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Abstract: Approximate string searches have been widely applied in many fields, such as bioinfor-
matics, text retrieval, search engines, and location-based services (LBS). However, the approximate
string search results from third-party servers may be incorrect due to the possibility of malicious
third parties or compromised servers. In this paper, we design an authenticated index structure (AIS)
for string databases, which is based on the Merkle hash tree (MHT) method and the q-gram inverted
index. Our AIS can facilitate verification object (VO) construction for approximate string searches
with edit distance thresholds. We design an efficient algorithm named GS2 for VO construction at the
server side and search result verification at the user side. We also introduce an optimization method
called GS2-opt that can reduce VO size dramatically. Finally, we conduct extensive experiments on
real datasets to show that our proposed methods are efficient and promising.

Keywords: approximate string search; edit distance; query result authentication; database outsourc-
ing; inverted index

MSC: 68P20

1. Introduction

The advancement of big data technologies for data collection, data storage, and data
analytics has led to a dramatic increase in the volume of data managed. As a result,
organizations, especially small- and medium-sized enterprises, are usually overwhelmed
by the maintenance and processing of huge amounts of data. To tackle these challenges,
cloud computing and database outsourcing have emerged in the past decade and have
become the mainstream computing paradigm today. Database outsourcing (DBO) means
that the data owners (DO) delegate their data to a third-party service provider (note that
we also refer to it as the server in the following), and the server takes charge of data storage
for DO and query processing for users.

Although the DBO paradigm offers many benefits to companies to cope with the
challenges brought by big data, it also poses threats to data privacy and security since
DO is usually reluctant to reveal their data to the public and the users do not want their
query results to be tampered with. A potential threat is that the server may not answer user
queries honestly in order to save computational costs; for example, the server may only
process query requests on a small part of the data. Another risk is that the query results
may be compromised by an untrusted server. Therefore, it is essential for the user to verify
or authenticate whether the query results provided by the server are correct.

Many real-world databases contain a variety of textual data, such as personal infor-
mation, blogs, emails, documents, scientific reports, genome data, etc. In certain scenarios,
even the entire data records in a relational database are regarded as textual data during
processing [1]. Some companies may resort to the DBO paradigm by outsourcing their
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textual data to third parties in order to reduce the overhead of database maintenance.
On the other hand, some organizations choose to maintain textual data and process user
queries on their own; for example, a tool called BLAST (basic local alignment search tools)
is provided to the public to search for similar nucleotide sequences. Note that in either
method of database maintenance, there may exist security risks, e.g., the server might be
malicious or might have been hacked; hence, the query result returned from the server may
not be trusted anymore.

In this paper, we consider the problem of result authentication for approximate string
searches. Currently, there exists some research work on text/string search result authen-
tication. For example, Pang et al. designed an elegant solution for text search result
verification [2]; however, the solution focuses on authenticating TF-IDF-based text search
results and is not suitable for string search result authentication. Dong et al. [3] proposed
an authentication mechanism for an outsourced string similarity search using the MB tree
method, which integrates the Bed tree [4] and MHT methods [5]. Similarly, this work cannot
be applied to scenarios where strings are indexed by a q-gram inverted index.

As a general case of string matching, approximate string searches aim to find similar
strings with respect to a given string. Approximate string searches have a wide range of
applications, such as search engines, duplicate detection, spell checking, plagiarism check-
ing, and genome data analysis. Various metrics are employed to measure the similarity
between strings [6], with edit distance being one of the most frequently utilized metrics.
However, the time complexity of directly computing edit distance between two strings
is high.

Many methods have been proposed to speed up the edit-distance-based computation
of approximate string searches. One widely used approach is the q-gram method, which
takes q-grams as signatures to filter the candidate set of similar strings, followed by a
refinement step to verify the remainder in the candidate set. The q-gram method is efficient
in that it can filter candidates quickly without having to scan the entire set of strings, thus
speeding up the approximate string search process.

In this paper, we first design an authenticated index structure for strings, which is
based on the Merkle hash tree (MHT) method [5] and the q-gram inverted index. Then, we
introduce two schemes, namely GS2 and GS2-opt, for authenticating approximate string
search results, with the latter being more efficient in terms of communication overhead.
Both GS2 and GS2-opt comprise several procedures, including approximate string search
processing, verification object (VO) construction, and result verification. Our contributions
in this paper are summarized as follows:

• We design an authentication structure by incorporating MHT, a popular authenticated
data structure, with q-gram-based inverted index [7], an index commonly used to
accelerate similar string searches.

• We design an authentication method called GS2 for approximate string searches. It is
a general authentication scheme suitable for several string similarity measures, such
as Edit distances, Hamming distances, and Cosine similarity.

• We develop an optimal method named GS2-opt that reduces the size of VO by com-
bining multiple filtering techniques with an optimized scheme for edit-distance-
based searches.

• We complement the proposed methods and conduct extensive experiments on real
datasets to verify the effectiveness of our method. According to the experimental
data, the GS2-opt approach can reduce the size of VO by 96.27% in comparison to the
GS2 scheme.

The paper is organized as follows. We introduce preliminaries and give a brief
overview of related work in Section 2. In Section 3, we formally define the problem
of authenticating the results of approximate string searches. In Section 4, we present
our approaches, named GS2 and GS2-opt, to solve the problem. Then, we analyse the
security of our approach in Section 5. We present our experimental results which verify the
effectiveness of our method in Section 6. Finally, we conclude the paper in Section 7.
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2. Background

In this section, we will introduce the related work and preliminary knowledge relevant
to the paper.

2.1. Approximate String Search

Given a query string sQ, a set D of strings, and a threshold δ, the problem of approxi-
mate string searches (or string similarity searches) is to retrieve all strings s ∈ D such that
the similarity score (based on some specific measure) between s and sQ is not less than δ.
Due to its extensive applications, approximate string searches have garnered a significant
amount of attention [4,8,9].

There are several challenges in processing approximate string searches, and the most
challenging one is to process approximate string searches with scalability. Many approaches
have been put forward, including some that introduce novel index structures [4,10–12],
while others concentrate on optimizing the search process [8,13–17].

2.2. Edit Distance

Edit distance is the most commonly used measure of string similarity, which indicates
the minimum number of single-character operations that transform one string into another.
Generally, the permitted edit operations are insertion, deletion, and substitution, and one
can assign a specific cost or weight to each of these operations. Currently, the simplest edit
distance is the Levenshtein distance [18], where the cost of each operation is 1 (except for a
character substitute itself, which is 0). Note that we use the Levenshtein distance as the
edit distance in this paper.

Let ed(s1, s2) be the edit distance between two strings s1 and s2. Given two strings s1
and s2, if ed(s1, s2) ≤ k, where k is a pre-specified threshold, then we say that s1 and s2 are
similar. Wagner et al. [19] presented a classical algorithm for computing edit distance with
a time complexity O(|s1| ∗ |s2|), where |si| is the length of si.

2.3. q-Gram-Based Inverted Index

Since the calculation of the edit distance is time-consuming, preprocessing is usually
employed to speed up the calculation process, during which features of strings are gener-
ated first and then indexed subsequently. Commonly used index structures include the
q-gram inverted index, trie index, suffix tree index, and BWT index.

