
Citation: Woods, L.T.; Rana, Z.A.

Modelling Sign Language with

Encoder-Only Transformers and

Human Pose Estimation Keypoint

Data. Mathematics 2023, 11, 2129.

https://doi.org/10.3390/

math11092129

Academic Editors: Andrey

Gorshenin, Mikhail Posypkin and

Vladimir Titarev

Received: 20 March 2023

Revised: 18 April 2023

Accepted: 28 April 2023

Published: 1 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Modelling Sign Language with Encoder-Only Transformers and
Human Pose Estimation Keypoint Data
Luke T. Woods 1,2,* and Zeeshan A. Rana 3

1 Digital Aviation Research and Technology Centre (DARTeC), Cranfield University, Cranfield,
Bedfordshire MK43 0AL, UK

2 Leidos Industrial Engineers Limited, Unit 3, Bedford Link Logistics Park, Bell Farm Way, Kempston,
Bedfordshire MK43 9SS, UK

3 Centre for Aeronautics, School of Aerospace, Transport and Manufacturing (SATM), Cranfield University,
Cranfield, Bedfordshire MK43 0AL, UK; zeeshan.rana@cranfield.ac.uk

* Correspondence: luke.t.woods@cranfield.ac.uk

Abstract: We present a study on modelling American Sign Language (ASL) with encoder-only
transformers and human pose estimation keypoint data. Using an enhanced version of the publicly
available Word-level ASL (WLASL) dataset, and a novel normalisation technique based on signer
body size, we show the impact model architecture has on accurately classifying sets of 10, 50, 100,
and 300 isolated, dynamic signs using two-dimensional keypoint coordinates only. We demonstrate
the importance of running and reporting results from repeated experiments to describe and evaluate
model performance. We include descriptions of the algorithms used to normalise the data and
generate the train, validation, and test data splits. We report top-1, top-5, and top-10 accuracy results,
evaluated with two separate model checkpoint metrics based on validation accuracy and loss. We find
models with fewer than 100k learnable parameters can achieve high accuracy on reduced vocabulary
datasets, paving the way for lightweight consumer hardware to perform tasks that are traditionally
resource-intensive, requiring expensive, high-end equipment. We achieve top-1, top-5, and top-10
accuracies of 97%, 100%, and 100%, respectively, on a vocabulary size of 10 signs; 87%, 97%, and 98%
on 50 signs; 83%, 96%, and 97% on 100 signs; and 71%, 90%, and 94% on 300 signs, thereby setting a
new benchmark for this task.

Keywords: sign language recognition; human pose estimation; classification; computer vision; deep
learning; machine learning; supervised learning

MSC: 68T10; 68T45; 68T50

1. Introduction

Research in computational modelling of sign language has seen increasing attention
since the 1980s, often under the guise of gesture recognition for human–computer interac-
tion (HCI), for which sign language proves to be a convenient target dataset. The majority
of the static hand configurations of the fingerspelled American Sign Language (ASL) al-
phabet was used in early gesture recognition research [1,2]. Motivated by the work of
sign language linguistics pioneer Stokoe [3], Tamura and Kawasaki [4] began modelling
sign language at the chereme level—the sub-unit equivalent of phonemes in spoken lan-
guage [5]—which provided a mechanism for recognising manual signs that was rooted in
linguistics. Modelling sign sub-units continued to form the basis for some sign language
research see e.g., [6–17], justifying the linguistics-oriented approach.

In stark contrast, and in particular with the introduction of transformer neural net-
works [18] and their derivatives e.g., [19], explicitly modelling linguistic features of sign
language can be forgone in favour of harnessing the power of deep learning to recognise

Mathematics 2023, 11, 2129. https://doi.org/10.3390/math11092129 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11092129
https://doi.org/10.3390/math11092129
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1622-9657
https://orcid.org/0000-0001-7839-3949
https://doi.org/10.3390/math11092129
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11092129?type=check_update&version=1


Mathematics 2023, 11, 2129 2 of 28

patterns inherent in the data. This can greatly simplify model architecture, including reduc-
ing the number of learnable parameters and the need to heavily preprocess data. Moreover,
the time and resources required to develop and deploy models can be significantly reduced,
enabling the use of low-cost consumer and embedded hardware. This approach does
have limitations, however, which becomes apparent when sign language recognition is not
treated holistically, and instead as merely manual gesture recognition.

1.1. Sign Language

Sign language research has revealed a complexity and ability to communicate ideas
that gives it parity with spoken language [20–23]. Along with a general increase in cultural
and disability awareness, and focus on improving accessibility for Deaf communities,
the research community started to embrace the multimodal aspects of sign language as
well as the needs of the people it ostensibly intends to help [24]. At the very least, this
amounts to a recognition that sign language goes beyond hand gestures [25,26], which has
led to models increasingly utilising the whole signing space [27] and not just data derived
from hands—although this practice does still continue largely via wearable technology
e.g., [1,28–36], which has long been met with disdain by the Deaf community [37,38].
As with models that derive input data from video feeds that cover the signing space, those
that incorporate data from human pose estimation keypoints can also inherently use the
extra information available, though to what extent depends on the keypoints being used.
This holistic view of the keypoints within the signing space is the approach we take in
this study.

Dafnis et al. [39] emphasise the fact there is no one-to-one correspondence of ASL
signs to English words. This is a well known relationship (or lack of) that exists between
sign languages and the respective geographically located native spoken languages. Glosses
are, by definition, a limited representation of a given sign, not a literal translation, and their
use reinforces the misplaced idea that a universal one-to-one relationship exists. Efforts to
codify glosses in linguistics research include annotations that provide more context than a
single word representation, especially so that words with a common spelling, or similar
signs that have subtle context-carrying variations, can be more easily differentiated [40–44].

1.2. Modelling

Many approaches to model aspects of sign language have been described in the
literature. Hand-shape classification methods attempt to recognise specific configurations
of hands [4,16,45–48], which can be considered the fundamental sign articulator—this has
particular importance for recognising finger spelling [49]. Others focus on modelling non-
manual aspects, which are essential context carriers, not least for discriminating between
signs with similar appearance. For example, in German Sign Language (DSG), the signs
for FARBE and MARMELADE differ by accompanying mouth shape only [27]. The same
is true in British Sign Language (BSL) for the signs for BATTERY and UNCLE [50], and in
ASL for LATE and NOT-YET [51] (which also includes a slight headshake in the latter sign).
Instances where the mouth shapes are derived from the spoken language forms of the
respective signs are known as speech-like mouthings [52]. To this end, research went further
than classifying only hand shapes, to include mouth shapes [53,54], whole-face [55,56]
and whole-body configurations [57,58], all in the context of sign language recognition and
translation. The broader field of understanding sign language includes analyses of eyebrow
position during signing to provide context and signer intent [59], further illustrating the
importance of the holistic approach.

1.3. Datasets

One drawback of applying deep learning to challenging computational tasks is that
such techniques are generally data hungry; for a model to generalise well to unseen
data, it must be exposed to sufficient domain-representative examples during training,
where it is common for datasets to contain millions of examples [60]. Computational



Mathematics 2023, 11, 2129 3 of 28

sign language modelling research is hindered by a dearth of high-quality, large-sample,
and freely available datasets containing diverse, Deaf—or otherwise, expert—signers.
Efforts to help remedy this problem have increased over time, including for continuous
sign language datasets. SIGNUM [61] is perhaps the first signer-independent corpus
created specifically for computational sign language research, but has a limited vocabulary
of 450 basic DSG signs. Nevertheless, it can likely be credited with helping kick-start the
continuous sign language research movement e.g., [62–65]. The RWTH Phoenix dataset,
which has seen at least three updates [66–68], is derived from public broadcasts of German
weather reports, and has been a benchmark dataset for much research e.g., [63,65,69–82]
despite the low video resolution and the limited domain (i.e., weather forecasts). With a
vocabulary of approximately 3000 DSG signs, this in an improvement over SIGNUM,
but is smaller still than the BSL Corpus dataset comprising approximately 5000 signs [83].
The current largest continuous sign language dataset is How2Sign [84], which despite
containing a vocabulary on the order of 16,000 spoken language words, at the time of
writing has no public release of accompanying glosses. In conjunction with transcription
problems (e.g., character encoding errors, typing errors, signers’ names frequently being
prepended to the transcription, to name a few), the lack of available glosses makes it more
challenging to perform sign language translation using this dataset. For sign language
recognition research, the largest dataset of so-called word-level signs—that is to say isolated,
dynamic signs—is the Word-Level American Sign Language (WLASL) dataset [85], which
has a vocabulary of 2000 signs by 119 signers across a total of 21,083 videos.

1.4. Our Approach

We present a way to model sign language using deep learning with a custom encoder-
only transformer model, which is described in detail in Section 2.2. We analyse the architec-
tural properties that can optimise the task. Specifically, we study modelling sign language
using human keypoints extracted from sequences of isolated, dynamic signs, and perform
sign recognition on a number of different sign classes, bench-marking the performance and
model parameters at each stage. We test the scalability of this approach with number of
sign classes by running multiple experiments on an enhanced version of WLASL.

The results provide an insight into encoder-only transformers for classifying sparse,
noisy (and frequently incomplete), sequential data, and we show that simpler models can
perform better than more complex models. Perhaps most surprisingly, we show that using
an encoder-only transformer with a single layer and a single attention head is sufficient
to perform this task well on reduced vocabulary datasets. Finally, we quantify the effect
random number generation has on model performance, emphasising the importance of
running many experiments when reporting results.

1.5. Related Work

Human pose estimation techniques for sign language recognition frequently employ
multiple modalities beyond just keypoint coordinates. For context, we provide examples
that take an appearance-based approach. Li et al. [85] apply transfer learning to fine
tune the original Inflated 3D ConvNet (I3D) model [86] to output the required number of
class probabilities. They achieve 65.89%, 84.11%, and 89.92% for top-1, top-5, and top-10
accuracies, respectively, on WLASL with 100 sign classes, and 56.14%, 79.94%, 86.98% on
WLASL with 300 classes. In other work that uses motion and hand shapes to guide the
pooling for a three-dimensional CNN on RGB video frames, Hosain et al. [87] achieve top-1,
top-5, and top-10 accuracies on WLASL 100 of 75.67%, 86.83%, and 90.91%, respectively,
and 68.30%, 84.19%, 87.06% on WLASL 300, using their Fusion-2 and Fusion-3 models.

To enable the best comparisons, we now focus on techniques that are not appearance-
based, but instead are purely derived from human pose estimation keypoint data. We note,
however, that because our study uses an enhanced version of WLASL, called WLASL-alt,
as the basis of our experiments, comparisons are indicative of relative performance only.
Nonetheless, there is substantial domain overlap making some comparison valid, i.e., the



Mathematics 2023, 11, 2129 4 of 28

underlying keypoint values used are identical and it is only the class labels (glosses) and
dataset splits that differ. Again, using the same top-1, top-5, and top-10 accuracy metrics,
we provide performances from published work that uses keypoint data from WLASL only.
Using a pose-based gated recurrent unit (Pose-GRU) to model the temporal motion of
signs, Li et al. [85] achieve 46.51%, 76.74%, and 85.66% on WLASL 100, and 33.68%, 64.37%,
and 76.05% on WLASL 300. They go on to apply a temporal graph convolutional network
(Pose-TGCN) that achieves 55.43%, 78.68%, and 87.60% on WLASL 100, and 38.32%, 67.51%,
and 79.64% on WLASL 300. Also using a graph convolutional network (GCN) approach,
Tunga et al. [88] implemented a BERT-like network [19] to capture temporal interdepen-
dencies between frames in a given sequence, and report accuracies of 60.15%, 83.98%,
and 88.67% on WLASL 100, and 42.16%, 71.71%, and 80.93% on WLASL 300. Bohacek and
Hruz [89] report top-1 accuracies on WLASL 100 and WLASL 300. They modify the decoder
of a transformer in their model (SPOTER) to use a single class query token, only, to achieve
63.18% and 43.78%, respectively. Similarly, Eunice et al. [90] also use a standard transformer
model (Sign2Pose) with a single class query token fed into the decoder, but process each
input sequence by discarding so-called redundant frames as well as randomly augmenting
the keypoints with body-joint inspired perturbations. Again, reporting only top-1 accuracy,
they achieve 80.90% and 64.21% on WLASL 100 and WLASL 300, respectively. In contrast
to the latter two approaches, our transformer model has no decoder, which significantly
reduces model complexity. These results are summarised in Table 1. Dafnis et al. [39] do not
publish results on dataset splits other than a complete modified dataset of 1449 sign classes.
Using their bidirectional GCN model, which includes detecting start and end positions of
signs within a sequence to reduce the amount of silence before or after a sign is completed,
they achieve 77.43% for top-1, and 94.54% for top-5 accuracy.

