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Abstract: Linear mixed-effects models are widely used in applications to analyze clustered, hierar-
chical, and longitudinal data. Model selection in linear mixed models is more challenging than that
of linear models as the parameter vector in a linear mixed model includes both fixed effects and
variance component parameters. When selecting the variance components of the random effects, the
variance of the random effects must be non-negative and the parameters may lie on the boundary of
the parameter space. Therefore, classical model selection methods cannot be directly used to handle
this situation. In this article, we propose a modified BIC for model selection with linear mixed-effects
models that can solve the case when the variance components are on the boundary of the parameter
space. Through the simulation results, we found that the modified BIC performed better than the
regular BIC in most cases for linear mixed models. The modified BIC was also applied to a real
dataset to choose the most-appropriate model.

Keywords: linear mixed models; BIC; model selection; chi-bar-squared distribution; complex data;
statistical modeling
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1. Introduction

With the development of technology in recent times, more complex and large datasets
have become available. Statisticians and researchers are also developing different statis-
tical models to extract valuable information from data to aid decision-making processes.
Classical multiple linear regression models can be used to model the relationship between
variables. However, one of the assumptions of linear regression is that the errors are
independent. Therefore, when the observations are correlated as with longitudinal data,
clustered data, and hierarchical data, linear regression models are no longer appropriate.
A more powerful class of models used to model correlated data are mixed-effects models,
which have been used in many fields of applications. Recently, Sheng et al. [1] compared
the linear models with linear mixed-effects models and showed that estimators from the
latter are more advantageous in terms of both efficiency and unbiasedness. This shows the
importance of applying linear mixed-effects models in longitudinal settings.

The correlation between observations may appear when data are collected hierarchi-
cally; for example, students may be sampled from the same school, and schools may be
sampled within the same district. Consequently, students in the same school have the same
teachers and school environment, and therefore, the observations are not independent of
one another. Observations may be taken from members of the same family, where each fam-
ily is considered a group or a cluster. As the observations are dependent, we can consider
this clustered data. Another type of correlated data pertains to observations from the same
subjects collected over time, such as repeated blood pressure measurements over a patient’s
treatment period—an example of longitudinal data. Patients (or subjects) may vary in the
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number and date of the collected measurements. Since observations are recorded from
the same individual over time, it is reasonable to assume that subject-specific correlations
exist in the trend of the response variable over time. We wish to model the pattern of the
response variable over time within subjects and the variation in the time trends between
subjects. Linear mixed-effects models are used to model correlated data, accounting for
the variability within and between clusters in clustered data or the variability within and
between repeated measurements in longitudinal data.

Model selection is an important procedure in statistical analysis, allowing the most-
appropriate model to be chosen from a set of potential candidate models. A desired model
is parsimonious and can adequately fit the data in order to improve two important aspects:
interpretability and predictability. In linear mixed models, identifying significant random
effects is a challenging step in model selection, as it involves conducting a hypothesis test
for whether or not the variance components of random effects are equal to zero. For exam-
ple, we want to test H0 : σ2 = 0 against H1 : σ2 > 0, where the parameter space of σ2 is
[0, ∞). Under the null hypothesis, the testing value of the variance component parameter
lies on the boundary of the parameter space. This violates one of the classical regularity
conditions that the true value of the parameter must be an interior point of the parameter
space. Therefore, classical hypothesis tests such as the likelihood ratio, score, and Wald
tests are no longer appropriate. We refer to this violation as the boundary issue. (Please
see a graphical example of the boundary issue in Appendix A.3). When the boundary
issue occurs, the asymptotic null distribution of the likelihood ratio test statistic does
not follow a chi-squared distribution. Chernoff [2], Self and Liang [3], Stram and Lee [4],
Azadbakhsh et al. [5], and Baey et al. [6] pointed out that, under some conditions on the pa-
rameter space and the likelihood functions, the asymptotic null distribution of the likelihood
ratio test statistic is a mixture of chi-squared distributions. For instance, the asymptotic null
distribution of the likelihood ratio test statistic for testing H0 : σ2 = 0 against H1 : σ2 > 0
is 1

2 χ2
0 +

1
2 χ2

1, not χ2
1 [4]. The distribution of a chi-bar-squared random variable depends

on its mixing weights (Appendix A.2). Dykstra [7] discussed conditions on the weight
distribution to ensure asymptotic normality for chi-bar-squared distributions. Shapiro [8]
provided expressions to calculate the exact weights used in the mixture of chi-squared
distributions for some special cases. However, in general, determining the exact weights
used in the mixture of chi-squared distributions is challenging when the number of the
variance components being tested under the null hypothesis is large, as the weights are not
available in a tractable form (Baey et al. [6]).

There are a number of information criteria, such as the Akaike information criterion
(AIC) and the Bayesian information criterion (BIC), that were developed for model selection
with linear mixed models by Vaida and Blanchard [9], Pauler [10], Jones [11], and Delattre
and Poursat [12]. Other methods for identifying important fixed effects and random effects
variance components, including shrinkage and permutation methods, were considered in
Ibrahim et al. [13], Bondell et al. [14], Peng and Lu [15], and Drikvandi et al. [16].

The BIC is susceptible to the boundary issue. If we use the regular BIC in linear mixed
models, that is we treat this case as if there were no constraints on the model’s parameter
vector, then the penalty term of the regular BIC would include all the components of the
parameter vector. Therefore, the regular BIC would overestimate the number of degrees
of freedom of the linear mixed model (which we refer to as model complexity for this
article) and would not take into account the fact that variances components are constrained
and bounded below by 0. Consequently, the regular BIC tends to choose under-fitted
linear mixed models. Several versions of the modified BIC have been proposed for model
selection in linear mixed models [10,11,17]. However, to our knowledge, none of the current
BICs can directly deal with the boundary issue.

The main objective of this article was to introduce a modified BIC for model selection
when the true values of the variance components’ parameters lie on the boundary of
the parameter space, allowing the most-appropriate model to be chosen from a set of
candidate linear mixed models. Here is the general idea on how our proposed method
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solves the boundary problem. From the previous literature, we know that the asymptotic
null distribution of the likelihood ratio test statistic of testing the nullity of several variances
is a chi-bar-squared distribution (Baey et al. [6]). Based on this theoretical result, we took
the average of the chi-bar-squared distribution and included this average in the complexity
of the model. When random effects are correlated, calculating the weights of the chi-
bar-squared distribution is not straightforward, as the weights depend on a cone C∗ that
contains the set of positive definite matrices. Describing the set of positive definite matrices
explicitly using constraints on the components of the random effects covariance matrix is
almost impossible. Thus, calculating the weights of the chi-bar-squared distribution for this
case is not an easy task and has not been addressed in the literature. Our solution to this
problem is to place a bound on cone C∗ with a bigger cone. The bigger cone has a much
simpler structure and allowed us to calculate the weights of the chi-bar-squared distribution.
The rest of the paper is arranged as follows. In Section 2, we develop the methodology.
The simulation and application are provided in Sections 3 and 4. We conclude with a brief
discussion in Section 5.

2. Methodology
2.1. Model Setup and Definitions

Consider the linear mixed model introduced in Laird and Ware [18]:

yi = X iβ + Zibi + εi, (1)

for i = 1, . . . , N, where yi denotes the ni-dimensional vector of response measurements for
cluster i with i = 1, . . . , N; β is a p × 1 fixed effect parameter vector; X i is an
ni × p matrix of covariates for the fixed effects; Zi is an ni × q matrix of covariates for
the random effects; bi denotes the random effects vector of the i-th cluster; bi is assumed to
follow a multivariate normal distribution Nq(0, D), where D is a q× q covariance matrix.
b1, . . . , bN were assumed to be independent. Fixed effects are used to model the population
mean, while random effects are used to model between-cluster variation in the response.
The vector of random errors εi was assumed to follow a multivariate normal distribution,
N(0, σ2

ε Ini ), where Ini denotes the ni × ni identity matrix. It was assumed that bi and εi
are pairwise independent for i = 1, . . . , N. The marginal distribution of yi is N(X iβ, V i),
where V i = ZiDZT

i + σ2
ε Ini .