The q-gram inverted index [20] is one of the most commonly used indexing methods
for strings. Basically, q-grams of a string s are all substrings (grams) of length q, and there
are |s| − q + 1 such substrings in total. We call the set of those substrings the q-gram set
, denoted by grams(s, q). For instance, consider a string s = “words”; the 2-gram set of s
is {“wo”, “or”, “rd”, “ds”}, i.e., grams(s, 2) = {“wo”, “or”, “rd”, “ds”}. It is intuitive that
similar strings share a certain number of q-grams.

The q-gram-based inverted index consists of two components, i.e., a dictionary of
grams and a set of inverted lists (note that we also call it the i-list for brevity). Each entry of
the dictionary includes a gram and a pointer to the corresponding i-list of the gram, and
the i-list is a collection of string IDs (denoted by Sid), where each string contains the gram
as a substring. To illustrate, an example string set is given in Table 1, and its corresponding
2-gram inverted index is shown in Table 2.

Currently, much research effort is being put into using the q-gram based inverted
index to speed up string similarity searches [9,21–25]. Jokinen et al. [21] quantitatively
revealed the characteristics of sharing grams between query strings and candidate strings
(as presented in Lemma 1), thus laying down a foundation for fast candidate string filtering
without scanning the entire set of strings.
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Table 1. An example string set.

Sid String

1 arise
2 braise
3 f raise
4 praise
5 raise
6 rise

Table 2. 2-gram inverted index of Table 1.

Gram Inverted List

ai 7→ 2, 3, 4, 5
ar 7→ 1
br 7→ 2
f r 7→ 3
is 7→ 1, 2, 3, 4, 5, 6
pr 7→ 4
ra 7→ 2, 3, 4, 5
ri 7→ 1, 6
se 7→ 1, 2, 3, 4, 5, 6

Lemma 1. If ed(si, sQ) ≤ k, then at least |sQ| − q + 1− kq grams are shared by both si and
sQ [21], i.e.,

ed(si, sQ) ≤ k ∧ |sQ| − q + 1− kq > 0

⇒|sQ| − q + 1− kq ≤ |grams(si, q) ∩ grams(sQ, q)|.
(1)

2.4. Result Authentication for String Search

To solve the problem of text search result authentication, Pang et al. proposed an
elegant solution for text search engines based on an inverted index [2]. Later, inspired by
this work, Goodrich et al. extended Pang’s solution to support web content searches by
authenticating web crawlers [26]. However, these approaches are not suitable for approx-
imate string search authentication because they use similarity functions for documents,
such as TF-IDF, which cannot be used to measure the similarity between strings.

Dong et al. presented an authentication structure that integrates the Bed tree and MHT
methods to prove the soundness and completeness of approximate record-joining results [1]
and for outsourced string similarity searches [3]. Their approach relies on a specific data
structure, i.e., the Bed tree structure, and cannot be employed directly to a scenario where
strings are indexed by the q-gram inverted index.

3. Problem Formulation

In this section, we describe the system model, threat model, and design goals.

3.1. System Model

Our authentication scheme for approximate string searches involves three parties, i.e.,
the data owner (DO), the cloud service provider (or server), and the user (or client), as
shown in Figure 1. Here, DO refers to the entity that possesses a textual dataset D and
intends to outsource it to the server. To assist users to authenticate the search results from
the server, the DO needs to upload additional auxiliary information along with the dataset
D to the server. The server is responsible for database maintenance and query processing.
When a user sends a query request with a query string sQ and a similarity threshold k to the
server, the latter processes the query against D, collects the result R, generates a verification
object (VO), and returns R and VO to the user. After receiving R and VO, the user can



Mathematics 2023, 11, 2128 5 of 25

verify (1) whether the server has performed the query honestly and (2) whether the result
R is correct.

Figure 1. The textual database outsourcing model.

3.2. Threat Model

The assumption made in this paper is that the server is not completely trustworthy,
and thus, the results returned by the server may be incomplete or unsound. Therefore, the
user must verify the results to guarantee both completeness and soundness. By completeness,
we mean that the query result set R includes all the qualified strings from the dataset D
based on the user’s query. On the other hand, by soundness, we mean that all the strings in
R indeed come from D without being tampered with and meet the query criteria.

To be more specific, given a query Q issued by the user, let RDO and RS be the query
result set obtained at the DO side (Note that DO is always honest, so RDO is complete and
sound) and at the server side, respectively. We have the following inference:

• RS is complete, if ∀si ∈ RDO ⇒ si ∈ RS holds.
• RS is sound, if ∀si ∈ RS ⇒ si ∈ RDO holds.

Note that we also use correct to refer to the situation where both completeness and
soundness are achieved.

We present some instances of incorrect results in Figure 2, where the string set is
D={“Alice",“Police",“Marialice"}, and the correct result for a query with sQ=“Molice" and
k=2 is RDO={“Alice",“Police"}. Figure 2a shows that an item in RDO has been eliminated
by the server. Figure 2b shows that an additional item that does not satisfy the query
requirements has been appended to the result R’ by the server. Figure 2c shows that the
server has fabricated an item and adds it to the result R’. Figure 2d shows that the server
has altered the item from “Police" to “P0lice", and, concretely, this case violates both the
completeness and soundness properties.



Mathematics 2023, 11, 2128 6 of 25

(a) Violation of Completeness (b) Violation of Soundness: case I

(c) Violation of Soundness: case II (d) Violation of Soundness: case III

Figure 2. Examples of incorrect results.

3.3. Design Goals

There are two key goals for our solution, i.e., security and efficiency. Security means
that our solution is capable of detecting incomplete or tampered query results for the user.
Efficiency means that our solution should not require accessing the entire database for
query result authentication. Meanwhile, our solution should also aim to minimize the size
of the VO so as to cut down communication overhead between the server and user, as well
as the time cost in verification at the user side.

4. Our Solutions

In this section, we first present GS2, an efficient authentication method designed for
approximate string searches on outsourced string databases that are indexed by a q-gram-
based inverted index. Then, we introduce an optimization method called GS2-opt, which
reduces VO size dramatically. Both GS2 and GS2-opt can prove to the user that (1) any string
in D that is similar to sQ is included in R, and there is no qualified string in D left behind,
and (2) all the strings in R are indeed similar to sQ and are not tampered with.

Basically, our methods consist of three phases: (1) a preprocessing phase, during which
the DO creates an authenticated data structure and signs it. Then, the DO uploads D, the
root signature (sig) of the structure and parameter q to the server; (2) a searching phase,
during which the server receives a query request from the user, performs a string search
against D to find query result R, and constructs a VO with respect to R. The server then
returns both R and VO to the user; and (3) an authentication phase, during which the user
verifies the correctness of the query result R against VO.

4.1. GS2

We present the details of the three phases of GS2 in the following.