Table 1. Existing top-1, top-5, and top-10 test accuracy results for human pose-estimation-based sign
language recognition using WLASL data split by 100 and 300 signs.

Model WLASL-100 WLASL-300
Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

Pose-TGCN [85] 0.5543 0.7868 0.8760 0.3832 0.6751 0.7964
Pose-GRU [85] 0.4651 0.7674 0.8566 0.3368 0.6437 0.7605

GCN-BERT [88] 0.6015 0.8398 0.8867 0.4216 0.7171 0.8093
SPOTER [89] 0.6318 – – 0.4378 – –

Sign2Pose [90] 0.8090 – – 0.6421 – –

1.6. Contributions

The main contributions of this study are as follows: we demonstrate how computa-
tional sign language recognition can be achieved using a transformer encoder-only archi-
tecture with normalised data only; we provide analysis of the changes in outcome from
different architecture configurations, with the view to optimise the task; we demonstrate
that models with a relatively tiny number of learnable parameters can perform well at this
task given a reduced vocabulary dataset; and finally we show the importance of running
repeat experiments to accurately report model performance, which gives insight into the
number of experiments expected to be repeated for achieving optimal model performance
at this task, as would be the case for deployment in the field.

1.7. Article Organisation

The remainder of this article is organised into the following sections: Section 2 details
the materials and methods used to conduct the study; Section 3 presents the results from
the experiments conducted; Section 4 discusses these results; and finally, Section 5 draws
conclusions and offers guidance on the direction of future work.



Mathematics 2023, 11, 2129 5 of 28

2. Materials and Methods
2.1. Dataset

We conduct our study using WLASL-alt, the preliminary release of a significantly
enhanced version of the WLASL dataset [91]. This updated version provides corrections and
improvements to the accompanying glosses, which we incorporate into the original WLASL
dataset. We choose not to use the original WLASL dataset because of the flaws identified by
Neidle and Ballard [91] and further discussed by Dafnis et al. [39], and are of the opinion
that its continued use in the original form should not be encouraged. An example flaw is
the lack of gloss annotation to differentiate homographs such as the noun ‘right’ as in the
direction opposite to ‘left’, and ‘right’ as in the verb ‘correct’. Another flaw is a basic typing
error for the sign glossed as SIGNER, which is labelled in the original WLASL dataset with
the gloss SINGER.

The WLASL dataset includes human pose estimation keypoints, extracted using
OpenPose [92]. Keypoints are grouped by body pose, face, left and right hand. There are
25 keypoints for the body pose and 21 keypoints per hand, giving a total of 67 available
keypoints. There are no face keypoints provided, but the positions of the nose, eyes and ears
exist in the body pose group. Each keypoint is represented by a pair of two-dimensional
coordinates and a confidence score. We make no use of the confidence score in favour of
a smaller model. From the body pose group, we extract the keypoints labelled 0–7 and
15–18, only, which represent the landmarks to be found within the signing space. We use
every keypoint from both hands, which gives a total of 108 x- and y-axis coordinates for
54 keypoints from all available keypoint groups. The human pose estimation keypoints
used in this study are summarised in Table 2.

Table 2. Human pose estimation keypoints used in this study.

Keypoint Group Keypoint Labels 1 Number of Keypoints

Body pose 0–7, 15–18 12
Left hand 0–20 21

Right hand 0–20 21
All – 54

1 These ranges are inclusive.

The keypoint dataset has a fragmentary nature, and is not an ideal, uninterrupted
stream of valid coordinates, which is caused by a few factors. First, OpenPose is not a perfect
system and its performance is subject to the quality and resolution of the source videos
for this dataset, which varies. OpenPose was therefore unable to identify every keypoint
of interest across all sequences, either accurately or at all. Second, human landmarks,
e.g., hands, eyes, ears, etc., can become occluded when signing, and OpenPose can fail to
identify keypoints of occluded landmarks. Finally, landmarks can go outside the boundary
of the camera view for an arbitrary number of frames making it impossible for OpenPose to
detect those landmarks. This is common when hands are placed—for example, in a resting
position—near or below the signing space (subject to the framing of the video), and is
demonstrated in Figure 1, which shows four consecutive frames from an example sequence.
It can clearly be seen that, across the four frames, the hand to the right of the frame is always
out of view (and with it, the adjoining forearm), but the other hand and forearm briefly
appear in the two middle frames, providing some sporadic data. This limitation is also the
reason why the keypoints representing the waistline centre-point and hips are not used in
our experiments, despite being at the limit of the signing space. Keypoints are assigned
zero values for their coordinates when the corresponding landmarks are not detected.

Data standardisation, or in machine learning parlance, normalisation, refers to pre-
processing techniques that put data points within an increasingly overlapping interval
(e.g., [0, 1]), and is often viewed as an essential step in optimising the performance of
machine learning models [93]. Example benefits of normalisation include improving nu-
merical stability of models and speeding up training such that the model is not required to



Mathematics 2023, 11, 2129 6 of 28

functionally learn the differences in scale, as well as common patterns, across the dataset.
This applies to preprocessing unseen data in the wild during inference as much as it does
when learning a model.

Figure 1. Example of the fragmentary nature of the keypoint data, where coordinate values for a
forearm and hand are missing in two of four consecutive frames from an example sequence. Each
plot represents a single frame of keypoint x- and y-axis coordinate values from a sequence. Skeleton
joints have been superimposed onto all frames to illustrate the relative positions of the visible human
landmarks. Keypoints for the ears, eyes, nose, neck, shoulders, and elbows are easily identifiable.
The overlaid blue boxes indicate the x–y plane location of the keypoint coordinate values that appear
briefly in two of the frames.

The keypoint coordinate values in WLASL appear to be the raw values produced by
OpenPose. It is self-evident that keypoints extracted from signers who appear larger in the
frame will produce a different scale of values to those who appear smaller, and perhaps
to a lesser extent, camera lens focal length and intrinsic lens distortion will also impact
on the uniformity of video sequences, although the latter is likely to have a negligible
effect. Furthermore, it is evident that signers who are at different locations within the frame
will produce offset keypoint values because OpenPose reports these values relative to the
origin of the video frame, which is one of the corners. To illustrate a clear example of both
differences in scale and a slight offset in position, Figure 2 shows two overlaid frames
extracted from two different video sequences. The two frames are cropped at the same
location within the video at full resolution and clearly show a shift in scale and origin. This
can be thought of as being additional (and superfluous) information to model.

Figure 2. Two overlaid frames extracted from two different video sequences that demonstrate
difference in raw data scale and position. Images reproduced with permission, © William G. Vicars
(http://lifeprint.com (accessed on 20 March 2023)) and © Start ASL (http://www.startasl.com
(accessed on 20 March 2023)).

Figure 3 shows plots of the maximum x- and y-axis keypoint coordinate values taken
from a representative sample of 400 sequences. The range of maximum values, including
clear outliers (two of which are extreme along the y-axis), strongly suggests that normalising

http://lifeprint.com
http://www.startasl.com


Mathematics 2023, 11, 2129 7 of 28

the data would be beneficial. Although not reported to any great depth here, we did run a
short comparison study of raw versus normalised data on like-for-like experiments (i.e., the
same model architecture, parameters, fixed random number generator seed, etc.) with only
10 sign classes for expediency. We found the experiments with normalised data realised a
mean increase in top-1 classification accuracy of approximately 5% on the test dataset split,
justifying the decision to apply our normalisation technique. We therefore normalise all
data this way for all experiments.

0 200 400

Sequence

180

200

220

240

260

280

300

M
ax

im
u

m
ax

is
co

or
d

in
at

e
va

lu
e

x-axis coordinates

0 200 400

Sequence

y-axis coordinates

Figure 3. Maximum x- and y-axis keypoint coordinate values taken from a representative sample of
400 sequences illustrating the range in maximum values.

There are many ways to normalise data. We take, what we believe to be, a novel
approach to normalisation for sign language recognition, and try to standardise the size of
every signer. We carry this out with the intention of preserving the full range of articulation
for signs that require, say, larger arm motion, which is in contrast to signs that are closer
to the body. Alternative methods that, for example, scale everything to the intervals
[0, 1], [−1, 1], [−0.5, 0.5], and so on, will likely reduce the scale of the body pose and hand
keypoints for signs that produce larger arm extensions, and conversely, inflate the scale for
signs with a smaller magnitude of arm extension.

We normalise the keypoint coordinate values per sequence to try to enforce a level of
uniformity across the entire dataset. We take the mean x-axis distance between the left and
right shoulders (body pose keypoints 2 and 5) for all frames with valid keypoint data in
a given sequence, and scale every keypoint x-axis coordinate in that sequence such that
the mean distance between the left and right shoulders is unity. For the y-axis coordinates,
we perform the same operation but using the mean y-axis distance between the neck and
nose (body pose keypoints 0 and 1), which we also set to unity. Note that the normalisation
distances are axis-aligned, rather than, say, Euclidean distances.

More formally, using zero-based indexing and given I sequences of isolated signs,
each sequence, Si, belonging to the set of all sequences, S, comprises of frames si,j up to the
maximum number of frames for all sequences in the dataset, J, and can be described as

Si =
{

si,j, si,j+1, . . . , si,J−1
}
∀i ∈ [0, . . . , I − 1], (1)

where each isolated sign sequence has a corresponding class

Ck ∀k ∈ [0, . . . , K− 1], (2)



Mathematics 2023, 11, 2129 8 of 28

where the number of classes, K, depends on the experiment being conducted. Using this
definition, a given x-axis coordinate value of a keypoint position in sequence frame si,j,
denoted by si,j,px , is scaled as

s′i,j,px
=

si,j,px ·mi,j,px∣∣si,x2 − si,x1

∣∣ , (3)

where si,x1 is the mean x-axis coordinate value (excluding values with no valid data) of the
first normalising keypoint across the entire sequence, si,x2 is the corresponding value for
the second normalising keypoint, and mi,j,px is the mask (1 or 0) indicating that this value
is non-zero. Likewise, the corresponding y-axis coordinate is scaled as

s′i,j,py
=

si,j,py ·mi,j,py∣∣si,y2 − si,y1

∣∣ , (4)

where the symbols and indices follow the same convention.
Finally, we translate all keypoints for a given sequence to place the origin at the mean

x- and y-axis coordinate value for the nose (keypoint 1) across that sequence. We again
apply a mask to ensure the undetected keypoint values remain at the origin. Formally,
a given x- or y-axis coordinate value of a keypoint position in sequence frame si,j, denoted
by si,j,pφ

, is translated to the new origin as

s′′i,j,pφ
=
(

s′i,j,pφ
− si,φ

)
·mi,j,pφ

, (5)

where si,φ is the mean value for the new origin keypoint, again using the same convention,
but where the subscript φ represents either x or y. We do not preprocess the dataset in any
way beyond this standard normalisation, which is detailed in Algorithm 1.

Algorithm 1 Data normalisation algorithm

Require: data . [sequences, frames, keypoints, x or y value] e.g., [64, 203, 54, 2]
Require: mask . same shape as data, specifies keypoints with valid values

1: function NORM(data, mask)
2: for ex ∈ data do
3: s0,x ← S0,x(dataex, maskex) . Mean x value of scaling kp 0
4: s1,x ← S1,x(dataex, maskex) . Mean x value of scaling kp 1
5: s0,y ← S0,y(dataex, maskex) . Mean y value of scaling kp 0
6: s1,y ← S1,y(dataex, maskex) . Mean y value of scaling kp 1
7: dx ← abs(s1,x − s0,x) . x distance of mean scaling kps
8: dy ← abs(s1,y − s0,y) . y distance of mean scaling kps
9: dataex ← N(dataex, maskex, dx, dy) . Norm. to mean scaling kp distances

10: cx ← Cx(dataex, maskex) . Mean x value of new origin kp
11: cy ← Cy(dataex, maskex) . Mean y value of new origin kp
12: dataex ← T(dataex, maskex, cx, cy) . Translate kps to new origin
13: end for
14: return data
15: end function

Following Li et al. [85] and Dafnis et al. [39], we programmatically split the data into
training, validation, and test sets by class using the ratio 4:1:1. This helps balance the
distribution of classes across the sets (but not the number of examples per class, which is
unbalanced in WLASL), e.g., for a given class that has 6 examples, we allocate 4 examples
to the training set, and 1 example to each of the validation and test sets. Taking every entry
in WLASL-alt as the new catalogue index, including entries labelled as left-hand dominant,
we filter out classes with fewer than 6 examples. We construct a tensor per dataset split by
concatenating the extracted keypoints from the body pose, left and right hand groups by



Mathematics 2023, 11, 2129 9 of 28

their x- and y-axis coordinate values for every frame in each example sequence. That is to
say, a single frame of any given sequence is represented by 2 fixed vectors of the keypoints
for that frame, grouped by x- and y-axis coordinate values (this simplifies the normalisation
routine). Subsequently, a sequence is an ordered tensor of the respective frames. Finally,
a dataset split is the tensor containing all respective sequences.

