
Citation: Zhang, J.; He, B.; Yang, Z.;

Kang, W. A Novel Reconstruction of

the Sparse-View CBCT Algorithm for

Correcting Artifacts and Reducing

Noise. Mathematics 2023, 11, 2127.

https://doi.org/10.3390/math11092127

Academic Editor: Konstantin Kozlov

Received: 10 April 2023

Revised: 24 April 2023

Accepted: 28 April 2023

Published: 1 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Novel Reconstruction of the Sparse-View CBCT Algorithm
for Correcting Artifacts and Reducing Noise
Jie Zhang * , Bing He, Zhengwei Yang and Weijie Kang

College of Missile Engineering, Rocket Force University of Engineering, Xi’an 710025, China;
el1995@stu.xjtu.edu.cn (W.K.)
* Correspondence: zhangjie@opt.ac.cn; Tel.: +86-152-2933-7391

Abstract: X-ray tomography is often affected by noise and artifacts during the reconstruction process,
such as detector offset, calibration errors, metal artifacts, etc. Conventional algorithms, including
FDK and SART, are unable to satisfy the sampling theorem requirements for 3D reconstruction
under sparse-view constraints, exacerbating the impact of noise and artifacts. This paper proposes a
novel 3D reconstruction algorithm tailored to sparse-view cone-beam computed tomography (CBCT).
Drawing upon compressed sensing theory, we incorporate the weighted Schatten p-norm minimiza-
tion (WSNM) algorithm for 2D image denoising and the adaptive steepest descent projection onto
convex sets (ASD-POCS) algorithm, which employs a total variation (TV) regularization term. These
inclusions serve to reduce noise and ameliorate artifacts. Our proposed algorithm extends the WSNM
approach into three-dimensional space and integrates the ASD-POCS algorithm, enabling 3D recon-
struction with digital brain phantoms, clinical medical data, and real projections from our portable
CBCT system. The performance of our algorithm surpasses traditional methods when evaluated
using root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural similarity
index measure (SSIM) metrics. Furthermore, our approach demonstrates marked enhancements in
artifact reduction and noise suppression.

Keywords: CBCT; sparse-view reconstruction; fusion denoising image; ADS-POCS; WSNM

MSC: 65F50

1. Introduction

CBCT is a CT-based imaging modality that enables three-dimensional visualization of
an object using divergent X-rays emitted from a source. In CBCT, voxels are reconstructed
from a series of projections captured at various angles around the object. Imaging processes
in CBCT can be primarily categorized into analytical and iterative algorithms. Analytical
algorithms, based on Radon transform and the central slice theorem, include Filtered Back
Projection (FBP) and the Feldkamp–Davis–Kress (FDK) algorithm [1]. On the other hand,
iterative algorithms, as described in [2], such as the simultaneous algebraic reconstruction
technique (SART) and the ordered-subset simultaneous algebraic reconstruction technique
(OS-SART), treat projection data as constraint conditions for reconstruction, building an
iterative optimization objective function from discrete mathematical models and projection
data. Although these classic algorithms have been successfully applied to full-view CBCT
reconstruction, they struggle to address severe artifacts in sparse-view scenarios due to
limitations in acquisition time and range. Consequently, reconstructing partial or global
slice images of a target using incomplete projection data has become a research hotspot in
the field of CT image reconstruction, emphasizing the importance of sparse projection.