4.1.1. Preprocessing Phase

During this phase, the DO constructs and signs the authenticated index structure (AIS)
for D before outsourcing D to the server. Our AIS mainly consists of two parts, namely, a
dictionary and an inverted index. Thanks to its efficiency and simplicity, we use MHT for
authentication of the data structure construction. We summarize the construction process
in Algorithm 1.
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Algorithm 1: Generate signature for dictionary.
Input: dataset D, private key sk
Output: Signature Sdic of the dictionary

1 \\construct a MHT of D and then sign the root of the MHT ;
2 D ← sort(D) ; id← 0; nodes← ∅ ;
3 foreach s ∈ D do /* compute ht */
4 s.append(id ++);
5 ht(t)← h(h(s.Sid)|h(s.string));
6 nodes.append(ht(t));

7 while len(nodes) > 1 do /* build MHT */
8 new_nodes← [ ];
9 foreach nodel , noder ∈ nodes do

10 node_ f ← h(H(nodel) | H(noder));
11 new_nodes.append(node_ f );

12 nodes← new_nodes;

13 Sdic ← sigsk (nodes);
14 return Sdic;

First, we show how to generate a signature for the dictionary. As shown in line 2 of
Algorithm 1, the DO sorts the strings in D in alphabetical order and assigns each string a
unique ID, i.e., Sid, as shown in Table 1. The reason to sort D is that the strings of a query
result tend to share a common prefix; hence, sorting helps to cluster similar strings together,
which can reduce VO size and thus save network costs.

The DO computes the tuple hash ht for each tuple t(Sid, string) ∈ D as follows:

ht(t) = h(h(t.Sid)|h(t.string)), (2)

where | stands for string concatenation, and h(·) is a one-way hash function. Lines 3 to 6 of
Algorithm 1 show how to compute tuple hashes. We use the tuple hash as an identifier for
a tuple.

The DO builds the MHT of D in a bottom-up manner. Specifically, if node i of the MHT
is a leaf node, then its hash is simply h(i) = ht(ti), where ti is the data tuple corresponding
to node i. On the other hand, if node i is an internal node, then its hash can be calculated
as h(i) = h(hnodel

| hnoder ), where hnodel
and hnoder are the hash values of the left and right

children of node i, respectively. This process repeats until the root node of the MHT is
obtained. This construction is illustrated in Figure 3, where Hi is the hash value of node i,
and the “root hash” (denoted as Hr) is a digest of all the tuples in the Merkle hash tree. We
summarize the calculation of MHT in lines 7 to 12 of Algorithm 1.

Figure 3. An example of MHT.

After the MHT is built, the DO generates a pair of keys (pk, sk), where pk and sk refer
to the public key and private key, respectively. Then, the DO signs the root hash hr of the
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MHT with the DO’s private key sk, i.e., Sdic = sigsk (Hr), where sig(.) is a standard digital
signature algorithm, such as RSA and ECDSA.

Next, we explain how to compute the signature of the inverted index, as shown in
Algorithm 2. Specifically, the DO creates an inverted index for the q-grams (lines 2 to
8 of Algorithm 2), where q is a hyper-parameter that can be pre-determined based on
some statistics of dataset and user queries, such as the distribution of the alphabet and the
average length of the strings.

Algorithm 2: Generating a signature for inverted index.
Input: dataset D, private key sk, gram length q
Output: Sinv

1 inv_gram← ∅ ; nodes← [ ] ;
2 foreach s ∈ D do /* build inv_index */
3 grams← grams(s, q);
4 foreach g ∈ grams do
5 if g ∈ inv_gram then
6 inv_gram.g.append(s.Sid);
7 else
8 inv_gram[g]← [Sid]

9 foreach g ∈ inv_gram do /* compute ht */
10 hlist ← h(concat(g.Sid));
11 ht(gram)← h(h(g)|hlist);
12 nodes.append(ht(gram));

13 while len(nodes) > 1 do /* build MHT */
14 new_nodes← [ ];
15 foreach nodel , noder ∈ nodes do
16 node_ f ← h(H(nodel) | H(noder));
17 new_nodes.append(node_ f );

18 nodes← new_nodes;

19 Sinv ← sigsk (nodes);
20 return Sinv;

For each i-list = < Sid1, Sid2, . . . , Sidm > of the inverted index (lines 9 to 12 in
Algorithm 2), the DO computes the tuple hash ht for the i-list as follows:

hi−list = h(Sid1|Sid2| . . . |Sidm), (3)

ht(gram− list) = h(h(gram)|hi−list). (4)

For instance, consider the gram “ai” and its corresponding list in Table 2. We thus have
h“ai”.i−list = h(3|4|5|6) and ht(“ai”) = h(h(“ai”)|h“ai”.i−list). Note that ht(“ai”) corresponds
to h1 in Figure 4.

Then, the DO computes the MHT of the inverted index. Specifically, the gram-list of
the inverted index is sorted by grams in alphabetical order, and the MHT construction
process of the inverted index is the same as MHT construction for the dictionary. When the
MHT is built, the DO signs the root hash to generate signature Sinv of the inverted index
(lines 13–19 of Algorithm 2). We give an example of MHT construction for the inverted
index in Figure 4.

After the AIS is constructed as described above, the DO uploads dataset D, q, and two
signatures, Sdic and Sinv, to the server. It is worth noting that in some existing outsourcing
database models, the DO stores signatures locally (instead of uploading them to the server)
and only sends them to users upon request. For example, [3] proposed a solution called
AutoS3, in which the DO is required to remain active to keep the system running prop-
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erly. In contrast, our solution allows the DO to go offline without affecting the database
outsourcing services .

Figure 4. An MHT built on Table 2.

4.1.2. Searching Phase

In this section, we present the process of generating the VO for user queries. In
general, the VO is composed of two components, i.e., the VO of the dictionary and the
VO of the inverted index. First, we provide a brief description of how the server performs
approximate string searches with respect to a user query, as summarized in Algorithm 3.
Then, we show how to construct VO in detail.

Upon receipt of dataset D, q, and signatures from the DO, the server builds the q-gram
inverted index based on D and q. Assume the user issues a query Q with string sQ and
threshold k to the server, which implies that the user wants to search for all strings whose
edit distance from sQ is less than or equal to k. After receiving sQ and k from the user, the
server calculates the minimum number of shared grams, denoted by τ, between sQ and a
string si. According to Lemma 1, we have

τ = max(si, sQ)− q + 1− kq. (5)

Without loss of generality, τ is set to the minimum value of the above equation, i.e.,
τ = |sQ| − q + 1− kq, as shown in line 2 of Algorithm 3.

Algorithm 3: Search for similar strings in D.
Input: dataset D, inverted index inv_gram, query string sQ, threshold k
Output: R

1 e-gram← [ ] ; ne-gram← [ ] ; R← ∅ ; Cstr ← ∅;
2 τ = len(sQ)− q + 1− k× q; ;
3 sQ-grams← grams(sQ, q);
4 foreach g ∈ sQ-grams do
5 if g ∈ inv_gram then e-gram.append(g);
6 else ne-gram.append(g);

7 n_Sid← counter(inv_gram[e-gram]);
8 foreach Sid ∈ n_Sid do
9 if Sid.num ≥ τ then Cstr.add(D[Sid]) ;

10 foreach s ∈ Cstr do
11 if ed(s, sQ) ≤ k then R.add(D[Sid]) ;

12 return R;
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The server extracts a set of sQ-grams of |sQ| − q + 1 grams from grams(sQ, q), as shown
in Line 3 of Algorithm 3. Then, all the i-lists corresponding to grams in sQ-grams are fetched
from the inverted index. It is possible that some gram in the sQ-grams may not have a
corresponding i-list in the inverted index; hence, we divide the grams in sQ-grams into the
following two cases (lines 4 to 6 of Algorithm 3) :

• If a gram g ∈ sQ-grams has a corresponding i-list, g is called an e-gram;
• If a gram g ∈ sQ-grams does not have a corresponding i-list, g is called an ne-gram.