We pad each sequence with zeroes to a fixed length of 203 frames for the keypoint
x- and y-axis coordinate values, which is the maximum sequence frame length. We do
not add special token values to indicate the start or end of a sequence. Nor do we use a
special token value to indicate padding, i.e., padded and no-data values are identically
zero. The resultant tensors for each dataset split have the shape

[sequence number, frame number, keypoint index, x- or y-axis coordinate value], (6)

where for example, the training dataset split tensor has the shape

[11445, 203, 54, 2]. (7)

The dataset splits are summarised in Table 3. Our experiments use subsets of these
dataset splits, taking n classes with the greatest number of examples per class, depending
on the experiment. These experiment data splits are listed in Table 4.

Table 3. Dataset splits generated in this study.

Dataset Split Number of Examples

Training 11,445
Validation 2298

Test 2145
All 15,888

Table 4. Experiment dataset splits showing number of examples per split per number of classes.

Classes Training Validation Testing Total
Examples Examples Examples Examples

10 282 68 65 415
50 1052 246 241 1539

100 1842 418 403 2663
300 4302 950 889 6141

2.2. Model

Since the introduction of transformer neural networks [18], they have been increasingly
used to model many systems, most notably for applications involving natural language
processing (NLP) and more recently for vision [94], but as we demonstrate in this study,
transformers can be further applied to numerical sequence data. The original transformer
was used to translate spoken languages, which is a sequence-to-sequence task. Our task,
however, is sequence classification; that is to say we aim to classify sequences of isolated,
dynamic signs according to known class labels. To achieve this, we take a standard
transformer and modify it to use the encoder part only.

A transformer encoder consists of one or more encoder layers, where, in the case of
multiple layers, the output from each layer is fed into the next. An encoder layer contains
a multi-headed attention mechanism followed by a position-wise fully connected feed
forward network. Both the attention mechanism and feed forward network are bounded
by residual connections and followed by layer normalisation [95]. The residual connections
help preserve some of the original input signal at various stages in the process. The pro-
cessing pipeline for a single encoder layer is shown in Figure 4. The task of the transformer
encoder is to take an input sequence and turn it into a latent space representation that
encodes information about the relationships between the ordered parts of the input, while



Mathematics 2023, 11, 2129 10 of 28

sharing context with other sequences it processes via the learned model parameters; in
short, it projects the input into an embedded feature space.

Figure 4. High level processing pipeline of a single transformer encoder layer.

Drawing inspiration from information retrieval systems, the input embeddings are
turned into queries, keys, and values that each have their own learnable parameters.
The attention mechanism allows the encoder to learn semantic relationships between
ordered inputs, with each having a configurable, but identical, number of heads; hence
the term multi-headed attention. The query, key, and value embeddings representing each
ordered item in the input sequence are split and distributed evenly across those attention
heads. This can be thought of as providing each attention head an equal, but different,
portion of the representation of each input in the sequence. Note that a single attention
head is just a special case where the process of dividing across the heads means the lone
head receives all of the embeddings.

It is a fact that transformers are position equivariant [18]. For modelling sequence
data, as is the case with sign language, order is important. To alleviate this problem,
positional information is injected by adding a value to each input. This value depends
on the sequence position of each input and provides the model with a notion of order
that it can learn. The original transformer architecture uses a fixed positional encoding,
PE, which provides a real scalar per-input embedding dimension at position j up to a
predefined maximum sequence length, J. These positional encoding scalars are derived
from sinusoidal functions. For input values appearing at even positions in a sequence,
these are given by

PEeven
(

j, dpe
)
= sin

(
j

a2dpe/dmodel

)
, (8)

and for those at odd positions,

PEodd
(

j, dpe
)
= cos

(
j

a2dpe/dmodel

)
. (9)

In both of these functions, j is the position in the sequence for a given input, i.e.,
j = [0, . . . , J − 1], and dpe is the dimension of the positional encoding. In other words, this
maps a sinusoid to each positional encoding dimension. The value a = 10,000 was chosen
by the original transformer authors because it helped balance model performance when
dealing with both short and long sequences. Nevertheless, there are alternative ways to
inject positional information into the input to produce ordered embeddings [96]. For ease of
implementation, for the encoder-only transformer, we adopt a learned positional encoding
using PyTorch’s Embedding class [97]. We generate 108 positionally encoded embedding
values per sequence frame, which are added identically to each sequence in a batch.

Our transformer encoder is initialised with a configurable number of encoder layers,
where every layer is identically configured according to the parameters listed in Table 5.
As with the number of encoder layers and number of attention heads, other hyperparame-
ters can potentially further optimise the model. In the encoder, we use the ReLU activation
function, which is the rectified linear unit, and is defined as

ReLU(x) = max(0, x), (10)

which clamps negative values to zero. The same dropout probability is applied to all fully
connected feed forward layers within the encoder. The fully connected feed forward layers
are configured with dimension dff = 108, which is essentially an arbitrary (but configurable)



Mathematics 2023, 11, 2129 11 of 28

choice. Setting dff < dmodel would produce a bottleneck effect, which could potentially help
reduce overfitting during training. Conversely, setting dff > dmodel would theoretically
expand the feature space, helping the model learn more complex latent relationships in
the data. With dff = dmodel, as is the case in our configuration, the dimensionality of the
feature space is preserved within the encoder layer.

Table 5. Encoder layer parameters.

Parameter Value(s)

dmodel 108
dff 108

Attention heads 1 {1, 2, 3, 4, 6, 9}
Activation function ReLU

Dropout 0 ≤ x ≤ 1
1 These values satisfy the requirement dmodel mod H = 0, where H is the number of attention heads.

During training, validation and testing, we iterate through the dataset using random
batching, only completing an epoch when every example in the respective dataset split has
been seen by the model at least once.

Before passing a batch of data through the encoder, the input values are scaled by√
dmodel, where dmodel = 108, the number of keypoint x- and y-axis coordinate values. This

not only helps prevent the positional encoding from swamping the input signal, but it also
helps the model to learn efficiently by preventing the positional encoding being too small a
value in comparison. We experimented with other scaling factors and found scaling the
input by

√
dmodel to work well at balancing these values for this task.

The learned positional encoding is then added element-wise to the input values, which
produces the input embeddings. Dropout is applied to the input embeddings according
to a probability hyperparameter, which we set to 0.0 throughout. The input embeddings
are subsequently passed through the encoder to produce a latent representation of the
same dimension as the input. After the encoder, this dimension is reduced by taking the
mean value over the frame (e.g., time) axis, yielding dmodel = 108 scalars per sequence in
the batch. These 108 values are further reduced or expanded to the required number of
class predictions by passing them through a fully connected feed forward layer [98], which
applies the linear transformation y = xAT + b, where x is the encoder output, AT is the
transpose of a learnable weight matrix, b is a learnable bias, and y is the resultant output.
To convert the output to logits representing the class predictions, we apply the LogSoftmax
function [99], which is defined as

LogSoftmax(xi) = log

(
exp(xi)

∑j exp
(

xj
)
)

= xi − log

(
∑

j
exp

(
xj
)
)

, (11)

for some class prediction xi, which outputs on the interval [−∞, 0). The softmax function
has the effect of amplifying larger values while suppressing smaller values (see Figure 5).
These class predictions are passed into our objective function along with the ground truth
class labels. We use categorical cross entropy loss [100], which combines LogSoftmax and
negative log likelihood loss, to obtain a single loss value for the batch, which we accumulate
per epoch. During the training loop, we compute the gradients and update the model
weights using the Adam optimiser [101], initialised with the parameters listed in Table 6.

Once per epoch, we calculate the mean loss from the accumulated batch losses, and af-
ter the training loop has completed, we perform a step on the learning rate scheduler,
which we choose to be CosineAnnealingWarmRestarts [102], initialised with T0 = 10 and
otherwise default parameters.



Mathematics 2023, 11, 2129 12 of 28

−10 −5 0 5 10

x

0.00

0.02

0.04

0.06

0.08

so
ft

m
ax

(x
)

exp(xi)∑
j exp(xj)

Figure 5. Softmax function plotted over an arbitrary interval showing how it amplifies larger values
of in the input x while suppressing smaller values.

Table 6. Adam optimiser parameters.

Parameter Value(s)

Weight decay 1.0× 10−3

Learning rate 1.0× 10−4

β1 9.0× 10−1

β2 9.8× 10−1

ε 1.0× 10−9

We convert the output prediction logits, which we now define as y, to a probability
distribution, ŷ = {y0, . . . , yK−1}, that is the predicted class probabilities for K classes, lying
on the interval [0, 1]. This is carried out using the exponential function

ŷ = exp(y), (12)

so that
K−1

∑
i=0

ŷi = 1. (13)

The predicted class probabilities and the ground truth class labels allow us to calculate
top-k accuracy per epoch, where k = {1, 5, 10}. We subsequently take a model checkpoint
based on two separate performance metrics: the validation loss and the validation accuracy.
For the validation loss, we take a model checkpoint if the mean batch loss for an epoch is
less than the previous best performing (i.e., lowest) mean batch loss value. Likewise, we
take a model checkpoint if the top-1 accuracy on the validation set is increased.

We run for 200 epochs to allow the models to converge (or overfit), after which we
test using both best performing checkpoint models (based on validation loss and accuracy).
We implement early stopping if both the training set accuracy and the validation top-1
accuracy reach 1.0; although in practice, this has yet to happen. A topology of the model
architecture training loop for a single iteration is shown in Figure 6.



Mathematics 2023, 11, 2129 13 of 28

Figure 6. Model and training loop topology for a single iteration of the sign language recognition
encoder-only transformer. This diagram shows the process for a hypothetical training loop sequence
batch size of 1 starting with sequence si.

2.3. Model Regularisation

We perform no model regularisation, including data augmentation, in this study.
Instead we choose to focus on the base architecture as a means to model and optimise the
classification task, and leave regularisation to a future study to measure the impact various
hyperparameters have on model performance.

2.4. Experimental Setup

All experiments were conducted in a virtual machine (VM) running on the HILDA
HPC at DARTeC [103]. The VM runs on an Intel Xeon Gold 6258R with 112 CPUs and
377 GiB RAM, and 4 NVIDIA A100s each with 40 GiB RAM. Experiments were generally
run in parallel batches of 4, with a single experiment per GPU. The VM operating system is
Ubuntu Linux 20.04.4 LTS. The major libraries used to train and evaluate all models are
Python 3.8.10, PyTorch 1.9.0+cu111, and NumPy 1.21.4.

2.5. Experiments

We began by establishing a baseline model architecture for the optimal number of
encoder layers. We conducted 5 groups of 8 repeat experiments (a group per number of
encoder layers), using normalised keypoint data, for a total of 40 experiments. All baseline
experiments were initialised without setting the random number generation seeds, which
allows us to measure the spread of model performance, and therefore quantify the standard
error of the mean, and the related uncertainty, across groups of experiments. It also allows
us to measure the impact random initialisation has on performance in this deep learning
task. All parameters were fixed except the number of encoder layers. We limited the sign
classification task to 10 classes to enable faster iteration compared to experiments with a
larger number of classes. The parameters used are listed in Table 7 and the experiment
dataset splits per class count are listed in Table 4.

With a baseline for the number of encoder layers established, we proceeded to de-
termine the optimal number of attention heads. We did this by keeping all parameters
fixed, as per Table 7, but varying the number of attention heads instead of layers. We
performed 6 groups of 8 sign classification experiments with the number of attention
heads, H = {1, 2, 3, 4, 6, 9}, fixed per experiment group, on 4 groups of sign classes,
K = {10, 50, 100, 300}, for a total of 192 experiments. In total, 224 baseline experiments
were conducted.



Mathematics 2023, 11, 2129 14 of 28

Table 7. Encoder layer baseline experiment hyperparameters.