Sparse-view [3] projection data do not comply with the Shannon sampling theorem [4],
and conventional algorithms cannot resolve the issue. Donoho [5] and Candes [6] pro-
posed compressed sensing (CS) theory in 2006, which posits that if a signal is sparse in
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a specific transformation domain, only a small portion of signal sampling is needed to
accurately recover the original signal through solving an optimization problem. Sidky
introduced the total variation (TV) regularization term, based on the prior knowledge of
the gradient sparsity of CT reconstruction models, to obtain an incomplete projection data
reconstruction model capable of addressing sparse projection data reconstruction with
limited projection angles, and sparse or less-complete angle constraints. Inspired by CS
theory, the literature [7] has made breakthroughs in utilizing sparse prior knowledge of
total variation minimization of images. Combining the projection on convex sets algorithm
with the adaptive steepest descent algorithm led to the development of the ASD-POCS
method. Bian et al. first sampled the weight function in analytical methods to obtain a
weight matrix for semi covering sparse angle CT reconstruction, then weighted the projec-
tion of the weight matrix and solved it using the ASD-POCS method. In machine learning,
Yang et al. [8] proposed a convolutional neural network residual learning algorithm to
correct artifacts in CBCT in 2020. The PSNR of the image corrected by this algorithm has
increased by 15.4%. In 2021, Sori et al. [9] focused on learning local and global features
of lung CT images, designing a dual-path convolutional neural network (CNN) model to
effectively suppress noise artifacts in lung images. Wang et al. [10] proposed a dual-domain
metal artifact correction network, combining projection and image domains. First, the
damaged sine map is corrected, and then an end-to-end dual-domain network is used to
sequentially process and analyze the input sine map and its corresponding reconstructed
images. Dual-domain networks effectively improve the quality of reconstructed images
and suppress metal artifacts.

Moreover, various types of noise, including streak noise and Poisson noise, affect
sparse CBCT reconstruction. Streak noise in projections causes ring artifacts in recon-
structed volumes, presenting as centered circles or half-circles [11]. Makinen et al. [12]
proposed effective ring artifact attenuation through sinogram-domain collaborative filter-
ing, presenting a multiscale architecture with a block-matching and 3D filtering (BM3D)
image denoiser for correlated noise [13] at the core of the process. They provided state-of-
the-art results in ring attenuation without introducing new artifacts around strong signal
features, which is common with other popular ring removal algorithms. However, being
based on a filter for 2D data applied to individual sinograms, it may cause discontinuities
across the third dimension. To address this issue, Makinen et al. [14] proposed a 3D
multiscale framework for streak attenuation through a specially designed collaborative
filtering of correlated noise in volumetric data. They further proposed a distinct multiscale
denoising step for attenuation of Poissonian noise. Utilizing the volumetric structure
of the projection data, the fully automatic procedure offers improved feature preserva-
tion compared to 2-D denoising and avoids artifacts that arise from individual filtering
of sinograms.

To tackle noise issues in sparse-view scenarios, this study explores the field of im-
age and signal denoising, identifying that low-rank matrix approximation (LRMA) has
gained considerable attention. The nuclear norm minimization and the Schatten p-norm
(0 < p ≤ 1) minimization [15] have been employed to solve LRMA. However, as these
methods treat all singular values equally and shrink them with the same threshold, they
result in poor edge preservation. To overcome this shortcoming, weighted nuclear norm
minimization (WNNM) [16] and WSNM [17,18] are proposed, which shrink larger singular
values less during rank minimization. WSNM is proven to be more effective, as it can be
transformed into a series of independent non-convex lp-norm minimization problems and
solved efficiently with a generalized soft-thresholding (GST) algorithm [19] in report [17].

Currently, the latest reconstruction methods primarily rely on machine learning tech-
niques. However, the complexity of outdoor environments and the diversity of subjects
can result in insufficient sample sizes, rendering the usage scenarios targeted in this paper
inadequate to support machine learning applications. To reduce dependence on training
data, we mainly adopt the compressive sensing theory reconstruction model and compare it
with the sparse reconstruction algorithm that does not require training data for verification.
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Consequently, we propose a novel iterative algorithm for sparse-view CBCT reconstruction
that corrects artifacts and reduces noise. Inspired by previous investigations [20], we intro-
duce WSNM for quantifying self-similarity and reducing noise and ASD-POCS for solving
the reconstruction problem of sparse projection data. Additionally, we fuse denoising
voxels using the similarity coefficient based on WSNM, originally proposed for 2D image
denoising. The proposed method combines the advantages of both techniques, reducing
the impact of noise, decreasing the number of projections, and balancing noise suppres-
sion with structural information preservation. In simulation experiment 1, we obtained
head phantom reconstruction using the proposed method with 90 projections. The root
mean square error (RMSE), the structural similarity index (SSIM), and PSNR values were
0.00008, 44.54638, and 0.98968, respectively. In experiment 2, we used a publicly available
CT dataset to reconstruct through 45 projections. In experiment 3, we used real walnut
projections to reconstruct through 60 projections. Based on the quantitative evaluation
of experimental results, the proposed method for sparse-view CBCT three-dimensional
reconstruction outperforms traditional algorithms.