Let τ denote the vector of distinct variance and covariance components in matrix
D, and let η = (τT , σ2

ε)
T . The vector of parameters for this model is θ = (βT , ηT)T . We

assumed that the response vectors y1, . . . , yN from N clusters are independent random
observations. Given a clustered dataset, we wish to choose a linear mixed model that fits
the data well and is also a parsimonious model.

Definition 1 (Definition of an approximating cone [2]). Let Θ ⊆ Rp and θ0 ∈ Θ. The
set Θ is said to be approximated by a cone A at θ0 if d(y, A) = o(||y − θ0||), for all y ∈ Θ

and d(x, Θ) = o(||x−θ||), for all x ∈ A, where d(x, Ω) = infy∈Ω ||x−y||, which is the distance
between point x and its projection onto any space Ω. In this case, A is called the approximating
cone of Θ at θ0 and Θ is said to be Chernoff-regular at θ0.

Definition 2 (Definition of a tangent cone [19]). A tangent cone TA(θ0) of a set Θ at a point θ0
in Θ is the set of limits of sequences t−1

n (θn − θ0), where tn are positive real numbers and tn → 0
and θn in Θ converge to θ0.

Definition 3 (Definition of chi-bar-squared distribution [19]). Let C ⊂ Rm be a closed convex
cone, and let Z ∼ Nm(0, V), where V is a positive definite matrix. χ̄2(V , C) is a random vari-
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able, which has the same distribution as
[

ZTV−1Z−minθ∈C(Z− θ)TV−1(Z− θ)
]
. Therefore,

we write

χ̄2(V , C) = ZTV−1Z−min
θ∈C

(Z− θ)TV−1(Z− θ)

where wi(m, V , C), i = 0, . . . , m, are some non-negative numbers and ∑m
i=0 wi(m, V , C) = 1.

2.2. Proposed Methods

In this section, we introduce a modified BIC for linear mixed model selection. In
linear mixed models, model selection includes the selection of the regression parameters
β (fixed effects) and variance components of random effects. We first derived a modified
BIC to choose random effects assuming that the random effects are independent. Then,
we propose a modified BIC to choose random effects when random effects are assumed to
be correlated. Lastly, we propose a modified BIC to choose both fixed effects and random
effects simultaneously. We also considered two cases for when the covariance matrix for
random effects bi are diagonal and full matrices.

LetM = {Mk : k ≥ 1} be a countable set of possible candidate linear mixed models.
Let θk denote the vector of parameters of model Mk, and let dk be the complexity of model
Mk. Assume that dk can be calculated and dk < dl if Mk ⊂ Ml . Let MT be the model that
generates the data (called the true model) with parameter θT and the true value of θT is
θT,0. Any model Mk that is more complex than the true model is called an over-fitting
model, that is MT ⊂ Mk or θT ⊂ θk and θT 6= θk. LetM+ be the set of all over-fitting
models. An under-fitting model Mk is a model such that θT’s components are not a subset
of its parameter vector’s components, that is θT ( θk. LetM− be the set of all under-fitting
models. Assume that model Mk has parameter vector θk = (βk

T , τk
T , σ2

ε,k)
T , where βk is

the vector of fixed effects parameters, which includes the population regression coefficients;
τk contains the distinct variance and covariance elements of matrix D; σ2

ε,k is the parameter
for the variance of the random error vector εk. For a general covariance matrix, model Mk
is uniquely defined by its non-zero parameters in β and non-zero variance components on
the diagonal of matrix D. If dii = 0, then all elements on row i and column i of this matrix
are set to 0.

2.2.1. Modified BIC for Choosing Random Effects Assuming That the Random Effects
Are Independent

In this section, we considered the case where the covariance matrix of random effects,
D, is a diagonal matrix. Here, τ is a vector of variances on the diagonal of matrix D.

Lemma 1. When D is a diagonal matrix, under assumptions (C1) − (C4) (Appendix A.1),
assume that we wish to test the model Mk (with τk = (d1, . . . , dk)) against model M1 (with
τ1 = (d1, 0, . . . , 0)) and both models have the same fixed effects part, then the null limiting
distribution of the likelihood ratio test is

χ̄2(ν(θ∗)−1, C∗) =
k−1

∑
i=0

wi(m, ν(θ∗)−1, C∗)χ2
i , (2)

where C∗ = {0}p × {0} × Rk−1
+ × {0}; wi

(
m, ν(θ∗)−1, C∗

)
, i = 0, . . . , k − 1, are some non-

negative numbers and ∑k−1
i=0 wi

(
m, ν(θ∗)−1, C∗

)
= 1; matrix ν(θ) is some positive definite matrix

such that N−
1
2 l
′
N(θ)

d−→ Nm(0, ν(θ)) and N−1{−l
′′
N(θ)}

a.s.−→ ν(θ), and m is the dimension of θ.
θ∗ denotes the true value of the parameter θ; lN(θ; y) denotes the marginal log-likelihood function
of the linear mixed model (1).

Proof. We applied the results from Baey et al. [6] on testing the nullity of r variance
components of the q × q diagonal covariance matrix, D, using the likelihood ratio test
statistic, assuming that the variances that are not being tested are strictly positive. With-
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out loss of generality, assume that matrix D can be written as D =
[

D11 0
0 D22

]
, where

D11 = diag(d1, . . . , dq−r) and D22 = diag(dq−r+1, . . . , dq). The parameter θ = (βT , τT , σε)T

∈ Θ ⊂ Rm with τ = (d1, . . . , dq)T . Consider the hypothesis test, H0 : D =
[

D11 0
0 0

]
with

positive definite matrix D11 versus H1 : D is positive definite.
The parameter spaces under and their corresponding tangent cones are

Θ0 = {θ ∈ Rm/β ∈ Rp; d1 > 0, . . . , dq−r > 0,

dq−r+1 = 0, . . . , dq = 0, σ2
ε > 0}.

TΘ0(θ
∗) = {Rp ×Rq−r × {0}r ×R}.
Θ = {θ ∈ Rm/β ∈ Rp; d1 > 0, . . . , dq−r > 0,

dq−r+1 ≥ 0, . . . , dq ≥ 0, σ2
ε > 0}.

TΘ(θ∗) = Rp ×Rq−r ×Rr
+ ×R.

In this case, TΘ0(θ
∗) is a linear subspace in TΘ(θ∗). Therefore, C∗ = TΘ(θ∗) ∩

TΘ0(θ
∗)⊥ = {0}p × {0}q−r ×Rr

+ × {0}. C∗ is contained in a linear subspace of dimension
r. Thus, wi(m, ν(θ∗)−1, C∗) = 0 for i = r + 1, . . . , m. Assume that the null hypothesis
holds and θ∗ ∈ Θ0,. Baey et al. [6] pointed out that the asymptotic null distribution of the
log-likelihood ratio test statistic is a mixture of chi-squared distributions with the degree of
freedom ranging from 0 to r, denoted by

χ̄2(ν(θ∗)−1, C∗) =
r

∑
i=0

wi(m, ν(θ∗)−1, C∗)χ2
i , (3)

where χ2
i is a chi-squared distribution with i degrees of freedom and ν(θ) is some positive

definite matrix such that N−
1
2 l
′
N(θ)

d−→ N(0, ν(θ)) and N−1{−l
′′
N(θ)}

a.s.−→ ν(θ).
We applied this result to our case with m = p + k + 1; q = k; and r = k− 1. Thus,

based on (3), the null limiting distribution of the likelihood ratio test statistic is

χ̄2(ν(θ∗)−1, C∗) =
k−1

∑
i=0

wi(m, ν(θ∗)−1, C∗)χ2
i , (4)

where C∗ = {0}p × {0} ×Rk−1
+ × {0}; wi

(
m, ν(θ∗)−1, C∗

)
, i = 0, . . . , k− 1, are some non-

negative numbers and ∑k−1
i=0 wi

(
m, ν(θ∗)−1, C∗

)
= 1; matrix ν(θ) is some positive definite

matrix such that N−
1
2 l
′
N(θ)

d−→ Nm(0, ν(θ)) and N−1{−l
′′
N(θ)}

a.s.−→ ν(θ), and m is the
dimension of θ.