Parameter Value(s)

Encoder layers [1, . . . , 5]
Sign classes 10

Encoder attention heads 4
Norm. centroid keypoint {1}
Norm. scaling keypoints {2, 5, 0, 1}
Encoder FFN dimension 108

Encoder dropout 0
Embedding dropout 0

Batch size 64
Encoder activation function ReLU

Augmentation None

Accuracy results quoted with an associated uncertainty are calculated as

uncertainty = ±1.96× σM, (14)

where
σM =

σ√
n

, (15)

is the standard error of the mean, σ is the standard deviation, and n is the number of
experiments. In all experiments, Test-A refers to the best-performing model based on the
accuracy metric, and Test-L to the best performing model based on the loss metric.

3. Results

First, we report the results of the baseline experiments to determine the optimal
number of transformer encoder layers for the sign language recognition task, using 10 sign
classes. Because the number of learnable model parameters is directly related to the number
of encoder layers (all else being equal, except for the number of attention heads, which
does not influence the number of model parameters), we also include those figures here.
Mean top-1 accuracy results are listed in Table 8 and plotted in Figure 7, which presents the
same data as functions of encoder layers and number of model parameters, respectively.

Table 8. Mean top-1 accuracy results for optimal number of encoder layers and number of model
parameters for baseline experiments with 10 classes.

Encoder Model Train Validation Test-A Test-L
Layers Parameters Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy

1 94,078 1.0000± 0.0000 0.9561± 0.0104 0.9346 ± 0.0202 0.9297± 0.0174
2 165,142 1.0000± 0.0000 0.9355± 0.0186 0.8828± 0.0259 0.8730± 0.0270
3 236,206 1.0000± 0.0000 0.9508± 0.0162 0.8838± 0.0300 0.8896± 0.0137
4 307,270 1.0000± 0.0000 0.9307± 0.0208 0.9023± 0.0286 0.9180± 0.0230
5 378,334 1.0000± 0.0000 0.9339± 0.0191 0.8955± 0.0213 0.9014± 0.0213

Next, we report the results of the baseline experiments to determine the optimal
number of attention heads per group of classes. Top-1 accuracy results are listed in Table 9
and plotted in Figure 8.

We present the model configurations that achieve the best test set top-k accuracy in
Table 10. These results include the performance metric that achieves the best score for each
top-k accuracy, which is reported as A for the accuracy-based checkpoint metric, L for the
loss-based equivalent, or same in the event that both results are equal.



Mathematics 2023, 11, 2129 15 of 28

1 2 3 4 5

Transformer encoder layers

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

T
op

-1
ac

cu
ra

cy

Train

Validation

Test-A

Test-L

80 120 160 200 240 280 320 360

Model parameters / k

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

T
op

-1
ac

cu
ra

cy

Train

Validation

Test-A

Test-L

(a) (b)

Figure 7. Mean top-1 accuracy results as a function of (a) number of encoder layers, and (b) number
of model parameters, for baseline experiments with 10 classes.

Table 9. Mean top-1 accuracy results for encoder attention heads for baseline experiments with 10,
50, 100, and 300 classes. Each row gives the mean result from eight repeat experiments.

Classes Attention Train Validation Test-A Test-L
Heads Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy

10 1 1.0000± 0.0000 0.9535± 0.0053 0.9346± 0.0204 0.9297± 0.0183
2 1.0000± 0.0000 0.9580± 0.0139 0.9307± 0.0172 0.9385± 0.0140
3 1.0000± 0.0000 0.9785± 0.0099 0.9365± 0.0154 0.9395± 0.0144
4 1.0000± 0.0000 0.9561± 0.0104 0.9346± 0.0202 0.9297± 0.0174
6 1.0000± 0.0000 0.9661± 0.0211 0.9238± 0.0168 0.9307± 0.0098
9 1.0000± 0.0000 0.9551± 0.0121 0.9316± 0.0141 0.9336± 0.0161

50 1 1.0000± 0.0000 0.8419± 0.0067 0.8245± 0.0130 0.8284± 0.0189
2 1.0000± 0.0000 0.8530± 0.0116 0.8298± 0.0173 0.8320± 0.0154
3 1.0000± 0.0000 0.8502± 0.0120 0.8270± 0.0181 0.8186± 0.0142
4 1.0000± 0.0000 0.8470± 0.0096 0.8330± 0.0178 0.8301± 0.0163
6 1.0000± 0.0000 0.8350± 0.0064 0.8222± 0.0220 0.8302± 0.0152
9 1.0000± 0.0000 0.8293± 0.0063 0.8226± 0.0105 0.8293± 0.0184

100 1 0.9998± 0.0000 0.8162± 0.0045 0.7890± 0.0099 0.7782± 0.0164
2 0.9998± 0.0000 0.8224± 0.0079 0.7849± 0.0152 0.7817± 0.0169
3 0.9998± 0.0000 0.8232± 0.0055 0.7885± 0.0162 0.7914± 0.0093
4 0.9998± 0.0000 0.8265± 0.0061 0.7858± 0.0181 0.7993± 0.0164
6 0.9998± 0.0000 0.8259± 0.0085 0.7878± 0.0156 0.7887± 0.0130
9 0.9999± 0.0001 0.8285± 0.0059 0.7885± 0.0138 0.7952± 0.0158

300 1 0.9993± 0.0001 0.6815± 0.0069 0.6398± 0.0079 0.6380± 0.0057
2 0.9995± 0.0001 0.7122± 0.0057 0.6696± 0.0103 0.6700± 0.0091
3 0.9995± 0.0000 0.7195± 0.0063 0.6803± 0.0113 0.6792± 0.0090
4 0.9995± 0.0001 0.7172± 0.0061 0.6830± 0.0065 0.6835± 0.0057
6 0.9995± 0.0000 0.7269± 0.0078 0.6842± 0.0078 0.6855± 0.0039
9 0.9995± 0.0001 0.7226± 0.0057 0.6804± 0.0067 0.6795± 0.0067

As each experiment result is the mean accuracy from eight separate, identically config-
ured but randomly initialised, experiments, we report the accuracy range and uncertainty
to provide insight into model variability between experiments. These results are listed
in Table 11.

Table 12 shows the top-1, top-5, and top-10 minimum, mean, and maximum test
accuracy results from our best performing model configurations for each of the data splits
by sign count, where the best model configuration is taken as that which scores the highest
mean accuracy. We include all three of these values to provide insight into the range of
performance for a given so-called best model configuration when randomly initialised. That
is to say, the model configuration that performs best on average after repeat experiments.
We note that this means we may not report the absolute maximum accuracy scores across



Mathematics 2023, 11, 2129 16 of 28

all model configurations; in this study, we are most interested in model configurations
that generally perform well under conditions brought about by random initialisation. We
also include our results along with those from other models, but it is important to note
that this is indicative of relative performance only. We use WLASL-alt, the modified
version of WLASL, as the basis of our dataset which uses the exact same keypoint data
as WLASL, but it does have improved glosses, which likely affect the outcome. In the
absence of any results that quote the same class numbers and data splits, we use these for
cautious comparison.

1 2 3 4 5 6 7 8 9

Heads

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

T
op

-1
ac

cu
ra

cy

10 classes

Train10

Validation10

Test-A10

Test-L10

1 2 3 4 5 6 7 8 9

Heads

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

T
op

-1
ac

cu
ra

cy

50 classes

Train50

Validation50

Test-A50

Test-L50

1 2 3 4 5 6 7 8 9

Heads

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

T
op

-1
ac

cu
ra

cy

100 classes

Train100

Validation100

Test-A100

Test-L100

1 2 3 4 5 6 7 8 9

Heads

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

T
op

-1
ac

cu
ra

cy

300 classes

Train300

Validation300

Test-A300

Test-L300

Figure 8. Top-1 accuracy results for attention heads baseline experiments with 10, 50, 100,
and 300 classes.

Table 10. Mean top-1, top-5, and top-10 test set accuracy results for best performing model configura-
tions from experiments with 10, 50, 100, and 300 classes, showing number of attention heads, best
performance metric, and difference in accuracy between performance metrics.

Classes Top-k Attention Metric Accuracy Metric
Heads A, L or Same Accuracy ∆

10 1 3 L 0.9395± 0.0144 0.0029
5 3 A 0.9854± 0.0061 0.0010

10 1 Same 1.0000± 0.0000 0.0000



Mathematics 2023, 11, 2129 17 of 28

Table 10. Cont.

Classes Top-k Attention Metric Accuracy Metric
Heads A, L or Same Accuracy ∆

50 1 4 A 0.8330± 0.0178 0.0010
5 3 A 0.9634± 0.0044 0.0013

10 3 A 0.9771± 0.0022 0.0013

100 1 4 L 0.7993± 0.0164 0.0103
5 6 A 0.9415± 0.0087 0.0009

10 6 A 0.9619± 0.0052 0.0012

300 1 6 L 0.6855± 0.0039 0.0013
5 6 A 0.8920± 0.0047 0.0005

10 6 L 0.9318± 0.0033 0.0034

Table 11. Range and uncertainty in top-1 test accuracy for repeated experiments per configuration
and performance metric, where: uncertainty = ±1.96× σM; σM = σ/

√
n is the standard error of the

mean; and σ is the standard deviation.

Classes Attention Top-1 Accuracy Range Top-1 Uncertainty
Heads Test-A Test-L Test-A Test-L

10 1 0.0938 0.0781 0.0204 0.0183
2 0.0703 0.0547 0.0172 0.0140
3 0.0703 0.0703 0.0154 0.0144
4 0.0781 0.0781 0.0202 0.0174
6 0.0781 0.0469 0.0168 0.0098
9 0.0625 0.0781 0.0141 0.0161

50 1 0.0441 0.0843 0.0130 0.0189
2 0.0872 0.0677 0.0173 0.0154
3 0.0767 0.0607 0.0181 0.0142
4 0.0749 0.0699 0.0178 0.0163
6 0.1122 0.0645 0.0220 0.0152
9 0.0433 0.0829 0.0105 0.0184

100 1 0.0366 0.0798 0.0099 0.0164
2 0.0737 0.0842 0.0152 0.0169
3 0.0739 0.0373 0.0162 0.0093
4 0.0841 0.0631 0.0181 0.0164
6 0.0635 0.0655 0.0156 0.0130
9 0.0622 0.0747 0.0138 0.0158

300 1 0.0395 0.0230 0.0079 0.0057
2 0.0449 0.0455 0.0103 0.0091
3 0.0501 0.0405 0.0113 0.0090
4 0.0275 0.0181 0.0065 0.0057
6 0.0350 0.0183 0.0078 0.0039
9 0.0278 0.0262 0.0067 0.0067

Table 12. Best top-1, top-5, and top-10 test accuracy results for human pose-estimation-based sign
language recognition using WLASL-based data. For our results, we report the minimum, mean,
and maximum accuracy scores for the best performing model configuration measured by highest
mean accuracy. Note that our results stem from WLASL-alt, which has improved glosses, and the
results are, therefore, indicative of relative performance. We omit the uncertainty for our mean values.

Model 10 Classes Top-k 50 Classes Top-k 100 Classes Top-k 300 Classes Top-k
1 5 10 1 5 10 1 5 10 1 5 10

Pose-TGCN [85] – – – – – – 0.5543 0.7868 0.8760 0.3832 0.6751 0.7964
Pose-GRU [85] – – – – – – 0.4651 0.7674 0.8566 0.3368 0.6437 0.7605



Mathematics 2023, 11, 2129 18 of 28

Table 12. Cont.

Model 10 Classes Top-k 50 Classes Top-k 100 Classes Top-k 300 Classes Top-k
1 5 10 1 5 10 1 5 10 1 5 10

GCN-BERT [88] – – – – – – 0.6015 0.8398 0.8867 0.4216 0.7171 0.8093
SPOTER [89] – – – – – – 0.6318 – – 0.4378 – –

Sign2Pose [90] – – – – – – 0.8090 – – 0.6421 – –
Ours (min) 0.8984 0.9688 1.0000 0.7875 0.9474 0.9629 0.7364 0.9232 0.9468 0.6703 0.8782 0.9139

Ours (mean) 0.9395 0.9854 1.0000 0.8330 0.9634 0.9771 0.7993 0.9415 0.9619 0.6855 0.8920 0.9318
Ours (max) 0.9688 1.0000 1.0000 0.8722 0.9746 0.9831 0.8316 0.9596 0.9733 0.7052 0.8999 0.9378

4. Discussion
4.1. Model Performance

We successfully perform sign language recognition on isolated, dynamic signs across
a range of class sizes using an encoder-only transformer and a novel data normalisation
technique, with no data augmentation or model regularisation. The results are as expected
insofar as performance decreases as the number of classes is increased. The same applies to
the three dataset splits, with performance being greatest on the training set, followed by the
validation set, then the test set splits. The goal—like the majority of similar machine learning
classification tasks—however, is to maximise performance on the test set, which is a better
reflection of model generalisation, and therefore performance in the wild; performing well
on dataset splits other than the test set is an insufficient indicator of real-world performance.