2. Reconstruction Methods
2.1. Reconstruction Model

Assume that x = [x1, x2, . . . , xN ]
T is a one-dimensional vectorization representation

of three-dimensional voxels, and p = [p1, p2, . . . , pM]T is a one-dimensional vectoriza-
tion representation of sparse-view projections. The CBCT reconstruction model can be
expressed as:

p = Ax (1)

where A is a M× N system matrix, and the i-th element am,n represents the contribution of
the n-th voxel xn to the m-th projection pm. The element can be scaled by the length of the
intersection of the n-th projection ray (that generates pm) with xn. The geometry of a CBCT
system is a three-dimensional coordinate system that includes the source position, isocenter
(rotation axis), and detector, as shown in Figure 1. The system operates by keeping the X-ray
source and detector stationary while the turntable rotates around the y-axis. The geometry
description is based on international standard IEC 61217 [21], designed for cone-beam
imagers in isocentric radiotherapy systems.

(a)

Figure 1. Cont.
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(b)

Figure 1. The components of portable CBCT system: (a) 3D real view; (b) spatial geometry.

The objective of CBCT reconstruction is to recover the non-negative voxels x from
the projections p with the known system matrix A. To reduce the radiation dose, sparse
projection views are utilized, resulting in insufficient observations and difficulty solving
for the voxels from Equation (1). Regularization terms are typically employed to provide
additional constraints to the voxels, allowing them to be estimated by solving the following
optimization problem:

arg min
x
‖Ax− p‖2

2 + α‖x‖TV + γ(Rx) (2)

where the first term ensures that the projections of the estimated voxels are consistent with
the projections captured by the CBCT device, ‖x‖TV is the total variation regularization
term based on the prior knowledge of the gradient sparsity of the CT reconstruction models,
and R(x) is the denoise regularization term that derives from inherent characteristics of
voxel data to provide additional constraints to x. The parameters α, γ are factors to balance
the weights of the three terms.

The total variation term ‖x‖TV is defined as the sum of the 2-norms of the directional
gradients of the variable, it can be described as:

‖x‖TV =∑
√
(xi,j,k − xi−1,j,k)2 + (xi,j,k − xi,j−1,k)2 + (xi,j,k − xi,j,k−1)2,

[i = (1, 2, . . . , I), j = (1, 2, . . . , J), k = (1, 2, . . . , K)]
(3)

where xi,j,k is the number of voxels x to be reconstructed [(i− 1)× J × K + (j− 1)× K + k]
elements (I is the length of the voxels, J is the width of the voxels, and K is the height of
the voxels, N = I × J × K).

2.2. Solution Method

To solve Equation (2), the half-quadratic splitting technique is employed to balance
the TV term and the denoise term. By introducing an auxiliary variable f and replacing the
variable x in the denoise term, Equation (2) can be rewritten as:

arg min
x
‖Ax− p‖2

2 + α‖x‖TV + β‖f− x‖2
2 + γR(f) (4)
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where β is the same as α, γ. The CBCT reconstruction model defined in Equation (2) is
transformed into the alternating iterative optimization of two sub-problems by fixing one
variable and solving another alternatively.

fiter+1 = arg min
f

β‖f− xiter‖2
2 + γR(f) (5)

xiter+1 = arg min
x
‖Axiter − p‖2

2 + α‖xiter‖TV + β‖fiter+1 − xiter‖2
2 (6)