We refer to the i-lists that correspond to the e-gram as e-i-lists.
After that, the server counts the number of occurrences of Sid in e-i-lists and find those

that appears no less than τ times. To count the number of occurrences, there exist many
efficient algorithms, e.g., the Heap algorithm, MergeOpt [7], ScanCount, MergeSkip, and
DivideSkip [9]. After the counting step, we obtain a set of candidate strings, denoted by
the C-string, whose Sid appears at least τ times in the e-i-lists, as shown in lines 7 to 9 in
Algorithm 3.

For each string sc ∈ C-string, the server computes the edit distance between sc and
sQ, and those strings whose edit distance from sQ is less than or equal to k are put into the
result set R (as shown in lines 10 and 11 in Algorithm 3). Note that the server can directly
use the dynamic programming technique to calculate the edit distance between two strings,
or it can use the verification technique [1] or other filter-verification frameworks [27] to
speed up the computation.

Example 1. Let us consider an example with sQ=“arisen”, k = 1, and the database D, as shown
in Table 1, and its corresponding inverted index, as shown in Table 2. After receiving sQ and k,
the server first computes τ = |sQ| − q + 1− kq = 6− 2 + 1− 1× 2 = 3 and then extracts sQ-
grams = {“ar”,“ri”,“is”,“se”,“en”}, from which the server obtains e-gram={“ar”,“ri”,“is”,“se”}
and ne-gram={“en”}. Next, the server counts the frequency of occurrence of Sid in e-i-lists, and
only the strings with Sid ∈ {1, 6} satisfy the requirement of appearing at least τ times. Hence, we
have C-string={“arise”,“rise”}. Finally, the server computes the edit distance between the strings
in the C-string and sQ. Among them, only the string “arise” satisfies the threshold of edit distance
k. Therefore, the result R = {“arise”} is returned to the user.

Next, we show how to construct VO with respect to a query result R. First, the server
builds leaf nodes for all grams in the inverted index. For each e-gram, the leaf node contains
the gram and its corresponding i-list. For each gram that is a neighboring list (the alphabetic
predecessor and successor of a gram in the inverted index) of the ne-gram, the leaf node
contains the gram and the hash value hlist of its i-list. For each of the remaining grams, the
leaf node contains its tuple hash ht(t) (lines 1 to 12 of Algorithm 4). Note that if a gram in the
set of the ne-gram is out of the boundary of the inverted list, then the neighbors of that gram
only contain one gram. For example, as shown in Table 2, the neighbors of gram “aa” and “sf”
are “ai” and “se”, respectively, whereas the neighbors of gram “fr” are “br” and “is”.

Similar to the process of forming VO on a traditional MHT, in our solution, the server
calculates the hashes of the internal nodes (lines 13 to 18 of Algorithm 4). Similarly, the
server builds the MHT for dataset D and maintains the information about the C-string, as
shown in lines 19 to 25 of Algorithm 4.

The formation of VO for result set R is shown in line 26 of Algorithm 4, from which we
can see that VO consists of (1) the e-grams and their corresponding e-i-lists, the neighboring
grams of each ne-gram and their i-list hash values, and the hashes of other nodes; (2) C-
string set along with their Sid and the hashes of other nodes; and (3) the signatures of the
dictionary MHT and of the inverted index MHT, respectively. The server sends R and VO to
the user for verification. Note that in scenarios where the user continuously issues queries,
the server only needs to send the signatures once to reduce network communication costs.

It is worth mentioning that the elements in VO are organized in such a way that the
user can easily recalculate the root hash of the dictionary MHT and the root hash of the
inverted index MHT. Specifically, the elements in VO are organized according to where
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they are located in the MHT, and a pair of parentheses is added around elements that share
the same parent node in the MHT.

Algorithm 4: VO construction.
Input: dataset D, inverted index inv_gram, e-gram list e_l, ne-gram list ne_l, query

string sQ, k, C-string Cstr, signature Sdic and Sinv
Output: VO

1 n_ne_l ← [ ] ; i← 1; ns← [ ] ;
2 foreach ne ∈ ne_l do
3 n_ne_l.append(inv_gram.getneighbors(ne));

4 foreach n ∈ inv_gram do /* compute ht */
5 if n.gram ∈ e_l then
6 ns.append([n.gram, n.list, f lag← 1, l ← 0]);

7 else if n.gram ∈ n_ne_l then
8 hlist ← h(concat(n.list));
9 ns.append([n.gram, hlist, f lag← 1, l ← 0]);

10 else
11 ht ← h(h(n.gram)|h(concat(n.list)));
12 ns.append([ht, f lag← 0, l ← 0]);

13 while i < len(inv_gram)) do /* compute internal node */
14 i← i× 2 ;
15 foreach nl , nr ∈ ns do
16 if nl and nr same level and both f lag 0 then
17 n_ f ← [h(nl | nr), f lag← 0, l ← nl .l + 1];
18 ns.replace([nl , nr], n_ f );

19 VOinv ← ns; ns← [ ];
20 foreach n ∈ D do /* compute ht */
21 if n ∈ Cstr then
22 ns.append([n, f lag← 1, l ← 0]);
23 else
24 ns.append([ht(n), f lag← 0, l ← 0]);

25 VOdic ← compute_in_nodes(ns);
26 VO← {VOinv, Sinv, VOdic, Sdic};
27 return VO;

Example 2. Let us continue with the previous Example 1, where the result R = {“arise”}.
Referring to Figure 4, it is clear that the neighbors of ne-gram=“en” are “br” and “fr”, and their
corresponding i-list hashes are hbr.list = h(2) and h f r.list = h(3), respectively. Similarly, after
computing the other necessary hashes, i.e., h1, h6 and h7, the server constructs the first part of VO
as follows:

VOinv ={((((h1, (“ar”, (1)))((“br”, hbr.list)(“ f r”, h f r.list)))

(((“is”, (1, 2, 3, 4, 5, 6)), h6)(h7, (“ri”, (1, 6)))))

((((“se”, (1, 2, 3, 4, 5, 6))))))}.
(6)

Recall that we have C-string={“arise”,“rise”}, and after computing h2, h34, and h5, the server
constructs the second part of VO as follows:

VOdic = {((((1, “arise”), h2), h34)((h5, (6, “rise”))))}. (7)
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Figure 5 shows the elements that constructed VOdic and VOinv. Finally, having obtained the
above components, we have:

VO = {VOinv, Sinv, VOdic, Sdic}. (8)

(a) elements in VOinv

(b) elements in VOdic

Figure 5. An example of VO constructed by the GS2 method.

4.1.3. Authentication Phase

Given a user query with sQ and k, the server conducts query processing and returns
the query result set R, along with its corresponding VO to the user. Upon receipt of R and
VO, the user verifies whether the received R is correct. Note that the user obtains the DO’s
public key pk via a secure channel, such as a certificate authority (CA). We summarize the
authentication procedures in Algorithm 5.