Our attempt to determine an optimal model architecture by number of encoder layers
identifies a single layer as being optimal over multiple layers, up to a maximum of five.
In Figure 7, the error bars suggest a layer count greater than one offers no performance
benefit on the test set accuracy, though this is marginal for the case of four encoder layers.
Despite this, the overall trend appears to be a decrease in accuracy as the number of layers
increase. Table 8 shows that a single layer yields the highest accuracy on both performance
metrics. It should be noted, however, that we can only state this for the case of modelling
10 sign classes. Repeating the experiments with different layer counts for greater class sizes
would provide more insight.

Conversely, as Figure 8 shows, we were unable to determine the optimal number
of heads for a single layer for under 300 classes because they all perform equally well,
within the quoted uncertainty. In the case of 300 heads, however, there is a stark rise in
performance between 1 and 2 attention heads of approximately 3%. This almost certainly
reflects the increase in dataset complexity through the additional classes that marks the
crossing of a threshold. Taking into account the measured uncertainty, the increase in
performance appears to plateau after two heads. We can tentatively predict that the number
of heads required to achieve the best accuracy will increase monotonically with significant
increases in number of classes, within the limits of the model. This relationship between
dataset complexity and model complexity, through the number of attention heads, suggests
the same might be true with the number of layers in the transformer encoder. Again,
empiricism is the key here. For class sizes ≤ 100, we establish that a single attention head
within a single encoder layer is sufficient to model sign language to a high accuracy using
our method. Figure 9 shows model performance for top-1, top-5, and top-10 across the
range of classes used in our experiments.

Moreover, the fact that the top-1 accuracies (shown in Table 9) on the training set reach
100% (or just below) clearly demonstrates that our encoder-only transformer is capable of
learning a model of the dataset. We can confidently state that the model is overfitting the
data, which means it begins to memorise the representations of the sequences, including
any inherent noise. This is unsurprising given the low number of examples per class
split; Table 4 shows that for 10 classes, there are a mere 282 training and 68 validation set
examples, and for the upper limit of 300 classes, there are only 4302 and 950 examples,
respectively. By deep learning standards, these numbers are miniscule. Considering that



Mathematics 2023, 11, 2129 19 of 28

there are no data augmentation techniques present in this study, random batching (i.e., an
epoch completes only when every example has been seen at least once) may offer some
regularisation effect. We anticipate that standard regularisation techniques, both via the
model (through, e.g., embedding or encoder dropout, introducing a bottleneck to reduce
the features, etc.) and data augmentation would help reduce overfitting and improve
validation and test set accuracy. As we only take model checkpoints when a performance
metric has been improved upon, we can be confident that, in this instance, overfitting is
not to the detriment of validation accuracy, and therefore by extension, test accuracy.

0 50 100 150 200 250 300

Number of classes

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

u
ra

cy

Top-1

Top-5

Top-10

Figure 9. Best mean accuracy per class by top-k result for k = {1, 5, 10}.

Our study makes no use of the OpenPose confidence score for each of the estimated
keypoint coordinates. Given that OpenPose can incorrectly report keypoints, particularly
for keypoints corresponding to the hands, this suggests our model learns from noisy
data. Model performance may be increased by improving the keypoint data in several
ways, which include: filtering keypoint coordinates based on a minimum confidence score
threshold as a tuneable hyperparameter; processing keypoints to attempt to correct for
more obvious errors, e.g., where two values momentarily swap positions, or detecting
unlikely and invalid pose configurations; including the confidence score in the model
as another feature to learn, although this latter option will inflate the model size; and,
conversely, reducing the number of keypoint values used for the hands, which would also
reduce the model size.

We deliberately chose to include left-hand-dominant examples to increase the real-
world representative power of the dataset. However, given the low number of examples, we
acknowledge that they could make the task more challenging, particularly if the left-hand-
dominant example resides in the test split only. Because of the low number of available
examples, we made no efforts to control for balance across left-hand-dominant examples.
Reflecting about the y-axis is a typical augmentation method in image classification tasks,
but we would be against performing the equivalent with x-axis coordinates simply because
there are signs for LEFT and RIGHT present in the dataset, albeit not in any of our 10, 50,
100, or 300 splits.

Our choice of two separate performance metrics, in the form of accuracy and loss,
is found to have negligible influence over performance outcome. This can be seen in the
results listed in Table 10 where, with the exception of top-1 for 100 classes, the difference
in accuracy between the two performance metrics is <0.35%. Figure 8 shows the top-1
results for 100 classes and 4 attention heads still lie within the error bars on both metrics,



Mathematics 2023, 11, 2129 20 of 28

and we conclude the comparably large value of 1.3% is not so much the outlier it initially
appears to be. The similarity between both metrics is most vivid at 300 classes. This can
be explained by the increased random batch count per epoch to dataset size ratio, which
increases with the number of classes, as shown in Figure 10. This indicates that future
studies can reasonably use either accuracy or loss as a sole performance metric for this task
to produce highly comparable results.

0 50 100 150 200 250 300

Number of classes

0.09

0.10

0.11

0.12

0.13

0.14

0.15

E
p

oc
h

lo
op

to
d

at
as

et
si

ze
ra

ti
o

Mean ratio

Figure 10. Mean random batch loops per epoch to number of classes ratio showing experiments with
greater numbers of classes require more random batch iterations. Any regularisation effect produced
by this is likely amplified with increased class count.

Despite the random batching mechanism we employ likely having a regularisation
effect, it is also possible that it can contribute to the model overfitting. It is common when
using multiple-pass type techniques to find a balance so the model is exposed to enough
data to learn patterns to be able to generalise, but not so much it begins to memorise.
Lack of resources prevent us from being able to test the regularisation-overfitting-balance
question in this study, but we choose this method of batching to facilitate the introduction
of on-the-fly data augmentation in later studies with no system architecture changes, which
should have a positive effect on performance.

Although our use of WLASL-alt as the basis for our experiments means it is not
possible to directly compare our results with those of other models, we can, however,
perform some indirect comparison. Table 12 shows our models outperform others on
similar tasks, and in most cases by a substantial margin, but we acknowledge this could be
partially the result of using what is simply a better version of the dataset.

4.2. Model Training Practicalities

Figure 11 shows the epochs that produced the best score for both the accuracy and
loss performance metrics. That is to say, it indicates the epochs that were checkpointed
for each metric, and hence used in the test evaluation to produce the accuracy scores.
Making the assumption that conducting enough experiments would produce a normal
distribution, the overlaid probability density function suggests the upper tail would include
experiments where the best performing epoch occurs in excess of the arbitrary 200 epoch
limit we chose for practical reasons. The peak around 130 epochs strongly suggests the
majority of experiments would produce a best-performing model within the 200 epoch limit.
Extrapolating the upper tail—marked with a green dashed line—shows approximately
250 epochs meets the limit of a sufficient training length to capture the vast majority of



Mathematics 2023, 11, 2129 21 of 28

inliers, although this is a conservative estimate. Given sufficient resources, this could be
determined empirically.

0 50 100 150 200 250

Best epoch

0.000

0.002

0.004

0.006

0.008

0.010

0.012

D
en

si
ty

Figure 11. Best epoch by accuracy and loss performance metrics after 200 epochs with probability
density function overlaid in blue. The green dashed line represents the extrapolated upper tail.

To illustrate the required time to conduct individual experiments in this study,
Figure 12 shows the mean time to complete an experiment of 200 epochs plotted against the
number of classes in each experiment. We find this relationship to be approximately O(n).
Note that this is the time to complete 200 epochs on our VM (which has shared resources
such as GPUs, etc.) using the random batching method which is inefficient compared
with, say, taking sequential slices of the data per batch preloaded onto a GPU. This time to
complete 200 epochs is inflated somewhat because it includes auto-generated plots that
happen every epoch or, in the case of confusion matrices, every n epochs, all of which adds
to the time. From this plot, it is possible to estimate the time required to conduct further
experiments on larger class sizes.

In practice—particularly in an industrial setting—one would retrain a model many
times without fixed random number generator seeds and take the best performing model.
Fixing seeds is useful for reproducing results, but this has limited utility across computer
architectures, e.g., running the exact same experiment, including fixed seeds, on HILDA
and another computer yields different results. It is important to understand the range
of results that can be produced from repeat experiments to help provide estimates to the
number of experiments required to achieve performance that approaches the theoretical
optimum. In our case, it is impractical to conduct many experiments per configuration, so
we set the number to eight, and in the interest of reporting realistic results, we also take the
mean and worst performances from these eight experiments, and not just the best score.
Table 11 shows the range of results, which can only remain the same or increase with the
number of experiments, n, but one would naturally expect a true range to be asymptotically
approached as n→ ∞, but practical limitations exist.

It is clear that the range across repeat experiments is large for our model. The maxi-
mum range of over 11% occurs on the experiment with 50 classes and 6 attention heads.
There appears to be no correlation between experiment configuration (i.e., number of
attention heads) and the range of accuracies achieved. Such a high range is an indicator
of model instability and sensitivity to random variable changes. This is likely a symptom
(and another sign) of the model overfitting the training data. As well as helping diagnose
problems in machine learning models, analysing the variability of results also reinforces the



Mathematics 2023, 11, 2129 22 of 28

importance of repeating experiments without fixed random number generator seeds and re-
porting mean results with appropriate uncertainties. This has implications for reproducing
published models and results.

0 50 100 150 200 250 300

Number of classes

0

2

4

6

8

10

12

14

16

M
ea

n
ti

m
e

/
ex

p
er

im
en

t
/

s
/

10
00

Figure 12. Mean time to complete an experiment of 200 epochs as a function of number of classes,
showing approximate linear relationship.

4.3. Model Architecture and Parameters

Perhaps most surprising is the ability of our model to perform well on this classification
task despite having so few parameters. To put it in context, whereas SPOTER [89] and
I3D [86] have 5.92 million and 12.35 million parameters, respectively, our single layer
encoder-only transformer model has 94 thousand parameters (see Table 8). This means
our model can be trained on a relatively modest GPU with 4 GiB RAM, and subsequently
deployed to hardware for inference with even lower memory capacity.

Increasing the number of attention heads does not increase the number of learnable
parameters. However, every additional encoder layer in our model increases the number
of parameters by 71,064, but this number can be reduced by rationalising the number of
keypoints used in each hand, which are frequently obscured and misplaced by OpenPose.
With no performance gain on smaller class numbers, it is self-evident that a single layer is
preferable for these applications because it reduces the hardware requirements.

4.4. Normalisation

We found our normalisation technique to work well for this task. We made an arbitrary
choice of keypoints to normalise to along the x and y axes. Our choice of keypoint to centre
on was somewhat inspired by evidence that shows expert signers focus on the central
part of the face of their conversation partner when signing [104]. We did not test relative
performance as a function of central keypoint selection, but we believe our choice of
normalisation coordinates (i.e., the shoulders) to be the best choice on logical grounds.
Again, this remains an open question.

Beyond normalisation, we believe the fact we do not preprocess the dataset in any
other way gives our model the advantage for applying it to sign language recognition
technology in the wild. This statement holds even if augmentation is introduced because it
is not common practice to augment test data.



Mathematics 2023, 11, 2129 23 of 28

5. Conclusions

In this article, we present a study on modelling ASL using an encoder-only transformer
and human pose estimation keypoint data derived from WLASL-alt, an improved version
of the WLASL dataset. Using a novel normalisation technique, we perform sign language
recognition on 10, 50, 100, and 300 classes of isolated, dynamic signs, and conduct extensive
analysis on the impact fundamental model architecture has on performance; namely the
number of encoder layers and attention heads. We evaluate our models during training
using two different performance metrics based on accuracy and loss, and we find them to
produce similar outcomes within the measured uncertainty, with no clear preferred metric
for this task. We demonstrate that a very small model, by parameter count, is capable of
modelling sign language to a high accuracy for limited vocabulary sizes.