2.3. Denoising Image Fusion Algorithm

The original weighted Schatten p-norm minimization (WSNM) algorithm [17] is
designed for 2D image denoising. However, the 3D structure information between slices
cannot be used for reconstruction by the original WSNM. The WSNM needs to be extended
based on 3D block grouping. By referring to the BM3D algorithm and literature [20], we
propose a denoising image fusion algorithm for denoising 3D voxel images. The algorithm
can be divided into three main steps:

• The 3D noisy voxel x is divided into three groups of slices according to the direction
of the Cartesian coordinate axis:

{
Xaxis

s |axis = x, y, z; s = i, j, k
}

.
• Each 2D pure matrix F could be denoised independent through WSNM algorithm

from noisy matrix X.
• Fuse Fs by Fx

s , Fy
s , Fz

s .

2.3.1. Weighted Schatten p-Norm Minimization Algorithm

The noisy matrix X can be written as X = F + D, where D denotes the noise matrix.
Due to the similarity of the grouped blocks, the true matrix F is low rank. With the WSNM,
the true matrix F is recovered from the noisy matrix X by solving

arg min
F
||X− F||2F + (

L

∑
l=1

ωlδ
C
l )

1
C (7)

where L is the rank of F, C is the power of Schatten p-norm, ωl is the l-th singular value of
F, and ω is a weight vector composed of the non-negative weights ωl . The penalty factors
γ and β in Equation (5) are merged into the weight vector ω. It balances the F-norm fidelity
term and the Schatten p-norm regularization term.

Assuming σ2 as the variance of the noisy matrix X, σl is the l-th singular values of
the noisy matrix X. X could be decomposed as X = UΣV through SVD and Σ is the
diagonal matrix of singular values σl . By literature [17], Equation (7) could be computed by
F = U∆VT , where ∆ = Diag[δ1, δ2, . . . , δl , . . . , δL] is the diagonal matrix of singular values
F. Furthermore, the ∆ could be decoupled into L independent single-variable optimizations
without any constraints [17].

arg min
{δl}

L

∑
l=1

[(δl − σl)
2 + ωlδ

C
l ]⇐⇒ arg min

δl

(δl − σl)
2 + ωlδ

C
l (8)

where δl is singular values of F, it obeys δl ≥ 0 and δl ≥ δl+1. Furthermore, it is solved by
using the GST algorithm [19]

{
δl = 0, i f σl ≤ (2ωl(1− C))

1
2−C + ωlC((2ωl(1− C)))

C−1
2−C

δl − σl + ωlCδC−1
l = 0, otherwise.

(9)

The weights ω in Equation (8) is proportional to the variance of the noise σ2 which is
estimated effectively with the filter-based approaches from the noisy matrix X. Assuming
that ωl ≤ ωl+1, and the true matrix F is unknown, its singular values δl are estimated by
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the singular values δ̂l of the noisy matrix X. So, the weights ωl could be computed by
Equation (10): 

ωl =
c
√

Sσ2

δ̂
1
C
l + ε

δ̂l =
√

max{σ2
l − Sσ2, 0}

(10)

where c is a constant and is set to 2
√

2, S = N × N is the number of voxels contained in
X, and ε is a minimum value close to zero. Finally, the X is denoised and we get the F.
Additionally, the WSNM can work well for most of the noise and artifacts that increased
the weighted Schatten p-norm of the data matrix.

2.3.2. Fuse Denosing Image

To obtain the final voxel value Fi,j,k from Fx
s , Fy

s , Fz
s , we use similarity as the weight

criterion for image fusion. It is assumed that the higher the similarity between the denoised
slice and the original slice, the worse the denoised effect, that is, the lower the weight. By
traversing the three slices corresponding to voxel Fi,j,k, their similarity is calculated and
normalized to obtain the final weight value. Similar to the approach in the literature [22], the
similarity coefficient d is defined as follows, and the final voxel value Fi,j,k is computed by:

Fi,j,z = ∑
a=x,y,z

d
a
i,j,kFa

i,j,k

da
i,j,k(Pa, Po) = 1−

||Pa − Po||22
N × N

(11)

where d is the normalized value of similarity coefficient d, Pa is the denoised slice, and Po is
the original slice.