At first, based on the VO received, the user computes the root hashes for both the
dictionary and the inverted index. Specifically, by using VOinv and VOdic, the user can
compute the hashes of internal nodes in a recursive manner until the root hashes h′rooti

(root
hash of the inverted index) and h′rootd

(root hash of the dictionary) are obtained (lines 1 and
2 of Algorithm 5). Note that we assume that the DO shares with the user some necessary
information, such as the hash function, the public key encryption algorithm used by the
DO, and the parameter q, etc. Then, the user decrypts signatures Sinv and Sdic with pk,
as follows:

hrooti = sigpk (Sinv), (9)

hrootd = sigpk (Sdic). (10)
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where hrooti and hrootd are compared against h′rooti
and h′rootd

, respectively. If either h′rooti
6= hrooti

or h′rootd
6= hrootd , then the user concludes that the query result R returned from the server fails

the correctness verification, as shown in lines 2 to 6 of Algorithm 5.

Algorithm 5: Query result authentication.
Input: dataset R, query string sQ, threshold k, verification object VO, public key

pk, gram length q
Output: isPass

1 h′rooti
← compute_inv_root(VO.VOinv) ;

2 h′rootd
← compute_dic_root(VO.VOdic) ;

3 hrooti ← sigpk (VO.Sinv) ;
4 hrootd ← sigpk (VO.Sdic) ;
5 if h′rooti

6= hrooti or h′rootd
6= hrootd then

6 return isPass← False;

7 Cstr, n_ne_g, e_g, e_g_list← parse(VO);
8 foreach g ∈ grams(sQ, q) do
9 if g /∈ e_g and g′s neighbors /∈ n_ne_g then

10 return isPass← False

11 Cstr′ ← [ ] ; τ ← len(sQ)− q + 1− k× q ;
12 n_sid← counter(e_g_list));
13 foreach sid ∈ n_sid do
14 if sid.num ≥ τ then Cstr′.append(Cstr[sid]) ;

15 if Cstr′ 6= Cstr then return isPass← False ;
16 R′ ← [ ] ;
17 foreach s ∈ Cstr do
18 if ed(sQ, s) ≤ k then R′.append(s) ;

19 if R 6= R′ then return isPass← False ;
20 return isPass← True;

On the other hand, if VO is correct, then the user compares grams(sQ,q) with the
gram set GVO that consists of all grams appearing in VOinv. For each gram g, where g ∈
grams(sQ,q) and g /∈ GVO (i.e., g is an ne-gram), the user looks for its neighbors in GVO, and
the neighbors should be adjacent to each other in VO, unless there is only one neighbor.
Otherwise, the user is certain that the R fails the completeness test.

For each gram g, where g ∈ grams(sQ,q) and g ∈ GVO (i.e., g is an e-gram), the user
counts the number of occurrences of Sid in the e-i-lists. For those strings whose Sid appears
at least τ = |sQ| − q + 1− kq times, the user needs to check whether they appear in VOdic.
If any Sid appears at least τ times but does not appear in VOdic, then the user is certain that
the R does not pass the completeness test (lines 7 and 16 in Algorithm 5).

Finally, the user extracts all strings in VOdic and computes the edit distance between
each of them and sQ. If the edit distance of some string is not greater than k, but the string
is not included in R, then the user concludes that the result set R fails the completeness
test. Conversely, if a string is in R but it is missing during the comparison, then the user is
certain that R fails the soundness test (lines 17-21 in Algorithm 5).

Example 3. Let us recall Example 2. We have sQ={“arisen”}, k = 1, R = {“arise”}, VOinv,
VOdic, and two signatures Sinv and Sdic. At first, the user recalculates the root hash for VOinv and
VOdic, respectively, as follows:

h′rooti
=h(h(h(h1|h(“ar”|h(1)))|h(h(“br”|hlist1)|h(“ f r”|hlist2)))|

h(h(h(h(“se”|h(1, 2, 3, 4, 5, 6))|0)|0)|0));
(11)
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h′rootd
= h(h(h(h(1|“arise”)|h2)|h34)|h(h(h5|h(6|“rise”))|0)), (12)

where h′rooti
and h′rootd

are compared with the decoded signatures to verify the authenticity of VO.
Then, the user retrieves the set of e-grams and the set of neighbors of ne-gram from VOinv and

compares the set of e-grams against gram(“arisen”,2) in order to obtain ne-gram={“en”}. Based on
the ne-gram, the user is certain that the neighboring gram “br” lies before {“en”}, and “fr” lies
after {“en”} in the inverted index. Next, the user counts the number of occurrences of Sid and only
strings in {1, 6} whose occurrences are greater than or equal to τ = 3. Finally, the user retrieves
strings {“arise”,“rise”} from VOdic, where Sid = {1, 6}, and computes the edit distance between
the string s ∈ {“arise”,“rise”} and sQ. Here, only s =“arise” satisfies the threshold k, which is the
same as R. Hence, the user confirms that the result R sent from the server is correct.

It is worth mentioning that by modifying the computation of τ (note that an example
computing method can be found in [27]), our GS2 model can be applied to other threshold-
based similarity measures for strings, such as Hamming distance, Edit similarity, Jaccard
similarity, Cosine similarity, and Dice similarity. For example, for the Hamming distance,
τ can be calculated by τ =

∣∣sQ
∣∣− q + 1− k ∗ q, and the calculation of τ values for other

distance measures can be found in [27].
GS2 is not a very cost-effective approach in terms of network communication because

the size of the VO generated is large, resulting in a higher transmission cost. For most
resource-constrained clients, especially mobile devices or IoT devices, the network band-
width and battery are limited. Therefore, it is important to reduce the communication
overhead between the server and the users. To address this issue, in the next section, we
design an optimization scheme, which can significantly reduce the VO size.

4.2. Optimization Method for GS2

In this section, we introduce an optimization scheme named GS2-opt. In GS2, VOinv
and VOdic are the two components that take up the majority of the VO size, since the length
of the i-list in VOinv may be excessively long, and the number of C-strings may be large for
a large string dataset.

In our GS2-opt model, we reduce the size of VOinv and VOdic by using the following
strategies:

1. We employ a length-filtering technique to reduce the size of VOinv and VOdic.
2. We propose the representative grams to reduce the size of VOinv at the cost of a slight

increase in the size of VOdic.
3. We design a solution to deal with the case where some parts of the result are empty

during authentication.
4. We use compression techniques to further reduce the size of VO.

Note that the goal of the above optimization strategies is to shrink the VO size, and
that some of them are not suitable for similarity functions other than the edit distance.
Below, we explain these strategies in detail.

4.2.1. Length Filtering

Long strings tend to cover many grams, which causes them to frequently sneak into
C-strings, but they are obviously different from sQ. Therefore, we use a length-filtering
technique [28] to further weed out strings that do not satisfy the edit distance constraint.
The application of the length-filtering technique is based on the following lemma:

Lemma 2. If ed(si, sQ) ≤ k, then their lengths cannot differ by more than k, i.e.,

ed(si, sQ) ≤ k⇒
∥∥|si| − |sQ|

∥∥ ≤ k. (13)
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Proof of Lemma 2. The proof for Lemma 2 is straightforward. An insertion or deletion
edit operation changes the string length by no more than 1, and the substitution operation
does not change the string length at all. Therefore, within k edit operations, the string
length changes by no more than k.