We now take the expectation of the chi-bar-squared distribution in Equation (2) and
include it in the complexity of model Mk.

E[χ̄2(ν(θ∗)−1, C∗)] =
k−1

∑
i=0

wi(m, ν(θ∗)−1, C∗)i.

We propose the following modified BIC:

BIC∗(Mk) = −2l(θ̂k; y) + dk log(n), (5)

where θ̂k is the maximum likelihood estimator of θk in model Mk; n = ∑N
i=1 ni and

dk = p + 1.5 + ∑k−1
i=0 wi(m, ν(θ∗)−1, C∗)i for k > 1; dk = p + 1.5 for k = 1; dk = p + 1

for k = 0. The first term, −2l(θ̂k; y), measures the goodness-of-fit for model Mk, and the
second term, dk log(n), is the penalty for the model complexity, which makes sure that the
model selected is parsimonious.
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The rationale of choosing the complexity dk for model Mk when k > 1 is as follows:
p is the number of fixed effects parameters; 1 is for the σε parameter and 0.5 for the
assumed random effect in the model (such as random intercept), and the rest of dk is the
expectation of the chi-bar-squared distribution in Equation (2). When k = 1, d1 = p + 1.5 is
the complexity of model M1, which is the model with fixed effects and only one random
effect (such as random intercept). When k = 0, d0 = p + 1 is the complexity of model
M0, which is the model with fixed effects and no random effects. In this case, d0 is exactly
the regular BIC for multiple regression models. For example, M3 is a model with three
independent random effects. D = diag(σ2

0 , σ2
1 , σ2

2 ), and τ = (σ2
0 , σ2

1 , σ2
2 ). We want to

test H0 : σ2
0 > 0; σ2

1 = 0, σ2
2 = 0, vs. H1 : σ2

0 > 0; σ2
1 > 0, σ2

2 > 0. In this example,
θ = (βT , τT , σ2

ε)
T ; m = p + 3 + 1, k = 3, r = 2. Therefore, the asymptotic null distribution

of the log-likelihood ratio test statistic is

χ̄2(ν(θ∗)−1, C∗) =
2

∑
i=0

wi(m, ν(θ∗)−1, C∗)χ2
i

where C∗ = {0}p × {0} ×R2
+ × {0}.

Cone C∗ can be written as C∗ = {θ ∈ Rm/Rθ ≥ 0}, where R =
(
0p+1|I2|0

)
is a

2 × m matrix and I2 is an identity matrix of order two. The chi-bar-squared weights
are wi(m, ν(θ∗)−1, C∗) = wi(r, Rν(θ∗)−1RT ,R2

+) under Proposition 3.6.1 of [19]. The ma-
trix, ν(θ∗), is approximated by Γ = N−1{IN(θ̂k)}, where θ̂k is the maximum likelihood
estimator of θk in model Mk and IN(θ) is the Fisher information matrix. The chi-bar-
squared weights, wi(r, RΓ−1RT ,R2

+), can be calculated using function “con-weights-boot”
in the R package “restriktor” of Vanbrabant et al. [20]. In this example, we assumed
that RΓ−1RT =

[
1 −0.5
−0.5 1

]
. Then, we obtained the weights w0 = 0.334, w1 = 0.503,

and w2 = 0.163. Thus,

χ̄2(ν(θ∗)−1, C∗) = 0.334χ2
0 + 0.503χ2

1 + 0.163χ2
2,

We note that, in theory, w1 must be 0.5. However, in our simulation, w1 = 0.503.
The expectation of this chi-bar-squared distribution is 0.334(0) + 0.503(1) + 0.163(2) =
0.829. The complexity of this model is d3 = p + 1.5 + 0.829.

Theorem 1. Assume that Assumptions (C1)–(C4) in Appendix A.1 are satisfied, then

lim
n→∞

P(BIC∗(MT) < BIC∗(Mk)) = 1 for all Mk ∈ M+

and lim
n→∞

P(BIC∗(MT) < BIC∗(Mk)) = 1 for all Mk ∈ M−.

Proof. We used l(θ̂k; y) instead of lN(θ̂k; y) for the convenience of exposition.
Case 1: For any under-fitting model, Mk ∈ M−, we want to prove that

lim
n→∞

P(BIC∗(Mk)− BIC∗(MT) > 0) = 1. We have that

BIC∗(Mk)− BIC∗(MT) = −2
(
l(θ̂k; y)− l(θ̂T ; y)

)
+ (dk − dT) log(n).

−2
(
l(θ̂k; y)− l(θ̂T ; y)

)
= −2

(
l(θ̂k; y)− l(θk,0; y)

)
+ 2
[
l(θ̂T ; y)− l(θT,0; y)

]
+ 2[l(θT,0; y)− l(θk,0; y)]− 2ET,0[l(θT,0; Y)− l(θk,0; Y)]

+ 2ET,0[l(θT,0; Y)− l(θk,0; Y)].

We also have that l(θ̂k; y)− l(θk,0; y) = op(1) and l(θ̂T ; y)− l(θT,0; y) = op(1) because

θ̂k
p→ θk,0 and θ̂T

p→ θT,0 (as shown in the proof of Theorem 2 in Baey et al. [6]) and
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function l(θ; y) is continuous with respect to θ. Furthermore, under Assumption C4(ii),
1
N (l(θT,0; y)− ET,0[l(θT,0; Y)])

p→ 0 and 1
N (l(θk,0; y)− ET,0[l(θk,0; Y)])

p→ 0. Thus,

1
N
(l(θT,0; ; y)− l(θk,0; y)− ET,0[l(θT,0; Y)− l(θk,0; Y)])

p→ 0,

and therefore, l(θT,0; y)− l(θk,0; y)− ET,0[l(θT,0; Y)− l(θk,0; Y)] = op(N).
The last term can be evaluated as

ET,0[l(θT,0; Y)− l(θk,0; Y)] =
N

∑
i=1

ET,0[log fi(Y i; θT,0)− log fi(Y i; θk,0)]

=
N

∑
i=1

ET,0

[
log

fi(Y i; θT,0)

fi(Y i; θk,0)

]
= Op(N).

This is because ET,0

[
log

fi(Y i; θT,0)

fi(Y i; θk,0)

]
is the Kullback–Leibler distance between fi(Y i; θk,0)

and fi(Y i; θT,0); and is positive and finite by Assumption C4(i).
Assume that the cluster sample sizes, n1, . . . , nN , are uniformly bounded (Assumption

C3), then Op(N) dominates (dk− dT) log(n) as N → ∞. Thus, BIC∗(Mk)− BIC∗(MT) > 0,
and for all Mk ∈ M−,

lim
n→∞

P(BIC∗(MT) < BIC∗(Mk)) = 1

Case 2: For any over-fitting model, Mk ∈ M+, we also prove that lim
n→∞

P(BIC∗(Mk)−
BIC∗(MT) > 0) = 1. Without loss of generality, assume that θT = (βT

T , ψT
T , 0, σ2

ε,T)
T

and θk = (βk
T , ψk,1

T , ψk,2
T , σ2

ε,k)
T , where ψT has the same dimension as ψk,1 and 0 has the

same dimension as ψk,2
T . Let r be the dimension of ψk,2; dim(ψk,2) = r, and all elements

of 0 are 0. We have that

BIC∗(Mk)− BIC∗(MT) = −2
(
l(θ̂k; y)− l(θ̂T ; y)

)
+ (dk − dT) log(n). (6)

Then, −2(l(θ̂T ; y)− l(θ̂k; y)) is the likelihood ratio test statistic of the following hy-
pothesis test:

H0 : ψk,1 ≥ 0, ψk,2 = 0

H1 : ψk,1 ≥ 0, ψk,2 > 0.