2.4. Adaptive Steepest Descent Projection onto Convex Sets Algorithm

The second sub-problem involves an unconstrained minimization method. In order
to solve the sparse problem, the ASD-POCS algorithm is proposed as a robust solution.
This algorithm not only minimizes the data constraint with TV regularization but also
adaptively controls the TV minimization update to adjust its strength according to the data
constraint update. Several adaptations and improvements of this algorithm have been
proposed in the literature [23–25], all based on the same mathematical approach.

Equation (6) could be written as:
xiter+1 = arg min

x

∥∥A′xiter − p′
∥∥2

2 + α‖xiter‖TV

A′ =
(

A√
βI

)
, p′ =

(
p√

βfiter+1

)
.

(12)

By satisfying the Karush–Kuhn–Tucker conditions, the Lagrangian for the Equation (12)
could also be defined as:

L = α‖x‖TV +
∥∥A′x− p′

∥∥2
2 − λx (13)

So, we can make the gradient of the Lagrangian zero to obtain x, that is,5L = 0. The
Lagrangian form of Equation (13) meets the expression form of ASD-POCS algorithm, and
the algorithm in reference [26] can solve x.

The proposed sparse CBCT reconstruction method is summarized in Algorithm 1.
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Algorithm 1 CBCT sparse reconstruction based on ADS-POCS and image fusion.

Input:
System matrix A, projection data p;
the power of Schatten p-norm C, the maximum iterative step Iter;
the constant C, the minimum value ε;
the factors α and β;
the iteration error ε Iter;

1: Standardization of the projection data by literature [22];
2: If iter = 0, the initial reconstruction x0 by using the FDK algorithm;
3: iter = 1;
4: While(iter 6= Iter or ||xiter − xiter−1||22 ≤ ε Iter)
5: divide x into three groups of slices Xaxis

s ;
6: For axis = x,y,z
7: Singular value decomposition: X = U ∑ VT ;
8: Estimate weight vector ω by using Equation (10);
9: Calculate ∆ from Equation (8) ;

10: Calculate Faxis = U∆VT ;
11: End
12: Fuse denoised slice matrix Faxis to form fiter+1;
13: calculating xiter+1 by using Equation (12)
14: iter = iter + 1
15: End
16: return x

Output:
Reconstruction voxels x;

3. Results and Discussion
3.1. Experimental Setup

The proposed CBCT reconstruction method was applied to three distinct experiment:
a digital brain phantom, a set of real CT data of human lung obtained from the Cancer
Imaging Archive (TCIA) [21], and a set of scanned walnut data acquired using a portable
CBCT system at our institute.

For the first experiment, the digital brain phantom was utilized. The source-to-detector
distance was set at 1536 mm, the source-to-rotation center distance was 1000 mm, and the
digital brain phantom size was 512× 512× 521 voxels. The voxel pixel size was 0.5 mm,
the detection pixel size was 0.8 mm, and the size of each projection was 512× 512 voxels.

Due to the limited availability of CBCT model datasets online, the majority of which
are spiral scanning CT data, this study simulates the forward projection process of CBCT
by employing publicly available CT datasets to obtain projection data. Compared to
experiment 1, experiment 2 utilizes clinical medical data that are more realistic and complex.
The results of experiment 2 are more reliable and applicable to practical engineering. The
correctness and superiority of the proposed method are verified by applying the proposed
method to reconstruct the model and comparing it with the source model and other
algorithms. The simulation process for the dataset involves setting the source-to-detector
distance at 1536 mm, the source-to-rotation center distance at 1000 mm, the real CT size at
512× 512× 241 voxels, the voxel pixel size at 0.5 mm, the detection pixel size at 0.8 mm,
and the size of each projection at 512× 512 pixels.