We compare our results with other studies that perform sign language recognition
on the same base dataset. However, we acknowledge that, because we use an improved
version of WLASL, these comparisons are indicative only. Because of the flaws identified
by Dafnis et al. [39], we discourage further use of the WLASL dataset in its original form,
and actively promote the use of the improved WLASL-alt dataset. To support this, we have
also published the dataset splits used in this study at https://github.com/ltwoods/msl
(accessed on 20 March 2023).

We limit our maximum class count to 300 classes because of the time taken to perform a
single experiment and the requirement to conduct multiple experiments per configuration,
which we find to be prohibitively long. While reduced vocabulary models have clear
utility in specific, controlled settings, for generalised sign language recognition technology
to be deployed in the wild, it would need to accommodate for many more sign classes
(e.g., approaching 10,000 sign classes for ASL), which goes beyond the mere 300 classes we
use in this study. This is both a challenge for model creation as well as dataset curation.
Given our selection criteria, detailed in Section 1.3, the dataset splits we extract from
WLASL-alt reduces the number of classes provided in the WLASL dataset below the
original 2000, which itself falls short of the number of classes required for real-world sign
language recognition.

In Section 4, we offer suggestions of related aspects that warrant study. In addi-
tion, here we stress the importance non-manual markers play in providing richness and
complexity to sign language. Non-manual markers include things such as head position,
eyebrows, mouth shape, body shift, and so on. There are no OpenPose face keypoints
in the WLASL dataset, and the pose keypoints that include some facial landmarks are
extremely limited in that only the central positions of the eyes, ears, and nose are provided.
This means the important articulators such as eyebrows and mouth shape are omitted.
Eyebrow configuration can differentiate questions from statements, and mouth shapes
can help distinguish between signs with common hand configurations as well as provide
extra context or emphasis. It is essential that these non-manual markers are included
for sign language recognition to generalise to many more signs. This is one area where
appearance-based techniques have an advantage.

Beyond the relative simplicity of the model architecture, another notable outcome of
this study is that we demonstrate that an encoder-only transformer is capable of modelling
sign language to a high accuracy without the aid of data augmentation or explicit model reg-
ularisation techniques; techniques that, it is anticipated, will improve performance further.

Author Contributions: Conceptualization, L.T.W. and Z.A.R.; methodology, L.T.W.; software, L.T.W.;
validation, L.T.W.; formal analysis, L.T.W.; investigation, L.T.W.; resources, Z.A.R.; writing—original
draft preparation, L.T.W.; writing—review and editing, L.T.W. and Z.A.R.; visualization, L.T.W.;
supervision, Z.A.R.; project administration, Z.A.R.; funding acquisition, L.T.W. and Z.A.R. All
authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by Leidos Industrial Engineers Limited.

Data Availability Statement: The WLASL dataset is available at https://dxli94.github.io/WLASL/
(accessed on 20 March 2023). The WLASL-alt dataset is available at https://dai.cs.rutgers.edu/

https://github.com/ltwoods/msl
https://dxli94.github.io/WLASL/
https://dai.cs.rutgers.edu/dai/s/wlasl
https://dai.cs.rutgers.edu/dai/s/wlasl


Mathematics 2023, 11, 2129 24 of 28

dai/s/wlasl (accessed on 20 March 2023). The dataset splits used in this study are available at
https://github.com/ltwoods/msl (accessed on 20 March 2023).

Acknowledgments: The authors would like to thank William G. Vicars of http://lifeprint.com and
Jessica Mayer of http://www.startasl.com for granting and arranging for permission to reproduce
their images. The authors would also like to thank George Yazigi for bringing HILDA to life, and the
reviewers and editors for their insightful comments.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

ASL American Sign Language
BERT Bidirectional Encoder Representations from Transformers
BSL British Sign Language
DSG German Sign Language
GRU gated recurrent unit
HCI human–computer interaction
I3D Inflated 3D ConvNet
NLP natural language processing
ReLU rectified linear unit
SPOTER Sign POsebased TransformER
VM virtual machine
WLASL Word-level American Sign Language dataset
WLASL-alt Word-level American Sign Language alternative dataset

References
1. Vamplew, P.W. Recognition of Sign Language Using Neural Networks. Ph.D. Thesis, University of Tasmania, Hobart,

Australia, 1996.
2. Starner, T.; Weaver, J.; Pentland, A. Real-Time American Sign Language Recognition Using Desk and Wearable Computer Based

Video. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1371–1375. [CrossRef]
3. Stokoe, W.C. Sign Language Structure: An Outline of the Visual Communication Systems of the American Deaf; University of Buffalo:

Buffalo, NY, USA, 1960.
4. Tamura, S.; Kawasaki, S. Recognition of Sign Language Motion Images. Pattern Recognit. 1988, 21, 343–353. [CrossRef]
5. Vogler, C.; Sun, H.; Metaxas, D. A Framework for Motion Recognition with Applications to American Sign Language and Gait

Recognition. In Proceedings of the Workshop on Human Motion, Austin, TX, USA, 7–8 December 2000; pp. 33–38. [CrossRef]
6. Kim, S.; Waldron, M.B. Adaptation of Self Organizing Network for ASL Recognition. In Proceedings of the 15th Annual

International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 31 October 1993; p. 254.
[CrossRef]

7. Waldron, M.B.; Kim, S. Isolated ASL Sign Recognition System for Deaf Persons. IEEE Trans. Rehabil. Eng. 1995, 3, 261–271.
[CrossRef]

8. Vogler, C.; Metaxas, D. Parallel Hidden Markov Models for American Sign Language Recognition. In Proceedings of the Seventh
IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 1, pp. 116–122. [CrossRef]

9. Kadir, T.; Bowden, R.; Ong, E.J.; Zisserman, A. Minimal Training, Large Lexicon, Unconstrained Sign Language Recognition. In
Proceedings of the British Machine Vision Conference, Kingston, UK, 7–9 September 2004; Hoppe, A., Barman, S., Ellis, T., Eds.;
pp. 96.1–96.10. [CrossRef]

10. Cooper, H.; Bowden, R. Sign Language Recognition Using Linguistically Derived Sub-Units. In Proceedings of the Language
Resources and Evaluation Conference Workshop on the Representation and Processing of Sign Languages: Corpora and Sign
Languages Technologies, MCC, Valetta, Malta, 17–23 May 2010; pp. 1–5.

11. Theodorakis, S.; Pitsikalis, V.; Maragos, P. Model-Level Data-Driven Sub-Units for Signs in Videos of Continuous Sign Language.
In Proceedings of the 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, TX, USA, 14–19
March 2010; pp. 2262–2265. [CrossRef]

12. Pitsikalis, V.; Theodorakis, S.; Vogler, C.; Maragos, P. Advances in Phonetics-Based Sub-Unit Modeling for Transcription
Alignment and Sign Language Recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition Workshops, Colorado Springs, CO, USA, 20–25 June 2011; pp. 1–6. [CrossRef]

https://dai.cs.rutgers.edu/dai/s/wlasl
https://dai.cs.rutgers.edu/dai/s/wlasl
https://github.com/ltwoods/msl
http://lifeprint.com
http://www.startasl.com
http://doi.org/10.1109/34.735811
http://dx.doi.org/10.1016/0031-3203(88)90048-9
http://dx.doi.org/10.1109/HUMO.2000.897368
http://dx.doi.org/10.1109/IEMBS.1993.978529
http://dx.doi.org/10.1109/86.413199
http://dx.doi.org/10.1109/iccv.1999.791206
http://dx.doi.org/10.5244/c.18.96
http://dx.doi.org/10.1109/ICASSP.2010.5495875
http://dx.doi.org/10.1109/CVPRW.2011.5981681


Mathematics 2023, 11, 2129 25 of 28

13. Cooper, H.; Ong, E.J.; Pugeault, N.; Bowden, R. Sign Language Recognition Using Sub-Units. J. Mach. Learn. Res. 2012,
13, 2205–2231. [CrossRef]

14. Koller, O.; Ney, H.; Bowden, R. May the Force Be with You: Force-aligned Signwriting for Automatic Subunit Annotation
of Corpora. In Proceedings of the 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture
Recognition (FG), Shanghai, China, 22–26 April 2013; pp. 1–6. [CrossRef]

15. Zhang, J.; Zhou, W.; Xie, C.; Pu, J.; Li, H. Chinese Sign Language Recognition with Adaptive HMM. In Proceedings of the 2016
IEEE International Conference on Multimedia and Expo (ICME), Seattle, WA, USA, 11–15 July 2016; pp. 1–6. [CrossRef]

16. Camgöz, N.C.; Hadfield, S.; Koller, O.; Bowden, R. SubUNets: End-to-End Hand Shape and Continuous Sign Language
Recognition. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017;
pp. 3075–3084. [CrossRef]

17. Mittal, A.; Kumar, P.; Roy, P.P.; Balasubramanian, R.; Chaudhuri, B.B. A Modified LSTM Model for Continuous Sign Language
Recognition Using Leap Motion. IEEE Sens. J. 2019, 19, 7056–7063. [CrossRef]

18. Vaswani, A.; Brain, G.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You
Need. In Proceedings of the Advances in Neural Information Processing Systems; Long Beach Convention and Entertainment Center:
Long Beach, CA, USA 2017; pp. 5998–6008.

19. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; (Long and Short Papers); Volume 1, pp. 4171–4186.
[CrossRef]

20. Hosemann, J. Eye Gaze and Verb Agreement in German Sign Language: A First Glance. Sign Lang. Linguist. 2011, 14, 76–93.
[CrossRef]

21. LeMaster, B. What Difference Does Difference Make?: Negotiating Gender and Generation in Irish Sign Language. In Gendered
Practices in Language; Benor, S., Rose, M., Sharma, D., Sweetland, J., Zhang, Q., Eds.; CSLI Publications, Stanford University:
Stanford, CA, USA, 2002; pp. 309–338.

22. Klomp, U. Conditional Clauses in Sign Language of the Netherlands: A Corpus-Based Study. Sign Lang. Stud. 2019, 19, 309–347.
[CrossRef]

23. Bickford, J.A.; Fraychineaud, K. Mouth Morphemes in ASL: A Closer Look. In Proceedings of the Theoretical Issues in Sign
Language Research Conference, Florianopolis, Brazil, 6–9 December 2006; pp. 32–47.

24. Bragg, D.; Koller, O.; Bellard, M.; Berke, L.; Boudreault, P.; Braffort, A.; Caselli, N.; Huenerfauth, M.; Kacorri, H.; Verhoef, T.; et al.
Sign Language Recognition, Generation, and Translation: An Interdisciplinary Perspective. In Proceedings of the ASSETS
2019—21st International ACM SIGACCESS Conference on Computers and Accessibility, Pittsburgh, PA, USA, 28–30 October
2019; pp. 16–31. [CrossRef]

25. Emmorey, K. Language and Space (Excerpt). In Space: In Science, Art, and Society; Penz, F., Radick, G., Howell, R., Eds.; Cambridge
University Press: Cambridge, UK, 2004; pp. 22–45.

26. Woll, B. Digiti Lingua: A Celebration of British Sign Language and Deaf Culture; The Royal Society: London, UK, 2013.
27. Quer, J.; Steinbach, M. Ambiguities in Sign Languages. Linguist. Rev. 2015, 32, 143–165. [CrossRef]
28. Kramer, J.; Leifer, L. The Talking Glove. ACM SIGCAPH Comput. Phys. Handicap. 1988, 39, 12–16. [CrossRef]
29. Massachusetts Institute of Technology. Ryan Patterson, American Sign Language Translator/Glove. 2002. Available online:

https://lemelson.mit.edu/resources/ryan-patterson (accessed on 20 March 2023).
30. Osika, M. EnableTalk. 2012. Available online: https://web.archive.org/web/20200922151309/https://enabletalk.com/welcome-

to-enabletalk/ (accessed on 27 February 2023).
31. Lin, M.; Villalba, R. Sign Language Glove. 2014. Available online: https://people.ece.cornell.edu/land/courses/ece4760/

FinalProjects/f2014/rdv28_mjl256/webpage/ (accessed on 20 March 2023).
32. BrightSign Technology Limited. The BrightSign Glove. 2015. Available online: https://www.brightsignglove.com/ (accessed on

20 March 2023).
33. Pryor, T.; Azodi, N. SignAloud: Gloves That Transliterate Sign Language into Text and Speech, Lemelson-MIT Student Prize

Undergraduate Team Winner. 2016. Available online: https://web.archive.org/web/20161216144128/https://lemelson.mit.
edu/winners/thomas-pryor-and-navid-azodi (accessed on 20 March 2023).