According to Baey et al. [6], under H0, the asymptotic distribution of −2(l(θ̂T ; y)−
l(θ̂k; y)) is

r

∑
i=0

wi(m, ν(θ∗)−1, C∗)χ2
i .

Therefore, −2(l(θ̂k; y)− l(θ̂T ; y)) = Op(1), according to Theorem 2.4 of [21]. We also
have that

2(l(θ̂T ; y)− l(θ̂k; y)) = 2
(
l(θ̂T ; y)− l(θ̂1; y)−

[
l(θ̂k; y)− l(θ̂1; y)

])
= −2

(
l(θ̂1; y)− l(θ̂T ; y)

)
−
[
−2
(
l(θ̂1; y)− l(θ̂k; y)

)]
.

⇒ E
[
2
(
l(θ̂T ; Y)− l(θ̂k; Y)

)]
= E

[
−2
(
l(θ̂1; Y)− l(θ̂T ; Y)

)]
− E

[
−2
(
l(θ̂1; Y)− l(θ̂k; Y)

)]
= dT − dk,
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where l(θ̂1; y) is the maximum log-likelihood of the simplest model, that is the model with
only the random intercept. Therefore,

E
[
−2
(
l(θ̂T ; Y)− l(θ̂k; Y)

)]
= dk − dT .

On the other hand, −2
(
l(θ̂T ; y)− l(θ̂k; y)

)
asymptotically follows a mixture of the chi-

squared distributions. Therefore, E
[
−2
(
l(θ̂T ; Y)− l(θ̂k; Y)

)]
must be positive, and hence,

dk − dT > 0. Thus, BIC∗(Mk)− BIC∗(MT)→ ∞ as n→ ∞ and

lim
n→∞

P(BIC∗(Mk)− BIC∗(MT) > 0) = 1

for Mk ∈ M+. This completes the proof of Theorem 1.

Given a set of candidate models, we calculated the proposed BIC value for each model.
Then, the selected model is the one that minimizes the proposed BIC.

2.2.2. Modified BIC for Choosing Random Effects Assuming That the Random Effects
Are Correlated

In this section, we introduce a modified BIC for selecting linear mixed models with
correlated random effects. We still focused on only selecting random effects. In the
parameter vector θ = (βT , τT , σ2

ε)
T , τ is the parameter of interest; β and σ2

ε are considered
as nuisance parameters. We now considered that the linear mixed model (1) with the
covariance matrix for random effects bi is a full matrix. Therefore, vector τ contains all
distinct variances and covariances of matrix D.

Lemma 2. When D is a full matrix and under Assumptions (C1)–(C4) in Appendix A.1, assume
that we test the model Mk against model M1, where M1 contains only one random effect, which is
a random intercept, Mk contains k random effects including a random intercept, and both models
have the same fixed effects part, then the null limiting distribution of the likelihood ratio test is

χ̄2(ν(θ∗)−1, C∗) =
(k−1)(k+2)/2

∑
i=k−1

wi(m, ν(θ∗)−1, C∗)χ2
i , (7)

where C∗ = {0}p × {0} × Sk−1
+ × {0}; m is the dimension of θ; wi(m, ν(θ∗)−1, C∗), i = (k−

1), . . . , (k− 1)(k + 2)/2, are some non-negative numbers; ∑
(k−1)(k+2)/2
i=k−1 wi(m, ν(θ∗)−1, C∗) = 1;

χ2
i is a chi-squared distribution with i degrees of freedom; ν(θ) is a positive definite matrix such

that N−
1
2 l
′
N(θ)

d−→ Nm(0, ν(θ)) and N−1{−l
′′
N(θ)}

a.s.−→ ν(θ). Sr
+ denotes the set of symmetric

positive semi-definite matrices of size r× r.

Proof. When D is a full matrix, the number of distinct variances and covariances is
q(q + 1)/2. We also applied the results from Baey et al. [6] on testing the nullity of r
variance components of the q× q covariance matrix, D, when this matrix is a full matrix.
Assume that matrix D is written as D =

[
D11 D12
DT

12 D22

]
where the size of D11 is (q− r)× (q− r)

and the size of D22 is r× r. Consider the hypothesis test: H0 : D11 > 0, D12 = 0, D22 = 0
versus H1 : D is a positive definite matrix.

The parameter space under the null hypothesis is

Θ0 = {θ ∈ Rm/β ∈ Rp; D11 > 0; D12 = 0, D22 = 0, σ2
ε > 0}

= {Rp × Sq−r
+ × {0}r(q−r) × {0}r(r+1) ×R+},

where Sq−r
+ is the set of symmetric positive semi-definite matrices of size (q− r)× (q− r).
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Assume that the null hypothesis holds and θ∗ ∈ Θ0, then applying the results of Baey
et al. [6], we obtain the tangent cone to Θ0 at θ∗:

TΘ0(θ
∗) = {Rp × Sq−r × {0}r(q−r) × {0}r(r+1) ×R}

= {Rp ×R(q−r)(q−r+1)/2 × {0}r(q−r) × {0}r(r+1) ×R},

where S(q−r)×(q−r) is the set of symmetric matrices of size (q− r)× (q− r). Furthermore,

Θ = {θ ∈ Rm/β ∈ Rp; D ∈ Sq
+, σ2

ε > 0}
= {Rp × Sq

+ ×R+}.

According to the results of Baey et al. [6], the tangent cone to Θ at θ∗ is

TΘ(θ∗) = Rp ×R(q−r)(q−r+1)/2 ×Rr(q−r) × Sr
+ ×R,

where Sr
+ is the set of symmetric positive semi-definite matrices of size r× r. Since TΘ0(θ

∗)
is a linear subspace in TΘ(θ∗), the asymptotic null distribution of the likelihood ratio test
statistic for the above hypothesis test is χ̄2(ν(θ∗)−1, C∗), where C∗ = TΘ(θ∗)∩ TΘ0(θ

∗)⊥ =

{0}p × {0}(q−r)(q−r+1)/2 ×Rr(q−r) × Sr
+ × {0}.

When D is a full matrix, under the null hypothesis, Baey et al. [6] pointed out that the
asymptotic null distribution of the log-likelihood test statistic is χ̄2(ν(θ∗)−1, C∗), which is
a mixture of chi-squared distributions with the degree of freedom ranging from r(q− r) to
r(q− r) + r(r + 1)/2.