For the third experiment, the source-to-detector distance was set to 952 mm, the
source-to-rotation center distance was 593 mm, the detection pixel size was 0.139 mm, and
the size of each projection was 1440× 240 voxels. The number of projections was 720, with
a uniformly spaced angle increment. The detector employed was a Mars 1717V, and the
X-ray source was a CANON D-045S. The detailed parameters are as follows:
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• X-ray parameters:

– Maximum X-ray tube voltage is 70;
– Focus is 0.4 mm;
– kV The anode (or cathode) indirectly is 35 kV;
– Minimum X-ray tube voltage is 50;
– kV Maximum X-ray tube current of 12;
– mA Maximum filament current is 3.0 A.

• Detector parameters:

– Types of detectors is amorphous silicon;
– Type of scintillator is CsI;
– Effective imaging area (inch) is 17× 17;
– Pixel size (µm) is 139;
– Spatial resolution (lp/mm) is 3.6;
– AD converted bits (bit) is 16;
– Dimensions (mm3) is 460× 460× 15;
– Weight (kg) is 4.6;
– Power dissipation (W) is Max.20.

The reconstruction experiments were conducted using the Python 3.8.12 programming
environment, leveraging the Tomographic Iterative GPU-based Reconstruction Toolbox
(TIGRE) open-source software for reconstruction and 3D Slicer for visualization. The code
was executed on a personal computer running Windows 10 with an Intel® Core™ i9-10900K
CPU @ 3.70 GHz and 32 GB memory. Element-wise computation of the transform and
adjoint transform was accelerated by an NVIDIA® GeForce RTX™ 3080 graphics processor.
Three standard metrics were employed to quantitatively assess the proposed method:
RMSE, SSIM, and PSNR.

RMSE is commonly used to evaluate the differences between two signals and is
defined as:

RMSE(x, x∗) =

√√√√ 1
N

N

∑
i=1

(x− x∗)2 (14)

where x is the reconstructed result, x∗ is the ground truth, and N is the total number of
voxels. The PSNR is defined as:

PSNR(x, x∗) = 10log10
(2l − 1)2

RMSE
(15)

where l is the number of bits for the signal. The SSIM measures the structural similarity of
two signal, which is defined as:

SSIM(x, x∗) =
2µxµx∗(2σxx∗ + c2)

(µ2
x + µ2

x∗ + c1)(σ2
x + σ2

x∗ + c2)
(16)

where µx and µx∗ denote the mean values of x and x∗, respectively, σx and σx∗ represent the
standard deviations, and σxx∗ is the covariance. c1 and c2 are constants to avoid instability,
which are set to 0.0001(2l − 1)2 and 0.0009(2l − 1)2, respectively.

3.2. Sparse Reconstruction of Digital Brain Phantom

The digital brain phantom, widely employed for evaluating CBCT reconstruction, was
used for validation. We sampled 90 projection images using the forward method through
the TIGRE Toolkit and added noise with a level of Poisson = 105, Gaussian = [0, 10]. The
original digital brain slice served as a benchmark for CBCT reconstruction. Additionally,
four classical methods discussed in the introduction—FDK, OS-SART, ASD-POCS, and
ordered subset ASD-POCS (OS-ASD-POCS)—were used for comparison.
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Reconstruction results are displayed in Figure 2, with the 160th slice in the sagittal
(Y-axis) direction chosen for comparison due to its information richness. FDK, proposed
for full-view reconstruction, produces an acceptable image from sufficient projection data
but suffers from severe streak artifacts in Figure 2b when projection data are insufficient.
Streak artifacts are still apparent in Figure 2c for OS-SART but are significantly reduced
compared to FDK. Edges appear blurred and some critical structural details are lost in
Figure 2d,e, despite ASD-POCS’s ability to remove artifacts and suppress noise. For a
clearer comparison, the region of interest (ROI) marked by the red box in Figure 2d,e is
magnified and displayed in Figure 3. The noise reduction effect of the proposed method
outperforms that of the ASD-POCS and OS-ASD-POC algorithms.