To authenticate the strings pruned by length filtering, we modify some of the steps
in GS2. Below, we will explain the details of these changes. Specifically, during the
preprocessing phase, strings are sorted by length at first and then sorted in alphabetical
order. For example, given a set of strings in Table 3, after sorting, they are listed in Table 4.

Table 3. Strings sorted in alphabetical order.

Sid String

1 arise
2 braise
3 f raise
4 praise
5 raise
6 rise

Table 4. Strings sorted by length at first, then sorted in alphabetical order.

Sid Strings

1 rise
2 arise
3 raise
4 braise
5 f raise
6 praise

Additionally, before building the MHT for the inverted index, the DO sorts each of the
i-list, builds an MHT for each i-list in the inverted index (as shown in Figure 6), and takes
the root hash as the i-list digest:

hi−list = hr. (14)

Figure 6. An Example of MHT for an i-list.

Figure 6 shows an example of building an MHT for an i-list of “ra", and its tuple hash
is computed as follows:

ht(“ra”) = h(h(“ra”)|hi−list)

= h(h(“ra”)|hr).
(15)

During the searching phase, before constructing the VO, the server calculates the
desired range of length [|sQ| − k, |sQ|+ k] and filters out all the C-strings that fall outside
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this range. To facilitate authentication, when building the MHT for the dictionary, the
strings that are immediately adjacent to the range borders are included in VOdic. On the
other hand, when building the MHT for the inverted index, for each gram-list, the server
constructs an MHT and uses digests to represent the Sid of strings whose length is not in
the range (except two boundary strings that are not in the range). In this process, we also
introduce the similar concept of buddy inclusion [2] to further reduce the VO size.

In the verification phase, the user verifies that the length of the first string in the
C-string is not greater than |sQ| − k− 1 and that the length of last string in the C-string is not
less than |sQ|+ k + 1. The user also checks that the range of Sid of each e-i-list covers the
Sid of the boundary strings and that all of the Sids in the e-i-list are continuous. With the
exception of the steps described above, all other procedures are the same as those in GS2.

4.2.2. Representative Grams

As discussed in [7], the frequency distribution of words in real-life datasets is often
heavily skewed, with a significant portion of words appearing much more frequently than
others. This phenomenon is also observed in the frequency distribution of string grams.
For example, in the dataset authors obtained from DBLP ( http://dblp.uni-trier.de/xml/
(accessed on 6 July 2022)), it has been observed that nearly one-third of string grams appear
much more frequently, with a frequency over ten times higher than the other one-third.
Therefore, in an inverted index, some grams tend to be associated with long i-lists. On
the other hand, grams with a long i-list have a higher probability of becoming an e-gram
in a query than grams with a short i-list. Therefore, if a query string sQ covers some
frequently occurring grams, it is likely that many strings that are very different from sQ
will be included in the C-string, leading to a large VO.

To address this problem, we propose the use of representative grams. The basic idea
is that instead of returning all the e-grams and the corresponding i-lists, the server only
returns a few grams that represent the grams covered by sQ. If a string covers grams that
appear multiple times, its Sid may appear several times in the same gram. To deal with
this problem, we design a new format for the gram-list, i.e., a triplet (gram, t, [list]), where
the element t denotes the number of times Sid occurs.

An example string set is given in Table 5, and the new format of the inverted index
built on the string set can be seen in Table 6. In this example, the notation “(ar,2) 7→ 1, 2"
means that the gram “ar" occurs twice in both strings with Sid = 1 and Sid = 2. Hence, the
tuple hash is calculated as follows:

ht(“ar, 2”) = h(h(ar|2)|hlist). (16)

Table 5. An example string set.

Sid Strings

1 arar
2 arari
3 rari

Table 6. Example of 2-gram inverted index with occurrence time.

Grams t Inverted List

( ar , 1) 7→ 3
( ar , 2) 7→ 1, 2
( ra , 1) 7→ 1, 2, 3
( ri , 1) 7→ 2, 3

In our previous description, if a string is considered a C-string, it must share at least
τ = |sQ| − q + 1 grams with sQ. In GS2-opt, we change this condition so that the sum of t
for a string’s grams must be greater than or equal to τ. This modification allows us to more

http://dblp.uni-trier.de/xml/
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accurately evaluate the similarity of strings that may contain the same grams that appear
multiple times.

For ease of discussion, we define the representative grams (i.e., those grams) to be
included in VOinv) as r-grams, the corresponding i-list as r-i-list, the sum of all t values for
any set of grams as st, the sum of all t values for e-grams as ste, the sum of all t values for
r-grams as str, the subset of e-grams as sub-e-grams, and the sum of all t values for a string s
in a certain sub-e-gram (i.e., how many times the Sid of the string s appears in the sub-e-gram)
as sts. Then, we have the following lemma:

Lemma 3. The server only needs to return those r-grams where str ≥ ste − τ + 1 and the length
of i-lists is the shortest among the e-grams. All strings with sts ≥ τ − (ste − str) are included in
the C-string. This allows us to reduce the number of i-lists included in VOinv.

To illustrate how this method works, let us consider a string s ∈ D that is similar to
the query string sQ. According to the previous similarity condition, s must share at least
τ grams with sQ. This indicates that for e-grams, sts must be greater than or equal to τ.
For any subset of the e-grams with st = ste − i, if a string s is similar to sQ, then its sts
must be bigger than or equal to τ − i, i ∈ [1, τ − 1]. If we set i = τ − 1, it follows that
for any subset of e-gram with the sum of t values, st = ste − τ + 1, and the Sid of s must
appear at least once in their corresponding i-list. This means that any subset of e-grams with
st ≥ ste − τ + 1 can be considered a representative gram with respect to user query Q.

Next, we provide a formal proof of the completeness of the proposed method (the
soundness proof is straightforward and is omitted).

Proof of Lemma 3. Given a string s ∈ D, where s contains |s| − 1 + q grams, there must be
three cases, as shown below:

• Case 1: ∃ gram ∈ r-gram. In this case, if sts ≥ τ − (ste − str), then s will appear in the
C-string, and the user will check the distance between s and sQ to determine whether s
should be included in R. On the other hand, if sts < τ − (ste − str), then we can infer
that for the entire e-gram, we have sts < τ. Therefore, it is impossible that s is similar
to sQ. The VO authentication will fail if there is any violation of these inequalities.

• Case 2: (∃ gram ∈ e-gram) ∧ (∀ gram /∈ r-gram). In this case, we have ste − str ≤ τ − 1,
which means that for the entire e-gram, we have sts ≤ τ− 1. Therefore, it is impossible
for s to be similar to sQ.

• Case 3: ∀ gram /∈ e-gram. In this case, s is not similar to sQ.

Therefore, the server only needs to include the r-i-list, which is a subset of the e-i-list,
into VO to guarantee the completeness of the results. It is worth noting that there are many
possible combinations of r-grams, and the value of str = ste − τ + 1 may not be the optimal
value to fit all scenarios. As such, the specific number of r-grams to be included in VO
should be determined according to the dataset and the user query.