χ̄2(ν(θ∗)−1, C∗) =
r(q−r)+r(r+1)/2

∑
i=r(q−r)

wi(m, ν(θ∗)−1, C∗)χ2
i , (8)

where wi
(
m, ν(θ∗)−1, C∗

)
, i = r(q− r), . . . , r(q− r) + r(r + 1)/2, are some non-negative

numbers and ∑
r(q−r)+r(r+1)/2
i=r(q−r) wi

(
m, ν(θ∗)−1, C∗

)
= 1; χ2

i is a chi-squared distribution with

i degrees of freedom; ν(θ) is a positive definite matrix such that N−
1
2 l
′
N(θ)

d−→ Nm(0, ν(θ))

and N−1{−l
′′
N(θ)}

a.s.−→ ν(θ).
Assume that model Mk has parameter vector θk = (βk

T , τk
T , σ2

ε,k)
T , where βk repre-

sents the parameter vector of the fixed effects; τk contains distinct variances and covariances
of the random effect covariance matrix Dk, and σ2

ε,k is the variance of the random error
term εk. Let p be the number of parameters of βk and qk be the number of parameters of
τk. Assume that we tested the model Mk against model M1, where M1 contains only one
random effect, which is a random intercept, and Mk contains k random effects including a
random intercept. Assume that the two models contain the same fixed effects part. In this
case, m = dim(θk) = p + qk + 1, r = k− 1, q = k, and q− r = 1. Thus, r(q− r) = k− 1
and r(q− r) + r(r + 1)/2 = (k− 1)(k + 2)/2. Therefore, based on (8), the asymptotic null
distribution of the log-likelihood ratio test statistic is

χ̄2(ν(θ∗)−1, C∗) =
(k−1)(k+2)/2

∑
i=k−1

wi(m, ν(θ∗)−1, C∗)χ2
i , (9)

where C∗ = {0}p × {0} × Sk−1
+ × {0}; wi(m, ν(θ∗)−1, C∗), i = (k− 1), . . . , (k− 1)(k + 2)/2,

are some non-negative numbers and ∑
(k−1)(k+2)/2
i=k−1 wi(m, ν(θ∗)−1, C∗) = 1, χ2

i is a chi-
squared distribution with i degrees of freedom; ν(θ) is a positive definite matrix such that

N−
1
2 l
′
N(θ)

d−→ Nm(0, ν(θ)) and N−1{−l
′′
N(θ)}

a.s.−→ ν(θ).

We note that it is too complex to define Sk−1
+ using equality and inequality constraints

on the variance and covariance components of matrix Dk. Since Sk−1
+ ⊂ R(k−1)(k−2)/2 ×
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Rk−1
+ , in our work, we approximated C∗ by C = {0}p × {0} × Rk−1 × R(k−1)(k−2)/2 ×

Rk−1
+ × {0}. Thus, χ̄2(ν(θ∗)−1, C∗) is approximated by

χ̄2(ν(θ∗)−1, C) =
(k−1)(k+2)/2

∑
i=k(k−1)/2

wi(m, ν(θ∗)−1, C)χ2
i , (10)

where wi(m, ν(θ∗)−1, C), i = k(k − 1)/2, . . . , (k − 1)(k + 2)/2, are some non-negative
numbers and ∑

(k−1)(k+2)/2
i=k(k−1)/2 wi(m, ν(θ∗)−1, C) = 1; χ2

i is a chi-squared distribution with

i degrees of freedom, and ν(θ) is a positive definite matrix such that N−
1
2 l
′
N(θ)

d−→
Nm(0, ν(θ)) and N−1{−l

′′
N(θ)}

a.s.−→ ν(θ). This is because C = {0}p × {0} × Rk−1 ×
R(k−1)(k−2)/2 ×Rk−1

+ × {0} contains a linear space of dimension (k− 1) + (k− 1)(k− 2)/2
and is included in a linear space of dimension (k − 1) + (k − 1)(k − 2))/2 + (k − 1).
Therefore, the weights wi(m, ν(θ∗)−1, C) are zero for i = 0, . . . , (k − 1) + (k − 1)(k −
2)/2− 1 and for i = (k − 1) + (k − 1)(k − 2))/2 + (k − 1) + 1, . . . , m [8]. From (10), let
ck = E(χ̄2(ν(θ∗)−1, C) = ∑

(k−1)(k+2)/2
i=k(k−1)/2 wi(m, ν(θ∗)−1, C)i.

We propose the following modified BIC:

BIC∗(Mk) = −2l(θ̂k; y) + dk log(n), (11)

where θ̂k is the maximum likelihood estimator of θk in model Mk; n = ∑N
i=1 ni and

dk = p + 1.5 + ck for k > 1; dk = p + 1.5 for k = 1; and dk = p + 1 for k = 0.

2.2.3. Modified BIC for Selecting Both Fixed Effects and Random Effects in Linear
Mixed Models

In this section, we propose a modified BIC to select both fixed effects and random
effects for linear mixed models. We also divided the situations into two cases: when the
random effects are independent, that is the covariance matrix, D, of random effects is
diagonal, and when the random effects are correlated, that is the covariance matrix, D, is a
full matrix.

Scenario 1: modified BIC for selecting both fixed effects and random effects when
random effects are independent.

In the model selection, we assumed that the smallest model (called model M1) contains
only the intercept term for fixed effects and a random intercept for random effects. Model
Mk contains (pk + 1) fixed effects, and the covariance matrix, Dk, of random effects is of
order k× k. If random effects are assumed to be independent, then the number of random
effects variance components is qk = k.

Lemma 3. When D is a diagonal matrix, under Assumptions (C1)–(C4) in Appendix A.1, assume
that we tested model Mk against model M1, then the asymptotic null distribution of the log-likelihood
test statistic is

χ̄2(ν(θ∗)−1, C∗) =
pk+k−1

∑
i=pk

wi(m, ν(θ∗)−1, C∗)χ2
i , (12)

where C∗ = Rpk × {0} × {0} ×Rk−1
+ × {0}; wi

(
m, ν(θ∗)−1, C∗

)
, i = pk, . . . , pk + k− 1, are

some non-negative numbers and ∑
pk+k−1
i=pk

wi
(
m, ν(θ∗)−1, C∗

)
= 1; m is the dimension of θ.

Proof. When D is a diagonal matrix, D = diag(d1, . . . , dq−r, dq−r+1, . . . , dq). The fixed
effects parameter β = (β0, β1, . . . , βp−1). Without loss of generality, assume that we wanted
to test the nullity of the s components of β, which are β1, . . . , βs, and the nullity of the last r
variance components of matrix D, which are dq−r+1, . . . , dq.
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Consider the hypothesis test, H0 : β1 = 0, . . . , βs = 0; dq−r+1 = 0, . . . , dq = 0 versus
H1 : β1 6= 0, . . . , βs 6= 0; dq−r+1 > 0, . . . , dq > 0, assuming that the variances that are not
tested (d1, . . . , dq−r) are positive. Let θ∗ be the true value of the parameter vector. Assume
that the null hypothesis holds and θ∗ ∈ Θ0, then the parameter spaces under the null and
alternative hypotheses and their tangent cones at θ∗ are

Θ0 = {{0}s ×Rp−s × {0}r ×Rq−r ×R+},
TΘ0(θ

∗) = {{0}s ×Rp−s ×Rq−r × {0}r ×R},
Θ = {Rp ×Rq−r

+ ×Rr
+ ×R},

TΘ(θ∗) = Rp ×Rq−r ×Rr
+ ×R.

Since TΘ0(θ
∗) is also a linear subspace in TΘ(θ∗), Baey et al. [6] pointed out that the

asymptotic null distribution of χ̄2(ν(θ∗)−1, C∗) is a mixture of chi-squared distributions
with the degree of freedom ranging from s to s + r.

χ̄2((ν(θ∗)−1, C∗)) =
s+r

∑
i=s

wi(m, ν(θ∗)−1, C∗)χ2
i , (13)

where C∗ = TΘ(θ∗) ∩ TΘ0(θ
∗)⊥ = Rs × {0}p−s × {0}q−r ×Rr

+ × {0}; χ2
i is a chi-squared

distribution with i degrees of freedom and ν(θ) is some positive definite matrix such that

N−
1
2 l
′
N(θ)

d−→ N(0, ν(θ)) and N−1{−l
′′
N(θ)}

a.s.−→ ν(θ).
When we test model Mk against model M1, we are testing the nullity of the s = pk

regression coefficients and r = k− 1 random effects variance components. Therefore, based
on Equation (13), the asymptotic null distribution of the log-likelihood test statistic is

χ̄2(ν(θ∗)−1, C∗) =
pk+k−1

∑
i=pk

wi(m, ν(θ∗)−1, C∗)χ2
i , (14)

where C∗ = Rpk × {0} × {0} ×Rk−1
+ × {0}; wi

(
m, ν(θ∗)−1, C∗

)
, i = pk, . . . , pk + k− 1, are

some non-negative numbers and ∑
pk+k−1
i=pk

wi
(
m, ν(θ∗)−1, C∗

)
= 1.