(a) (b)

(c) (d)

(e) (f)

Figure 2. Brain phantom reconstruction (slice 160): (a) ground truth, (b) FDK, (c) OS-SART,
(d) ASD-POCS, (e) OS-ASD-POCS, (f) proposed method.
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(a) (b) (c)

Figure 3. Zoom in on ROI in Figure 2: (a) ASD-POCS, (b) OS-ASD-POC, (c) proposed method.

Figure 4 illustrates voxel curves and their local magnifications along the coronal axis
(256th row, 160th slice) and the vertical axis (256th column, 160th slice). As depicted in
Figure 4b,c, the proposed method performs substantially better than FDK and OS-SART
for smooth segments, which have curves heavily disturbed by noise. As seen in Figure 4e,f,
the proposed method outshines ASD-POCS and OS-ASD-POCS for steep segments, with
curves significantly affected by noise.

Concurrently, evaluation results are provided in Table 1 using RMSE, PSNR, and
SSIM. From the perspectives of PSNR and SSIM, the proposed method and the ASD-POCS
method exhibit high structural similarity and signal-to-noise ratio. Regarding RMSE, the
proposed method is slightly higher than ASD-PCOS, potentially due to the addition of
WSNM noise reduction, increasing the error from the ground value. Considering all three
indicators, the proposed method excels in terms of signal-to-noise ratio and structural
similarity, with a minor disadvantage in RMSE but a small difference.

Figure 4. Voxel curves reconstructed by various algorithms: (a) voxel curve along coronal axis at
256th row, 160th slice, (b,c) local magnifications of (a); (d) voxel curve along axial axis at 256th column,
160th slice; (e,f) local magnifications of (d).
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Table 1. Quantitative evaluation for brain phantom reconstruction from 90 views.

RMSE PSNR SSIM

FDK 0.01482 18.29061 0.70205
OS-SART 0.00069 31.61237 0.93187
ASD-POCS 0.00006 42.01851 0.98943
OS-ASD-POCS 0.00032 35.00853 0.96763
Proposed Method 0.00008 44.54638 0.98968

3.3. Sparse Reconstruction of Downloaded CBCT Projections

The digital CT model dataset was obtained from [27]. We extracted 45 projections
from the dataset with a resolution of 512× 512, as shown in Figure 5. This model serves
as a benchmark for CBCT reconstruction. In addition to FDK, OS-SART, ASD-POCS, and
OS-ASD-POCS, comparisons were made.

(a) Model (b) Slice at 121 axial axis

(c) Slice at 256 coronal axis (d) Slice at 256 sagittal axis

Figure 5. CT Model: (a) Model in three-dimensional view; (b–d) Slices of the model in the axial,
coronal, and sagittal planes, respectively.

Reconstruction results are presented in Figure 6, with the 121st slice in the axial
direction chosen for comparison due to its information richness. The CT model slice is
shown in Figure 6a. Similarly to Experiment 1, Figure 6b reveals that FDK and OS-SART
algorithms exhibit relatively severe streak artifacts, while ASD-POCS and OS-ASD-POCS
suppress artifacts but blur the edges. From the reconstruction results, it is evident that the
proposed method outperforms the other algorithms in Table 2.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. The CT reconstruction (slice 121): (a) CT model, (b) FDK, (c) OS-SART, (d) ASD-POCS,
(e) OS-ASD-POCS, (f) proposed method.

Upon comparing reconstruction times, it was determined that in Experiment 2, the
FDK algorithm had the shortest processing time for clinical projection data, while the
iterative ASD-POCS algorithm had the longest processing time. By improving the or-
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dered subset method, processing time can be effectively reduced. Although the proposed
algorithm has a longer processing time compared to the OS-ASD-POCS algorithm, its
reconstruction results exhibit higher PSNR and SSIM values. This is due to the addition of
a denoising process in this algorithm. Overall, the proposed algorithm strikes an optimal
balance between processing time and reconstruction results.

Table 2. Quantitative evaluation for walnut reconstruction from 45 views.