4.2.3. Dealing with Empty Results

When the query result is empty, the user only needs to authenticate its completeness.
Specifically, we have the following lemma:

Lemma 4. For a query with sQ and k, if α > k× q, where α is the number of ne-grams, then R is
an empty set.

In this case, it is not necessary to include any i-list in VO because the result set is
already known to be empty.

Proof. An insert or substitution operation in the edit distance creates at most q grams that
contain the inserted or substituted character, while a deletion operation creates at most q− 1
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grams. Given k edit operations, at most, kq grams can be created. The number of ne-gram α
represents the number of grams that need to be created if a string s ∈ D is transformed into
sQ. Therefore, if α > kq, there are no strings in D that can be transformed into sQ.

Thus, if a user query meets this condition (i.e., the number of the ne-gram is greater
than k× q), the server can include only the neighbours of ne-grams in VOinv with the digests
that are necessary for computing the root hash, omitting all e-grams and their associated
e-i-lists. The authentication phase in this case is much easier than the authentication in GS2,
and the size of VO is also reduced dramatically.

4.2.4. VO Compression

By analyzing the contents of VO, we found that English letters and digits, along with
a few symbols such as “(“, “)” and “,”, are the most frequent characters appearing in
VO, especially in VOinv (in which the e-i-list and digest of other gram-list are the main
components).

To cut down the communication overhead in VO transmission, we use the Lempel–
Ziv–Markov chain algorithm (LZMA) [29] to compress VO. LZMA is a dictionary-based
compression method, and it uses a range encoder to compress the data. After VO construc-
tion, the server uses LZMA to compress VO and then sends it to the user. Upon receipt of the
compressed VO, the user decompresses it before performing the authentication procedure.

5. Security Analysis

Given a query string sQ with threshold k, let R be the set of strings in D that are similar
to sQ and let R’ be the set of similar strings returned by the server. An untrustworthy server
may attempt to cheat the user by violating the soundness or completeness of the query result,
as shown below.

1. Violation of soundness: following the definition in Section 3.2, the server returns R’,
where ∃s ∈ R′ ∧ s /∈ R. This means that the server is returning some strings that do
not belong D or are not similar to sQ.

2. Violation of completeness: the server returns R’, where ∃s ∈ R ∧ s /∈ R′. This means that
the server is not returning all of the strings that are similar to sQ.

Soundness. To facilitate the analysis, we divide this situation into two situations:
(1) ∃s ∈ R′ ∧ s /∈ R ∧ s /∈ D, and (2) ∃s ∈ R′ ∧ s /∈ R ∧ s ∈ D. For the first case, it is easy
to detect this during the authentication procedures as the digest of s is different from the
original strings, resulting in the root hash calculated by the user not matching the one
decoded from the DO’s signature. Hence, the user is able to catch this violation during the
step of comparing the root hashes.

For the second case, the server returns some strings that are not similar to sQ. Apparently,
this will also be identified by the user in the final step of the authentication procedure, when the
user compares strings in R’ with the strings (i.e., the C-string) that meet the similarity threshold.

Completeness. When a string s ∈ R is excluded by the server from R’, the following
cheating actions may be taken by the server to convince the client to accept R’:

• Case 1: The server claims that grams shared by both sQ and s do not exist.
• Case 2: The server does not deny the existence of the grams but forges the correspond-

ing i-list to exclude the Sid of s.
• Case 3: The server returns the correct grams and their corresponding i-lists but omits s

from the C-string.
• Case 4: The server only omits s from R’ but provides a correct VO.

For Case 1, the server omits the grams which it claims from VOinv to create two sibling
neighbours in order to deceive the user. However, no matter how the server alters the
grams in the original inverted index, it is impossible for the root hash of the inverted index
MHT computed by the user to match the one decoded from the DO’s signature. The user
can detect this case during the authentication phase. For Case 2, this action will also change
the root hash values of the inverted index MHT and will be detected by the user, similar
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to Case 1. For Case 3, with the correct inverted index, the user can filter out the C-string’s
Sid on their own. If s does not appear in VOdic, the user will conclude that R fails the
completeness test. Finally, for Case 4, with the correct C-string set, the user can verify all
strings in the C-string and compare them against those in R’. If a string s is similar to sQ but
does not appear in R’, then the user will find that R’ is incorrect.

6. Experiment
6.1. Experiment Set-Up

Datasets and query workload. We used two real-world datasets in the experiments.
The first one was the Frequently Occurring Surnames dataset (denoted by LastName) pro-
vided by the United States Census Bureau (https://www.census.gov/topics/population/
genealogy/data/1990_census/1990_census_namefiles.html (accessed on 6 July 2022)),
which contains 88,799 last names with an average length of 6.83 characters and a max-
imum length of 13 characters. The second one is the author dataset downloaded from
DBLP (http://dblp.uni-trier.de/xml/ (accessed on 6 July 2022)), which includes 2,845,839
researcher names with an average length of 14.39 characters and a maximum length of
67 characters.

We built a query workload of single strings by randomly selecting 25 strings from each
of the datasets, and we also artificially generated 25 strings. The reason we used synthetic
strings was to ensure that the ne-gram exists. The results presented in the experiment part
are the average over 10 trials.

Parameter setting. The parameters included (1) q for the q-gram inverted index and
(2) the edit distance threshold k, as shown in Table 7, where the default values are in bold.

Table 7. Parameter setting.

Parameter Range of Values

q 2, 3, 4, 5, 6
k 1, 2, 3, 4, 5

Experimental environment. We implemented both the GS2 and GS2-opt methods
in Python and employed the SHA256 hash function from the Crypto Library. All the
experiments were conducted on a machine with a 3.10GHz CPU and 128GB main memory,
running an Ubuntu 18.04.3 LTS operating system.

To evaluate the performance of our methods, we adopted three metrics, i.e., VO
construction time, VO size, and VO verification time, as described in Section 3.3. Note that
the preprocessing time at the DO’s side and the network communication between the DO
and the server are one-time costs that can be amortized over multiple queries and were
thus not considered in our experiment. Meanwhile, we investigated the performance of
each optimization technique in GS2-opt.

6.2. VO Construction Time

In this section, we measured the VO construction time at the server side. Figure 7
depicts the average VO construction time with various lengths of gram q and threshold k.

From Figure 7a, we can see that as q increases, the construction time of the GS2 method
first decreases slightly. The main reason is that as q increases, the length of e-i-lists in the
VOinv diminishes, thus reducing the time spent in counting Sid. As q increases further,
however, the construction time goes up steadily. This is because the number of grams in
the inverted index increases, leading to (1) increases in the time spent searching for the
ne-gram and (2) increases in the time for the construction of VOinv. Furthermore, we can
see that when q=2, the processing time of GS2-opt is significantly larger than that of GS2.
This is because the i-lists in the VOinv part are relatively long, and GS2-opt needs to take a
long time to build MHTs for each i-list. In other cases, the performance trends of GS2 and
GS2-opt are basically consistent.

https://www.census.gov/topics/population/genealogy/data/1990_census/1990_census_namefiles.html
https://www.census.gov/topics/population/genealogy/data/1990_census/1990_census_namefiles.html
http://dblp.uni-trier.de/xml/
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(a) Varying q (author, k = 1) (b) Varying q (LastName, k = 1)

(c) Varying k (author, q = 2) (d) Varying k (LastName, q = 2)

Figure 7. VO construction time versus q and k, respectively.