Let uk be the expectation of χ̄2(ν(θ∗)−1, C∗), then uk = ∑
pk+k−1
i=pk

wi(m, ν(θ∗)−1, C∗)i.
We propose a modified BIC for this case as

BIC∗(Mk) = −2l(θ̂k; y) + dk log(n), (15)

where θ̂k is the maximum likelihood estimator of θk in model Mk; n = ∑N
i=1 ni and dk =

2.5 + uk for k > 1; dk = pk + 2.5 for k = 1; dk = pk + 2 for k = 0. Here, in the formula
dk = 2.5 + uk for k > 1, we added 2.5 to uk to account for the degrees of freedom of a fixed
effect intercept (1 degree of freedom), a random intercept (0.5 degree of freedom), and the
variance component of the error term, ε (1 degree of freedom).

Scenario 2: modified BIC for selecting both fixed effects and random effects when
random effects are correlated.

When random effects in the linear mixed model (1) are correlated, their covariance
matrix, D, is a full matrix. Matrix D can be written as D =

[
D11 D12
DT

12 D22

]
, where the size of

D11 is (q− r)× (q− r) and the size of D22 is r× r. The number of distinct variance and
covariance components in D is q(q + 1)/2.

Consider the hypothesis test, H0 : β1 = 0, . . . , βs = 0, D11 > 0, D12 = 0, D22 = 0
versus H1 : β ∈ Rp, D > 0. That is, D is a positive definite matrix. Let θ∗ be the true value
of the parameter vector. Assume that the null hypothesis holds and θ∗ ∈ Θ0, then the
parameter spaces under the null hypothesis and its tangent cone at θ∗ are:
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Θ0 = {{0}s ×Rp−s × Sq−r
+ × {0}r(q−r) × {0}r(r+1) ×R+},

TΘ0(θ
∗) = {{0}s ×Rp−s × Sq−r × {0}r(q−r) × {0}r(r+1) ×R},

= {{0}s ×Rp−s ×R(q−r)(q−r+1)/2 × {0}r(q−r) × {0}r(r+1) ×R},

where Sq−r
+ is the set of symmetric positive semi-definite matrices of size (q− r)× (q− r).

Furthermore, the parameter space under the alternative hypothesis is

Θ = {θ ∈ Rm/β ∈ Rp; D ∈ Sq
+, σ2

ε > 0}
= {Rp × Sq

+ ×R+}.

The tangent cone to Θ at θ∗ is

TΘ(θ∗) = Rp ×R(q−r)(q−r+1)/2 ×Rr(q−r) × Sr
+ ×R.

where Sr
+ is the set of symmetric positive semi-definite matrices of size r× r. Since TΘ0(θ

∗)
is a linear subspace in TΘ(θ∗), the asymptotic null distribution of the likelihood ratio test
statistic for the above hypothesis test is χ̄2(ν(θ∗)−1, C∗), where C∗ = TΘ(θ∗)∩ TΘ0(θ

∗)⊥ =

Rs × {0}p−s × {0}(q−r)(q−r+1)/2 × Rr(q−r) × Sr
+ × {0}. As in Lemma 2, it is challenging

to define Sr
+ using equality and inequality constraints. Since Sr

+ ⊂ Rr(r−1)/2 × Rr
+, we

approximated C∗ by C = Rs × {0}p−s × {0}(q−r)(q−r+1)/2 × Rr(q−r) × Rr(r−1)/2 × Rr
+ ×

{0}. χ̄2(ν(θ∗)−1, C∗) is approximated by

χ̄2(ν(θ∗)−1, C) =
s+r(q−r)+r(r−1)/2+r

∑
i=s+r(q−r)+r(r−1)/2

wi(m, ν(θ∗)−1, C)χ2
i . (16)

where wi(m, ν(θ∗)−1, C), i = s + r(q − r) + r(r − 1)/2, . . . , s + r(q − r) + r(r − 1)/2 + r,
are some non-negative numbers and ∑

s+r(q−r)+r(r−1)/2+r
i=s+r(q−r)+r(r−1)/2 wi(m, ν(θ∗)−1, C) = 1; χ2

i is a
chi-squared distribution with i degrees of freedom; ν(θ) is a positive definite matrix such

that N−
1
2 l
′
N(θ)

d−→ Nm(0, ν(θ)) and N−1{−l
′′
N(θ)}

a.s.−→ ν(θ).
In the model selection, we assumed that model M1 contains only the intercept term for

fixed effects and a random intercept for random effects. Model Mk contains (pk + 1) fixed
effects, and the covariance matrix, Dk, of random effects is of order k× k. When random
effects are assumed to be correlated, the number of distinct random effects variance and
covariance components is qk = k(k + 1)/2. When we tested model Mk against model M1,
applying (16) with s = pk and r = k− 1, then s + r(q− r) + r(r− 1)/2 = pk + k(k− 1)/2
and s + r(q − r) + r(r − 1)/2 + r = pk + (k − 1)(k + 2)/2. Thus, the asymptotic null
distribution of the log-likelihood ratio test statistic is approximated by

χ̄2(ν(θ∗)−1, C) =
pk+(k−1)(k+2)/2

∑
i=pk+k(k−1)/2

wi(m, ν(θ∗)−1, C)χ2
i , (17)

where C = Rpk × {0} × {0} ×Rk(k−1)/2 ×Rk−1
+ × {0}.

Furthermore, let hk be the expectation of χ̄2(ν(θ∗)−1, C), then

hk =
pk+(k−1)(k+2)/2

∑
i=pk+k(k−1)/2

wi(m, ν(θ∗)−1, C)i.

Our proposed modified BIC for this case is

BIC∗(Mk) = −2l(θ̂k; y) + dk log(n), (18)
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where θ̂k is the maximum likelihood estimator of θk in model Mk; n = ∑N
i=1 ni and

dk = 2.5 + hk for k > 1; dk = pk + 2.5 for k = 1; and dk = pk + 2 for k = 0.

Theorem 2. Assume that Assumptions (C1)− (C4) Appendix A.1 are satisfied and BIC∗(Mk)
is defined as in (18), then

lim
n→∞

P(BIC∗(MT) < BIC∗(Mk)) = 1 for all Mk ∈ M+,

and lim
n→∞

P(BIC∗(MT) < BIC∗(Mk)) = 1 for all Mk ∈ M−.

Proof. Case 1: For any over-fitting model, Mk ∈ M+, we also prove that lim
n→∞

P(BIC∗(Mk)−
BIC∗(MT) > 0) = 1. Assume that model Mk contains pk fixed effects and qk random
effects and the true model MT contains pT fixed effects and qT random effects. Let s =
pk − pT and r = qk − qT with s ≥ 0, r ≥ 0, and s + r > 0. Without loss of generality,
assume that the covariance matrix of random effects in model Mk is D =

[
D11 D12
DT

12 D22

]
,

where D11 is the covariance matrix of random effects of the true model MT . The size of
D11 is qT × qT , and the size of D22 is r × r. Let θT = (0β, βT

T , ψT
T , 0, σ2

ε,T)
T and θk =

(βk,1
T , βk,2

T , ψk,1
T , ψk,2

T , σ2
ε,k)

T , where 0β has the same dimension as βk,1; βT has the same
dimension as βk,2; ψT has the same dimension as ψk,1; 0 has the same dimension as ψk,2.
All elements of 0β and 0 are 0. We have that

BIC∗(Mk)− BIC∗(MT) = −2
(
l(θ̂k; y)− l(θ̂T ; y)

)
+ (dk − dT) log(n). (19)

Then, −2(l(θ̂T ; y)− l(θ̂k; y)) is the likelihood ratio test statistic of the following hy-
pothesis test:

H0 : βk,1
T = 0; D11 > 0; D12 = 0, D22 = 0,

H1 : βk ∈ Rp, D > 0.