RMSE PSNR SSIM
Time

Consumption
(Second)

FDK 0.14376 8.42370 0.68207 514.73
OS-SART 0.14018 8.53299 0.58307 30,420.12
ASD-POCS 0.14020 8.53264 0.68359 376,080.45
OS-ASD-POCS 0.14020 8.53257 0.58362 57,120.36
Proposed Method 0.14420 8.56196 0.70640 58,648.75

3.4. Sparse Reconstruction of Real Projections

The CBCT projections of a real walnut were obtained from our laboratory. We sam-
pled 60 projection images from 720 projections at moderate intervals for reconstruction,
maintaining a size of 512× 512 pixels, as shown in Figure 7. Projections were reconstructed
using FDK, ASD-POCS, and the proposed method. FDK for full sampling of 720 projections
was used as a benchmark for CBCT reconstruction.

(a) (b) (c)

Figure 7. Walnut projections at different angle: (a) projection at 0◦ rotation; (b) projection at 90◦

rotation; (c) projection at 180◦ rotation.

Reconstruction results are displayed in Figure 8, where the 256th slice in the sagittal (Y-
axis) direction is selected for comparison due to its information richness. FDK for full-view
reconstruction constructs an acceptable image from sufficient projection data in Figure 8a.
However, it is severely marred by streak artifacts in Figure 8b when projection data are
insufficient. The walnut slice is displayed in Figure 8a. As observed in Experiment 3,
Figure 8c,d shows that sharp edges are blurred, and some critical structural details are
lost, even though ASD-POCS and OS-ASD-POCS can suppress artifacts and blur edges. In
contrast, the proposed method effectively removes artifacts and suppresses noise.
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(a) (b)

(c) (d)

Figure 8. The walnut reconstruction (slice at 256 sagittal axis): (a) FDK reconstructed by 720 projec-
tions, (b) FDK, (c) ASD-POCS, (d) proposed method.

4. Conclusions

In this paper, we propose a novel iterative algorithm for sparse-view CBCT recon-
struction, aiming to correct artifacts and reduce noise. The method consists of two primary
steps: ADS-POCS reconstruction and denoising, which can be solved iteratively. The image
fusion algorithm based on WSNM effectively utilizes 3D voxel information to reduce noise,
while other artifacts are addressed by the ADS-POCS algorithm that incorporates TV regu-
larization. The proposed method is validated using a digital head phantom and clinical
data. Performance is measured using RMSE, PSNR, and SSIM, demonstrating the algo-
rithm’s ability to effectively remove artifacts and suppress noise. Furthermore, we employ
a self-developed portable CBCT device for reconstruction and compare the results with
those of other algorithms. Although the proposed method outperforms the alternatives,
there are some bright areas observed on sharp edges, attributable to the balance adjustment
issue between noise reduction and artifact removal. Future work will address this issue.

Moving forward, it is essential to consider reconstruction challenges arising from more
complex low-dose factors such as limited angles and reduced mAs (the product of tube
current and exposure time) levels. Simultaneously, enhancing the computational speed
of the reconstruction and minimizing the time required for reconstruction are critical for
practical engineering applications.
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Abbreviations
The following abbreviations are used in this manuscript:

CT computed tomography
CBCT cone-beam computed tomograph
FBP filtered back projection
FDK Feldkamp–Davis–Kress
SART simultaneous algebraic reconstruction
OS-SART ordered-subset simultaneous algebraic reconstruction technique
CS compressed sensing theory
TV total variation
ASD-POCS adaptive steepest descent projection onto convex-sets
PSNR peak signal-to-noise ratio
CNN convolutional neural network
BM3D block-matching and 3D filtering
LRMA low-rank matrix approximation
WNNM weighted nuclear norm minimization
WSNM weighted Schatten p-norm minimization
GST generalized soft-thresholding
RMSE root mean square error
SSIM structural similarity index
TICA The Cancer Imaging Archive
OS-ASD-POCS ordered subset ASD-POCS
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