34. Avalos, J.M.L. IPN Engineer Develops a System for Sign Translation. 2016. Available online: http://www.cienciamx.com/index.
php/tecnologia/robotica/5354-sistema-para-traduccion-de-senas-en-mexico-e-directa (accessed on 20 March 2023).

35. O’Connor, T.F.; Fach, M.E.; Miller, R.; Root, S.E.; Mercier, P.P.; Lipomi, D.J.; O’Connor, T.F.; Fach, M.E.; Miller, R.; Root, S.E.; et al.
The Language of Glove: Wireless Gesture Decoder with Low-Power and Stretchable Hybrid Electronics. PLoS ONE 2017,
12, e0179766. [CrossRef]

36. Allela, R.; Muthoni, C.; Karibe, D. SIGN-IO. 2019. Available online: http://sign-io.com/ (accessed on 20 March 2023).
37. Forshay, L.; Winter, K.; Bender, E.M. Open Letter to UW’s Office of News & Information about the SignAloud Project. 2016.

Available online: http://depts.washington.edu/asluw/SignAloud-openletter.pdf (accessed on 20 March 2023).
38. Erard, M. Why Sign Language Gloves Don’t Help Deaf People. Deaf Life 2019, 24, 22–39.

http://dx.doi.org/10.1007/978-3-319-57021-1_3
http://dx.doi.org/10.1109/FG.2013.6553777
http://dx.doi.org/10.1109/ICME.2016.7552950
http://dx.doi.org/10.1109/ICCV.2017.332
http://dx.doi.org/10.1109/JSEN.2019.2909837
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.1075/sll.14.1.05hos
http://dx.doi.org/10.1353/sls.2019.0000
http://dx.doi.org/10.1145/3308561.3353774
http://dx.doi.org/10.1515/tlr-2015-0001
http://dx.doi.org/10.1145/47937.47938
https://lemelson.mit.edu/resources/ryan-patterson
https://web.archive.org/web/20200922151309/https://enabletalk.com/welcome-to-enabletalk/
https://web.archive.org/web/20200922151309/https://enabletalk.com/welcome-to-enabletalk/
https://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/f2014/rdv28_mjl256/webpage/
https://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/f2014/rdv28_mjl256/webpage/
https://www.brightsignglove.com/
https://web.archive.org/web/20161216144128/https://lemelson.mit.edu/winners/thomas-pryor-and-navid-azodi
https://web.archive.org/web/20161216144128/https://lemelson.mit.edu/winners/thomas-pryor-and-navid-azodi
http://www.cienciamx.com/index.php/tecnologia/robotica/5354-sistema-para-traduccion-de-senas-en-mexico-e-directa
http://www.cienciamx.com/index.php/tecnologia/robotica/5354-sistema-para-traduccion-de-senas-en-mexico-e-directa
http://dx.doi.org/10.1371/journal.pone.0179766
http://sign-io.com/
http://depts.washington.edu/asluw/SignAloud-openletter.pdf


Mathematics 2023, 11, 2129 26 of 28

39. Dafnis, K.M.; Chroni, E.; Neidle, C.; Metaxas, D.N. Bidirectional Skeleton-Based Isolated Sign Recognition Using Graph
Convolutional Networks. In Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), Marseille,
France, 20–25 June 2022.

40. Johnston, T. Auslan Corpus Annotation Guidelines. 2013. Available online: https://media.auslan.org.au/attachments/
AuslanCorpusAnnotationGuidelines_Johnston.pdf (accessed on 20 March 2023).

41. Cormier, K.; Fenlon, J. BSL Corpus Annotation Guidelines. 2014. Available online: https://bslcorpusproject.org/wp-content/
uploads/BSLCorpusAnnotationGuidelines_23October2014.pdf (accessed on 20 March 2023).

42. Crasborn, O.; Bank, R.; Cormier, K. Digging into Signs: Towards a Gloss Annotation Standard for Sign Language Corpora. In
Proceedings of the 7th Workshop on the Representation and Processing of Sign Languages: Corpus Mining, Language Resources
and Evaluation Conference, Portorož, Slovenia, 28 May 2016; pp. 1–11. [CrossRef]

43. Mesch, J.; Wallin, L. Gloss Annotations in the Swedish Sign Language Corpus. Int. J. Corpus Linguist. 2015, 20, 102–120. [CrossRef]
44. Gries, S.T.; Berez, A.L. Handbook of Linguistic Annotation; Springer: Dordrecht, The Netherlands, 2017. [CrossRef]
45. Koller, O.; Ney, H.; Bowden, R. Deep Hand: How to Train a CNN on 1 Million Hand Images When Your Data Is Continuous and

Weakly Labelled. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas,
NV, USA, 27–30 June 2016; pp. 3793–3802. [CrossRef]

46. Hosain, A.A.; Santhalingam, P.S.; Pathak, P.; Rangwala, H.; Kosecka, J. FineHand: Learning Hand Shapes for American Sign
Language Recognition. In Proceedings of the 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition
(FG 2020), Buenos Aires, Argentina, 16–20 November 2020; pp. 700–707. [CrossRef]

47. Mukushev, M.; Imashev, A.; Kimmelman, V.; Sandygulova, A. Automatic Classification of Handshapes in Russian Sign Language.
In Proceedings of the the LREC2020 9th Workshop on the Representation and Processing of Sign Languages: Sign Language
Resources in the Service of the Language Community, Technological Challenges and Application Perspectives, Marseille,
France, 11–16 May 2020; pp. 165–170.

48. Rios-Figueroa, H.V.; Sánchez-García, A.J.; Sosa-Jiménez, C.O.; Solís-González-Cosío, A.L. Use of Spherical and Cartesian Features
for Learning and Recognition of the Static Mexican Sign Language Alphabet. Mathematics 2022, 10, 2904. [CrossRef]

49. Yang, S.H.; Cheng, Y.M.; Huang, J.W.; Chen, Y.P. RFaNet: Receptive Field-Aware Network with Finger Attention for Fingerspelling
Recognition Using a Depth Sensor. Mathematics 2021, 9, 2815. [CrossRef]

50. Goldin-Meadow, S.; Brentari, D. Gesture, Sign, and Language: The Coming of Age of Sign Language and Gesture Studies. Behav.
Brain Sci. 2017, 40, e46. [CrossRef]

51. Antonakos, E.; Roussos, A.; Zafeiriou, S. A Survey on Mouth Modeling and Analysis for Sign Language Recognition. In
Proceedings of the 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG),
Ljubljana, Slovenia, 4–8 May 2015; pp. 1–7. [CrossRef]

52. Capek, C.M.; Waters, D.; Woll, B.; MacSweeney, M.; Brammer, M.J.; McGuire, P.K.; David, A.S.; Campbell, R. Hand and
Mouth: Cortical Correlates of Lexical Processing in British Sign Language and Speechreading English. J. Cogn. Neurosci. 2008,
20, 1220–1234. [CrossRef]

53. Koller, O.; Ney, H.; Bowden, R. Deep Learning of Mouth Shapes for Sign Language. In Proceedings of the 2015 IEEE International
Conference on Computer Vision Workshop (ICCVW), Santiago, Chile, 7–13 December 2015; pp. 477–483. [CrossRef]

54. Wilson, N.; Brumm, M.; Grigat, R.R. Classification of Mouth Gestures in German Sign Language Using 3D Convolutional Neural
Networks. In Proceedings of the 10th International Conference on Pattern Recognition Systems (ICPRS-2019), Tours, France, 8–10
July 2019; Institution of Engineering and Technology: Tours, France, 2019; pp. 52–57. [CrossRef]

55. Michael, N.; Yang, P.; Liu, Q.; Metaxas, D.; Neidle, C. A Framework for the Recognition of Nonmanual Markers in Segmented
Sequences of American Sign Language. In Proceedings of the British Machine Vision Conference, Dundee, UK, 29 August–2
September 2011; British Machine Vision Association: Dundee, UK, 2011; pp. 124.1–124.12. [CrossRef]

56. Antonakos, E.; Pitsikalis, V.; Maragos, P. Classification of Extreme Facial Events in Sign Language Videos. EURASIP J. Image
Video Process. 2014, 2014, 14. [CrossRef]

57. Metaxas, D.; Dilsizian, M.; Neidle, C. Scalable ASL Sign Recognition Using Model-Based Machine Learning and Linguistically
Annotated Corpora. In Proceedings of the 8th Workshop on the Representation & Processing of Sign Languages: Involving the
Language Community, Language Resources and Evaluation Conference, Miyazaki, Japan, 12 May 2018.

58. Camgöz, N.C.; Koller, O.; Hadfield, S.; Bowden, R. Multi-Channel Transformers for Multi-articulatory Sign Language Translation.
In Proceedings of the 16th European Conference on Computer Vision (ECCV 2020) Part XI, Glasgow, UK, 23–28 August 2020;
pp. 1–18.

59. Weast, T.P. Questions in American Sign Language: A Quantitative Analysis of Raised and Lowered Eyebrows. Ph.D. Thesis,
University of Texas at Arlington, Arlington, TX, USA, 2008.

60. Najafabadi, M.M.; Villanustre, F.; Khoshgoftaar, T.M.; Seliya, N.; Wald, R.; Muharemagic, E. Deep Learning Applications and
Challenges in Big Data Analytics. J. Big Data 2015, 2, 1–21. [CrossRef]

61. Von Agris, U.; Blömer, C.; Kraiss, K.F. Rapid Signer Adaptation for Continuous Sign Language Recognition Using a Combined
Approach of Eigenvoices, MLLR, and MAP. In Proceedings of the 2008 19th International Conference on Pattern Recognition,
Tampa, FL, USA, 8–11 December 2008; pp. 1–4. [CrossRef]

https://media.auslan.org.au/attachments/AuslanCorpusAnnotationGuidelines_Johnston.pdf
https://media.auslan.org.au/attachments/AuslanCorpusAnnotationGuidelines_Johnston.pdf
https://bslcorpusproject.org/wp-content/uploads/BSLCorpusAnnotationGuidelines_23October2014.pdf
https://bslcorpusproject.org/wp-content/uploads/BSLCorpusAnnotationGuidelines_23October2014.pdf
http://dx.doi.org/10.13140/RG.2.1.2468.5840
http://dx.doi.org/10.1075/ijcl.20.1.05mes
http://dx.doi.org/10.1007/978-94-024-0881-2
http://dx.doi.org/10.1109/CVPR.2016.412
http://dx.doi.org/10.1109/FG47880.2020.00062
http://dx.doi.org/10.3390/math10162904
http://dx.doi.org/10.3390/math9212815
http://dx.doi.org/10.1017/S0140525X15001247
http://dx.doi.org/10.1109/FG.2015.7163162
http://dx.doi.org/10.1162/jocn.2008.20084
http://dx.doi.org/10.1109/ICCVW.2015.69
http://dx.doi.org/10.1049/cp.2019.0248
http://dx.doi.org/10.5244/C.25.124
http://dx.doi.org/10.1186/1687-5281-2014-14
http://dx.doi.org/10.1186/s40537-014-0007-7
http://dx.doi.org/10.1109/icpr.2008.4761363


Mathematics 2023, 11, 2129 27 of 28

62. Gweth, Y.L.; Plahl, C.; Ney, H. Enhanced Continuous Sign Language Recognition Using PCA and Neural Network Features. In
Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence,
RI, USA, 16–21 June 2012; pp. 55–60. [CrossRef]

63. Forster, J.; Koller, O.; Oberdörfer, C.; Gweth, Y.; Ney, H. Improving Continuous Sign Language Recognition: Speech Recognition
Techniques and System Design. In Proceedings of the SLPAT 2013, 4th Workshop on Speech and Language Processing for
Assistive Technologies, Grenoble, France, 21–22 August 2013; pp. 41–46.

64. Koller, O.; Zargaran, S.; Ney, H.; Bowden, R. Deep Sign: Enabling Robust Statistical Continuous Sign Language Recognition via
Hybrid CNN-HMMs. Int. J. Comput. Vis. 2018, 126, 1311–1325. [CrossRef]

65. Cui, R.; Liu, H.; Zhang, C. A Deep Neural Framework for Continuous Sign Language Recognition by Iterative Training. IEEE
Trans. Multimed. 2019, 21, 1880–1891. [CrossRef]

66. Forster, J.; Schmidt, C.; Hoyoux, T.; Koller, O.; Zelle, U.; Piater, J.; Ney, H. RWTH-PHOENIX-Weather: A Large Vocabulary Sign
Language Recognition and Translation Corpus. In Proceedings of the Eighth International Conference on Language Resources
and Evaluation (LREC’12), Istanbul, Turkey, 23–25 May 2012; pp. 3785–3789.