As in Lemma 2, under H0, the asymptotic distribution of −2(l(θ̂T ; y)− l(θ̂k; y)) is
χ̄2(ν(θ∗)−1, C∗), where C∗ = TΘ(θ∗) ∩ TΘ0(θ

∗)⊥ = Rs × {0}p−s × {0}(q−r)(q−r+1)/2 ×
Rr(q−r) × Sr

+ × {0} with s = pk − pT , r = qk − qT , p = pk + 1, and q = qk; ν(θ) is some

positive definite matrix such that N−
1
2 l
′
(θ)

d−→ Nm(0, ν(θ)) and N−1{−l
′′
(θ)} a.s.−→ ν(θ).

Therefore, −2(l(θ̂T ; y)− l(θ̂k; y)) = Op(1). We also have that

2(l(θ̂T ; y)− l(θ̂k; y)) = −2
(
l(θ̂1; y)− l(θ̂T ; y)

)
−
[
−2
(
l(θ̂1; y)− l(θ̂k; y)

)]
.

⇒ E
[
2
(
l(θ̂T ; Y)− l(θ̂k; Y)

)]
= E

[
−2
(
l(θ̂1; Y)− l(θ̂T ; Y)

)]
− E

[
−2
(
l(θ̂1; Y)− l(θ̂k; Y)

)]
= dT − dk,

where l(θ̂1; y) is the maximum log-likelihood of the simplest model, that is the model with
only the intercept for fixed effects and a random intercept for random effects. Therefore,

E
[
−2
(
l(θ̂T ; Y)− l(θ̂k; Y)

)]
= dk − dT .

On the other hand, −2
(
l(θ̂T ; y)− l(θ̂k; y)

)
asymptotically follows a mixture of the chi-

squared distributions. Therefore, E
[
−2
(
l(θ̂T ; Y)− l(θ̂k; Y)

)]
must be positive and, there-

fore, dk − dT > 0. Thus, BIC∗(Mk)− BIC∗(MT) → ∞ as n → ∞ and lim
n→∞

P(BIC∗(Mk)−
BIC∗ (MT) > 0) = 1 for Mk ∈ M+.
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Case 2: For any under-fitting model, Mk ∈ M−, we want to prove that lim
n→∞

P(BIC∗(Mk)−
BIC∗(MT) > 0) = 1. Using similar arguments as in the proof for Case 1 in Theorem 1, we
obtain this result.

3. Simulation

In this section, we evaluated the performance of the proposed BIC*. We compared
the performance of the proposed BIC* to the regular BIC. For each candidate model, we
computed the BIC* and regular BIC; then for each method, we chose the model with
the minimum value of the BIC* and the regular BIC, respectively. All models were run
using function “lmer” in the R package lme4 [22]. The chi-bar-squared weights were
calculated using function “con-weights-boot” in the R package “restriktor” [20]. Following
the methods used in Gao and Song [23] and Chen and Chen [24], the criteria we used to
evaluate and compare the proposed BIC to the regular BIC were (1) positive selection rate
(PSR), (2) false discovery rate (FDR), and (3) correction rate (CR). For each chosen model,
the positive selection rate (PSR) is the ratio of the number of predictors that are correctly
identified as significant in the chosen model to the number of predictors that are truly
significant in the data-generating model. Then, we took the average of the PSR over all
chosen models. The false discovery rate (FDR) is the ratio of the number of predictors that
are incorrectly identified as significant in the chosen model to the number of predictors
that are identified as significant in the chosen model. Then, we took the average of the FDR
over all chosen models. The correction rate (CR) is the proportion of the times the true
data-generating model is selected in all chosen models. For each selection criterion, we had
1001 models obtained from 1001 simulations. We then calculated the means and standard
deviations of the positive selection rate and false discovery rate and the correction rate for
each criterion.

3.1. Simulation Setup

Our data were generated from the linear mixed model, y = Xβ + Zb + ε. For all
simulation, ε was generated from a multivariate normal distribution, N(0, σ2

ε In) with
σ2

ε = 1.

3.1.1. Setup A: Choose Random Effects Assuming That the Random Effects
Are Independent

Scenario 1: With total number of observations n = 500 and number of clusters N = 100,
X is an n × p matrix with p = 2; the first column of X includes all ones. The second
column is X1, which was generated from the standard normal distribution. The vector
of fixed effects β = (1, 2)T . Matrix Z contains the first two columns z0, z1, which are the
same as two columns of matrix X, and two more columns z2, z3, both generated from
the standard normal distributions. Random effects, bi, were generated from multivariate
normal distribution Nq(0, D) with D a 4× 4 diagonal matrix and D = diag(σ2

0 , . . . , σ2
3 ).

The random intercept, bi0, had a standard deviation of σ0 = 5. Random effects components,
bi1, bi2, and bi3, had standard deviations σ1, σ2, and σ3, respectively. To measure the ability
to detect the significance of the variance component parameters of the proposed BIC∗,
we considered different sizes of σ2

1 , σ2
2 , and σ2

3 . σ1 is a sequence of values from 0 to 0.5
incrementing by 0.05; σ2 is a sequence of values from 0 to 1 incrementing by 0.1; σ3 is a
sequence of values from 0 to 2 incrementing by 0.2.

Scenario 2: With the total number of observations n = 500 and number of clusters
N = 100, X is an n × p matrix with n = 500; p = 3; the first column of X includes all
ones. The last two columns of matrix X1 and X2 were generated from the standard normal
distributions. The vector of fixed effects β = (1, 2, 3)T . Matrix Z contains the first three
columns z0, z1, and z2, which are the same as three columns of matrix X and three more
columns z3, z4, and z5, which were generated from the standard normal distributions.
Random effects, bi, were generated from multivariate normal distribution Nq(0, D) with
D a 6 × 6 diagonal matrix and D = diag(σ2

0 , . . . , σ2
5 ). To measure the ability to detect
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the significance of the variance component parameters of the BIC∗, we also considered
different sizes of σ2

1 , σ2
2 , and σ2

3 as in Scenario 1 with σ2
4 = 0 and σ2

5 = 0. We then repeated
this setup with n = 1000 (N = 200) and n = 250 (N = 50).

Scenario 3: The setup was similar to the one in Scenario 2. However, matrix Z contains
the first three columns z0, z1, and z2, which are the same as the three columns of matrix
X, and eight more columns z3, . . . , z10, which were generated from the standard normal
distributions. Random effects, bi, were generated from multivariate normal distribution
Nq(0, D) with D a 11× 11 diagonal matrix and D = diag(σ2

0 , . . . , σ2
10), where σ2

1 = 0.16,
σ2

2 = 0.64, σ2
3 = 1, σ2

4 = 1.44, and σ2
5 , . . . , σ2

10 are all 0. We also repeated this simulation
setup with n = 1000 (N = 200) and n = 250 (N = 50).

3.1.2. Setup B: Choose Random Effects Assuming That the Random Effects Are Correlated

In this set up, the total number of observations is n = 1000 and the number of clusters
is N = 100. Matrix X and the vector of fixed effects, β, were generated the same as in Setup
A Scenario 2. Matrix Z contains the first three columns z0, z1, and z2, which are the same
as three columns of matrix X, and three more columns z3, z4, and z5 were generated from
the standard normal distributions. Random effects, bi, were generated from multivariate
normal distribution Nq(0, D) with D a 6× 6 matrix. The correlation matrix between the
random effects components, bi0, bi1, bi2, and bi3, in the data-generating model is

R =


1 0.7 0.6 0.5

0.7 1 0.4 0.3
0.6 0.4 1 0.5
0.5 0.3 0.5 1

.

