imbalanced scenario, where the common but not
widely discussed class imbalance and distribution discrepancy of datasets exist. To address
the problem, an EO method on the basis of UDA was proposed, which combines the con-
struction of pseudobalanced class samples and the learning of domain-invariant features in
a framework and encourages the FD model to learn the feature information of the minority
class in variable conditions. Moreover, the predictive entropy of the pseudosamples is
selectively minimized to improve confidence on highly consistent target data and improve
the consistency prediction between the ground-truth labels and pseudolabels. Diverse FD
experiments focusing on the classification accuracy of bearing faults with imbalanced data
in various operating conditions were conducted based on the CWRU and XJTU datasets.
The statistical and visual results indicate that UDA-EO effectively improves the feature
learning of minority fault categories in imbalanced datasets. In future research, an open-set
FD method will be developed to handle more practical issues.
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