67. Koller, O.; Forster, J.; Ney, H. Continuous Sign Language Recognition: Towards Large Vocabulary Statistical Recognition Systems
Handling Multiple Signers. Comput. Vis. Image Underst. 2015, 141, 108–125. [CrossRef]

68. Camgöz, N.C.; Hadfield, S.; Koller, O.; Ney, H.; Bowden, R. Neural Sign Language Translation. In Proceedings of the 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7784–7793.
[CrossRef]

69. Schmidt, C.; Koller, O.; Ney, H. Enhancing Gloss-Based Corpora with Facial Features Using Active Appearance Model. In
Proceedings of the International Symposium on Sign Language Translation and Avatar Technology, Chicago, IL, USA, 18–19
October 2013; pp. 1–7.

70. Huang, J.; Zhou, W.; Zhang, Q.; Li, H.; Li, W. Video-Based Sign Language Recognition without Temporal Segmentation. In
Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; pp. 2257–2264.

71. Konstantinidis, D.; Dimitropoulos, K.; Daras, P. A Deep Learning Approach for Analyzing Video and Skeletal Features in Sign
Language Recognition. In Proceedings of the 2018 IEEE International Conference on Imaging Systems and Techniques (IST),
Krakow, Poland, 16–18 October 2018; pp. 1–6. [CrossRef]

72. Wang, S.; Guo, D.; Zhou, W.G.; Zha, Z.J.; Wang, M. Connectionist Temporal Fusion for Sign Language Translation. In Proceedings
of the 26th ACM International Conference on Multimedia, Seoul, Republic of Korea, 26 October 2018; pp. 1483–1491. [CrossRef]

73. Elakkiya, R.; Selvamani, K. Subunit Sign Modeling Framework for Continuous Sign Language Recognition. Comput. Electr. Eng.
2019, 74, 379–390. [CrossRef]

74. Guo, D.; Wang, S.; Tian, Q.; Wang, M. Dense Temporal Convolution Network for Sign Language Translation. In Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019; pp. 744–750.
[CrossRef]

75. Pu, J.; Zhou, W.; Li, H. Iterative Alignment Network for Continuous Sign Language Recognition. In Proceedings of the
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 4160–4169. [CrossRef]

76. Zhang, Z.; Pu, J.; Zhuang, L.; Zhou, W.; Li, H. Continuous Sign Language Recognition via Reinforcement Learning. In Proceedings
of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 285–289.
[CrossRef]

77. Camgöz, N.C.; Koller, O.; Hadfield, S.; Bowden, R. Sign Language Transformers: Joint End-to-end Sign Language Recognition
and Translation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA,
14–19 June 2020; pp. 1–11.

78. Koller, O. Towards Large Vocabulary Continuous Sign Language Recognition: From Artificial to Real-Life Tasks. Ph.D. Thesis,
RWTH Aachen University, Aachen, Germany, 2020.

79. Stoll, S.; Camgoz, N.C.; Hadfield, S.; Bowden, R. Text2Sign: Towards Sign Language Production Using Neural Machine
Translation and Generative Adversarial Networks. Int. J. Comput. Vis. 2020, 128, 891–908. [CrossRef]

80. Zhou, H.; Zhou, W.; Zhou, Y.; Li, H. Spatial-Temporal Multi-Cue Network for Continuous Sign Language Recognition. In
Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 13009–13016.
[CrossRef]

81. Papastratis, I.; Dimitropoulos, K.; Daras, P. Continuous Sign Language Recognition through a Context-Aware Generative
Adversarial Network. Sensors 2021, 21, 2437. [CrossRef] [PubMed]

82. Tang, S.; Hong, R.; Guo, D.; Wang, M. Gloss Semantic-Enhanced Network with Online Back-Translation for Sign Language
Production. In Proceedings of the 30th ACM International Conference on Multimedia, Lisboa, Portugal, 10–14 October 2022;
ACM: Lisboa, Portugal, 2022; pp. 5630–5638. [CrossRef]

83. Schembri, A.; Fenlon, J.; Rentelis, R.; Reynolds, S.; Cormier, K. Building the British Sign Language Corpus. Lang. Doc. 2013, 7,
136–154.

84. Duarte, A.; Palaskar, S.; Ventura, L.; Ghadiyaram, D.; DeHaan, K.; Metze, F.; Torres, J.; Giro-i-Nieto, X. How2Sign: A Large-scale
Multimodal Dataset for Continuous American Sign Language. In Proceedings of the 2021 IEEE CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 1–14.

http://dx.doi.org/10.1109/CVPRW.2012.6239187
http://dx.doi.org/10.1007/s11263-018-1121-3
http://dx.doi.org/10.1109/TMM.2018.2889563
http://dx.doi.org/10.1016/j.cviu.2015.09.013
http://dx.doi.org/10.1109/CVPR.2018.00812
http://dx.doi.org/10.1109/IST.2018.8577085
http://dx.doi.org/10.1145/3240508.3240671
http://dx.doi.org/10.1016/j.compeleceng.2019.02.012
http://dx.doi.org/10.24963/ijcai.2019/105
http://dx.doi.org/10.1109/CVPR.2019.00429
http://dx.doi.org/10.1109/ICIP.2019.8802972
http://dx.doi.org/10.1007/s11263-019-01281-2
http://dx.doi.org/10.1609/aaai.v34i07.7001
http://dx.doi.org/10.3390/s21072437
http://www.ncbi.nlm.nih.gov/pubmed/33916231
http://dx.doi.org/10.1145/3503161.3547830


Mathematics 2023, 11, 2129 28 of 28

85. Li, D.; Opazo, C.R.; Yu, X.; Li, H. Word-Level Deep Sign Language Recognition from Video: A New Large-scale Dataset and
Methods Comparison. In Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision (WACV),
Snowmass, CO, USA, 1–5 March 2020; pp. 1448–1458. [CrossRef]

86. Carreira, J.; Zisserman, A. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. In Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4724–4733.
[CrossRef]

87. Hosain, A.A.; Selvam Santhalingam, P.; Pathak, P.; Rangwala, H.; Kosecka, J. Hand Pose Guided 3D Pooling for Word-level
Sign Language Recognition. In Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision (WACV),
Waikoloa, HI, USA, 3–8 January 2021; pp. 3428–3438. [CrossRef]

88. Tunga, A.; Nuthalapati, S.V.; Wachs, J. Pose-Based Sign Language Recognition Using GCN and BERT. In Proceedings of the
2021 IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW), Waikola, HI, USA, 5–9 January 2021;
pp. 31–40. [CrossRef]

89. Bohacek, M.; Hruz, M. Sign Pose-based Transformer for Word-level Sign Language Recognition. In Proceedings of the 2022
IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW), Waikoloa, HI, USA, 4–8 January 2022;
pp. 182–191. [CrossRef]

90. Eunice, J.; J, A.; Sei, Y.; Hemanth, D.J. Sign2Pose: A Pose-Based Approach for Gloss Prediction Using a Transformer Model.
Sensors 2023, 23, 2853. [CrossRef]

91. Neidle, C.; Ballard, C. Revised Gloss Labels for Signs from the WLASL Dataset: Preliminary Version. 2022. Available online:
https://www.bu.edu/asllrp/wlasl-alt-glosses.pdf (accessed on 20 March 2023).

92. Cao, Z.; Simon, T.; Wei, S.E.; Sheikh, Y. Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1302–1310.
[CrossRef]

93. Shanker, M.; Hu, M.; Hung, M. Effect of Data Standardization on Neural Network Training. Omega 1996, 24, 385–397. [CrossRef]
94. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold,

G.; Gelly, S.; et al. An Image Is Worth 16 ×16 Words: Transformers for Image Recognition at Scale. In Proceedings of Ninth
International Conference on Learning Representations, Virtual, 3–7 May, 2021.

95. Xiong, R.; Yang, Y.; He, D.; Zheng, K.; Zheng, S.; Xing, C.; Zhang, H.; Lan, Y.; Wang, L.; Liu, T.Y. On Layer Normalization in the
Transformer Architecture. In Proceedings of the 37th International Conference on Machine Learning, Virtual Event, 13–18 July
2020; pp. 10524–10533.

96. Liu, X.; Yu, H.F.; Dhillon, I.S.; Hsieh, C.J. Learning to Encode Position for Transformer with Continuous Dynamical Model. In
Proceedings of the 37th International Conference on Machine Learning, Virtual Event, 13–18 July 2020; Volume 119. [CrossRef]

97. Embedding—PyTorch 1.9.0 Documentation. Available online: https://pytorch.org/docs/1.9.0/generated/torch.nn.Embedding.
html (accessed on 20 March 2023).

98. Poulinakis, K.; Drikakis, D.; Kokkinakis, I.W.; Spottswood, S.M. Machine-Learning Methods on Noisy and Sparse Data.
Mathematics 2023, 11, 236. [CrossRef]

99. LogSoftmax—PyTorch 1.9.0 Documentation. Available online: https://pytorch.org/docs/1.9.0/generated/torch.nn.LogSoftmax.
html#torch.nn.LogSoftmax (accessed on 20 March 2023).

100. CrossEntropyLoss—PyTorch 1.9.0 Documentation. Available online: https://pytorch.org/docs/1.9.0/generated/torch.nn.
CrossEntropyLoss.html?highlight=cross (accessed on 20 March 2023).

101. Adam—PyTorch 1.9.0 Documentation. Available online: https://pytorch.org/docs/1.9.0/generated/torch.optim.Adam.html
(accessed on 20 March 2023).

102. CosineAnnealingWarmRestarts—PyTorch 1.9.0 Documentation. Available online: https://pytorch.org/docs/1.9.0/generated/
torch.optim.lr_scheduler.CosineAnnealingWarmRestarts.html (accessed on 20 March 2023).

103. Cranfield University. Digital Aviation Research and Technology Centre. 2023. Available online: https://www.cranfield.ac.uk/
centres/digital-aviation-research-and-technology-centre (accessed on 20 March 2023).

104. Emmorey, K.; Thompson, R.; Colvin, R. Eye Gaze during Comprehension of American Sign Language by Native and Beginning
Signers. J. Deaf Stud. Deaf Educ. 2009, 14, 237–243. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/WACV45572.2020.9093512
http://dx.doi.org/10.1109/CVPR.2017.502
http://dx.doi.org/10.1109/WACV48630.2021.00347
http://dx.doi.org/10.1109/WACVW52041.2021.00008
http://dx.doi.org/10.1109/WACVW54805.2022.00024
http://dx.doi.org/10.3390/s23052853
https://www.bu.edu/asllrp/wlasl-alt-glosses.pdf
http://dx.doi.org/10.1109/CVPR.2017.143
http://dx.doi.org/10.1016/0305-0483(96)00010-2
http://dx.doi.org/10.5555/3524938.3525525
https://pytorch.org/docs/1.9.0/generated/torch.nn.Embedding.html
https://pytorch.org/docs/1.9.0/generated/torch.nn.Embedding.html
http://dx.doi.org/10.3390/math11010236
https://pytorch.org/docs/1.9.0/generated/torch.nn.LogSoftmax.html#torch.nn.LogSoftmax
https://pytorch.org/docs/1.9.0/generated/torch.nn.LogSoftmax.html#torch.nn.LogSoftmax
https://pytorch.org/docs/1.9.0/generated/torch.nn.CrossEntropyLoss.html?highlight=cross
https://pytorch.org/docs/1.9.0/generated/torch.nn.CrossEntropyLoss.html?highlight=cross
https://pytorch.org/docs/1.9.0/generated/torch.optim.Adam.html
https://pytorch.org/docs/1.9.0/generated/torch.optim.lr_scheduler.CosineAnnealingWarmRestarts.html
https://pytorch.org/docs/1.9.0/generated/torch.optim.lr_scheduler.CosineAnnealingWarmRestarts.html
https://www.cranfield.ac.uk/centres/digital-aviation-research-and-technology-centre
https://www.cranfield.ac.uk/centres/digital-aviation-research-and-technology-centre
http://dx.doi.org/10.1093/deafed/enn037

	Introduction
	Sign Language
	Modelling
	Datasets
	Our Approach
	Related Work
	Contributions
	Article Organisation

	Materials and Methods
	Dataset
	Model
	Model Regularisation
	Experimental Setup
	Experiments

	Results
	Discussion
	Model Performance
	Model Training Practicalities
	Model Architecture and Parameters
	Normalisation

	Conclusions
	References