Figure 7b exhibits a similar trend to Figure 7a, but there are two differences. Firstly, the
construction time of GS2 always increases with q. The reason is that the LastName dataset
is relatively small, and the time necessary to count the Sid is only a small proportion of
the time taken to construct the whole VO. Therefore, the reduction in the Sid counting
time imposes a negligible impact on the authentication time. Secondly, when q = 2, the
gap between the two methods is not as significant as in Figure 7a. This is because the
LastName dataset is relatively small and the i-lists in VOinv are much shorter than those in
the author dataset.

Next, we investigated the impact of edit distance threshold k on VO construction time.
The results are presented in Figure 7c,d. From Figure 7c, we can see that for the author
dataset, the VO construction time of the GS2 method increases slightly with k. The rationale
is that (1) the majority of the time cost is spent on constructing VOdic, and (2) the number of
C-strings has little impact on the construction time of VOdic. We can see that in GS2-opt, as k
increases, the construction time also increases. This is due to the fact that constructing the
VOinv part uses the majority of the total construction time, and as k increases, the number
of Sid included in the e-i-list becomes longer, leading to an increase in the construction
time of VOinv. Furthermore, as the volume of VO increases with k, the compression time
also increases accordingly. We observe a similar performance trend on LastName dataset
(Figure 7d).

6.3. VO Size

In this section, we investigate the impact of q and k on VO size. The experimental
results are shown in Figure 8.
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(a) Varying q (author, k = 1) (b) Varying q (LastName, k = 1)

(c) Varying k (author, q = 2) (d) Varying k (LastName, q = 2)

Figure 8. VO size versus q and k.

From Figure 8a, we can see that as q increases, the VO size of the GS2 method decreases
dramatically at first. This is because when the length of grams grows, the number of grams
will increase dramatically, and the average length of i-lists in the invert index will decrease.
Therefore, the number and average length of e-i-lists will decrease accordingly, leading
to a decrease in the number of C-strings and both VOdic and VOinv. As q grows from 5
to 6, the VO size shows an increasing trend. The reason for this is that τ decreases as q
grows, resulting in an increase in the number of C-strings and the VOdic size as well. From
Figure 8a, we can also see that the performance trend of GS2-opt is similar to that of GS2,
but the size of VO generated by GS2-opt is much smaller than that generated by GS2. The
situation is similar in Figure 8b.

As shown in Figure 8a, when the length of a gram is large, e.g., q=5, the VO size will
decrease drastically. However, the limitation of the threshold will be more strict with a
greater gram length. If τ = |sQ| − q + 1− kq ≤ 0, then the proposed methods will crash,

and hence, the significant interval of k should be set to [0, |sQ |+1
q − 1]. Therefore, during the

preprocessing phase, the length of grams should be set to a reasonable value.
Figure 8c,d depicts the impact of k on VO size. We can see that in the GS2 method, as k

increases, the growth rate of the VO size becomes faster. This is because (1) as k increases,
the volume of VOinv remains constant, while the volume of the VOdic increases rapidly;
(2) VOdic initially only accounts for a small proportion of VO, so its growth is not significant
for the overall trend. However, when VOdic accounts for a larger proportion, its increase
imposes a greater impact on the trend of VO size. The trend of GS2-opt is similar to that
of GS2 despite the fact that both VOinv size and VOdic size increase in the GS2-opt method.
However, the VO volume of GS2-opt is significantly smaller than that of GS2.
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6.4. VO Verification Time

In this section, we study the impact of q and k on VO verification time. In general,
the verification of VO involves several steps: (1) the decryption of signatures, (2) the
verification of the e-gram and ne-gram, (3) the calculation of the edit distance for a C-string,
(4) the verification of VOdic, (5) the verification of VOinv, and (6) re-counting the Sid. The
total verification time is the sum of the time required for each of these six steps. It is worth
noting that our experimental results show that time costs of the first three are negligible.
Therefore, we only report the time consumed by the last three parts in our experiments.

When q increases, the verification time in the GS2 method decreases at first and then
increases, as shown in Figure 9a. This is because: (1) the size of VOinv part decreases, and
the time needed to verify it also decreases; (2) the time needed to re-count Sid decreases;
(3) the time needed to verify VOdic first decreases and then increases. The change in the
verification time of GS2-opt is similar, but due to a greater decrease in the time necessary
for the verification of VOinv, the overall verification time shows a decreasing trend. For the
LastName dataset, as shown in Figure 9b, a similar trend is observed.

(a) Varying q (author, k = 1) (b) Varying q (LastName, k = 1)

(c) Varying k (author, q = 2) (d) Varying k (LastName, q = 2)

Figure 9. VO Verification time versus q and k.

From Figure 9c,d we can see that when k is relatively small, the verification time of GS2

on both datasets remains steady. However, when k is greater than 4, the verification time
increases sharply. This is because the VOdic size increases significantly with k, resulting in
a significant increase in verification time. Since the proportion of time spent on validating
VOdic is very small at first, the increase in verification time has a marginal impact on the
overall authentication time. On the other hand, as the proportion of VOdic increases, it
incurs a greater impact on the overall authentication time. Note that in GS2, VOinv does not
change with k, so the time needed to verify it and recount Sid remains largely unchanged.

However, for the GS2-opt method, the size of VOinv grows with an increase in k, and
the time needed to verify it and recount Sid increases accordingly. Therefore, the growth of
GS2-opt is more significant at first.
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6.5. Performance of Techniques in GS2-opt

In this section, we investigate the effect of each component in GS2-opt on VO size,
and the experimental results are shown in Figure 10. It is worth noting that the VO size
displayed in bars 2 to 8 in the figure were obtained by applying each optimization technique
individually on the GS2 approach. The last bar shows the combined effect of these four
techniques, and the compression scheme used is LZMA.

Figure 10. VO size versus different compression techniques.

The first bar depicts the VO size of GS2. The second bar shows the VO size after
applying the length-filtering technique on GS2. The third bar is the VO size after using
the representative grams technique alone, which reduces the size of VOinv and increases
the size of VOdic significantly. The fourth bar presents the result of using the empty result
improvement technique, the optimization effects of which seem to be ordinary, and this is
because the number of strings that meet the requirement for this technique in our query set
is relatively small. However, for queries that meet the criteria, the VO size can be reduced by
approximately 99.96% in the test. The next four bars show the VO sizes after compressing
using different compression techniques, where snappy performs quite ordinarily and
LZMA performs the best. The last bar gives the result of combining the previous four
techniques, where the VO size is reduced to only 3.73% of its original size.

7. Conclusions

In this paper, we focused on the problem of ensuring the correctness of the results of
approximate string searches on outsourced text databases in the context of cloud computing.
To solve this problem, we have designed an authenticating structure for a q-gram-based
inverted index and proposed an efficient method named GS2, with which we can effi-
ciently build VO and verify the correctness of the query result. Furthermore, we proposed
an optimal method named GS2-opt for more efficiency in terms of communication over-
head. Extensive experiments on real datasets confirmed the effectiveness of our GS2 and
GS2-opt methods. In our future work, we will consider approximate string search result
authentication with a freshness guarantee.
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