To measure the ability to detect the significance of variance component parameters of
the proposed BIC∗, we created different cases for different sizes of σ2

0 , σ2
1 , σ2

2 , and σ2
3 , as

shown below. σ2
4 , σ2

5 , and the covariances of random effects bi4 and bi5 corresponding to z4
and z5 are all 0.

Case 1: The standard deviations of the random effects were σ0 = 5, σ1 = 1.0, σ2 = 0.8,
σ3 = 0.4, σ4 = 0, and σ5 = 0.

Case 2: The standard deviations of the random effects were σ0 = 2, σ1 = 0.8, σ2 = 0.5,
σ3 = 0.3, σ4 = 0, and σ5 = 0.

Case 3: The standard deviations of the random effects were σ0 = 2, σ1 = 0.5, σ2 = 0.4,
σ3 = 0.2, σ4 = 0, and σ5 = 0.

Case 4: In this case, we kept the standard deviations of the random effects the same
as the ones in Case 2. However, we increased the correlations by 0.1 for each non-zero
correlation in the correlation matrix to see how this affects the correction rates. The
correlation matrix between the random effects is

R1 =


1 0.8 0.7 0.6

0.8 1 0.5 0.4
0.7 0.5 1 0.6
0.6 0.4 0.6 1

.

3.1.3. Setup C: Choose Both Fixed Effects and Random Effects Assuming That the Random
Effects Are Correlated

With the total number of observations n = 1000 and number of clusters N = 100, X is
an n× p matrix with p = 6; the first column of X includes all ones. The last five columns,
X1 to X5, weer generated from the standard normal distribution. The vector of fixed effects
β = (1, 2, 3, 1, 0, 0)T . Matrix Z contains the first three columns z0, z1, and z2, which are the
same as three columns of matrix X, and three more columns z3, z4, and z5 were generated
from the standard normal distributions. The correlation matrix between the random effects
components, bi0, bi1, bi2, and bi3, in the data-generating model is
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R =


1 0.7 0.6 0.5

0.7 1 0.4 0.3
0.6 0.4 1 0.5
0.5 0.3 0.5 1

.

To measure the ability to detect the significance of the fixed effects and variance
component parameters of the proposed BIC∗, we explored two different cases for different
sizes of σ2

0 , σ2
1 , σ2

2 , and σ2
3 , as shown below. The σ2

4 , σ2
5 , and covariances corresponding to

the random effects of z4 and z5 are all 0.
Case 1: The standard deviations of the random effects were σ0 = 5, σ1 = 1.5, σ2 = 1,

σ3 = 0.5, σ4 = 0, and σ5 = 0.
Case 2: The standard deviations of the random effects were σ0 = 2, σ1 = 0.8, σ2 = 0.5,

σ3 = 0.3, σ4 = 0, and σ5 = 0.
We also ran simulations for the case when the random effects were assumed to be

uncorrelated and the variances of random effects were the same as the values in Case 1 and
Case 2.

3.2. Simulation Procedure
3.2.1. For Setup A

In all scenarios, for each set of values of σ2
1 , σ2

2 , and σ2
3 , B = 1001 simulations were

run. In each simulation, all possible candidate models were run. All these models had the
same fixed effect covariates (including X1 and the intercept); meanwhile, the covariates for
random effects part varied in the power set of {1, 2, 3}. The proposed BIC∗ and regular BIC
were calculated for each model. Then, one model with the minimum proposed BIC was
selected and one model with the minimum regular BIC. Now, for each selection criterion,
we had 1001 models obtained from 1001 simulations. We calculated the correction rate (CR)
for each criterion.

In Scenario 2, for each set of values of σ2
1 , . . . , σ2

5 , B = 1001 simulations were run. In
each simulation, all possible candidate models were run. All these models had the same
fixed effect covariates (including X1, X2, and the intercept); meanwhile, the covariates for
random effects varied in the power set of {1, . . . , 5}. The proposed BIC∗ and regular BIC
were calculated for each model. Then, one model with the minimum proposed BIC was
selected, and one model with the minimum regular BIC was selected. We calculated the
means and standard deviations of the positive selection rate and false discovery rate. We
also calculated the correction rate for each criterion.

In Scenario 3, with the given set of values of σ2
1 , . . . , σ2

10, B = 1001 simulations were
run. In each simulation, all possible candidate models were run. All these models had the
same fixed effect covariates; meanwhile, the covariates for the random effects varied in the
power set of {1, . . . , 10}. We calculated the means and standard deviations of the positive
selection rate and false discovery rate and calculated the correction rate for each criterion.
All simulations were performed by using R Version 4.0.2 [25].

3.2.2. For Setup B

In each case presented above, B = 1001 simulations were run. In each simulation, all
possible candidate models were run. All these models had the same fixed effect covariates
(including the intercept, X1 and X2); meanwhile, the covariates for the random effects part
varied in the power set of {1, 2, 3, 4, 5} and also included a random intercept. The proposed
BIC∗, regular BIC, and cAIC were calculated for each model. Greven and Kneib [26]
developed an analytic version of the corrected cAIC, and their method was implemented
in the cAIC4 package in R [27]. Then, one model with the minimum proposed BIC was
selected; one model with the minimum regular BIC was selected; one model with the
minimum cAIC was selected. We calculated the means and standard deviations of the
positive selection rate and false discovery rate and the correction rate for each criterion.
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3.2.3. For Setup C

For each case above, we ran B = 1001 simulations. In each simulation, all possible
candidate models were run. All models contained the intercept term for the fixed effect
and a random intercept for the random effects. The covariates for the fixed effects part
varied in the power set of {1, 2, 3, 4, 5} for X1 to X5, and the covariates for random effects
part varied in the power set of {1, 2, 3, 4, 5} for z1 to z5. We also included the models that
included only the intercept term for the fixed effect with varying random effects and the
models that included a random intercept only with varying fixed effects. The proposed
BIC∗ and regular BIC were calculated for each model. Then, the model with the minimum
proposed BIC was selected, and the model with the minimum regular BIC was selected.

3.3. Simulation Results

Scenario 1: Table 1 summarizes the results of Scenario 1. We observed that the
correction rate for the proposed BIC∗ was greater than that of the regular BIC. Furthermore,
the correction rates of the two methods were higher when the values of σ2

1 , σ2
2 , and σ2

3
were bigger.

Table 1. Comparison of the proposed BIC and regular BIC methods in terms of correction rate for the
simulation in Scenario 1 with n = 500 and N = 100.

σ1 σ2 σ3
Correction Rate

Proposed BIC Regular BIC

0.00 0.00 0.00 0.00 0.00
0.05 0.10 0.20 0.00 0.00
0.10 0.20 0.40 0.01 0.00
0.15 0.30 0.60 0.04 0.01
0.20 0.40 0.80 0.11 0.02
0.25 0.50 1.00 0.24 0.08
0.30 0.60 1.20 0.36 0.18
0.35 0.70 1.40 0.54 0.32
0.40 0.80 1.60 0.67 0.47
0.45 0.90 1.80 0.78 0.60
0.50 1.00 2.00 0.87 0.72

“Correction Rate” reports the proportion of times the selected model is the true data-generating model.

Scenario 2: Table 2 summarizes the results of Scenario 2. The simulation results
suggested that the values of the positive selection rate (PSR) for the proposed BIC∗ were
higher than the regular BIC when the values of the variance components were close to
0. That is, the ability to choose the significant variance components was higher for the
proposed BIC∗ than the regular BIC. Almost all of the false discovery rate (FDR) values
were within 5 percent in all cases. We also observed that the proposed BIC approach had
a higher FDR and corresponding SD as compared to the regular BIC approach. For some
very low values of the sigma values, the FDR values of the proposed BIC were greater than
5 percent. The possible reason behind this is because the calculation of the penalty term
of the regular BIC uses an exact chi-squared distribution, meanwhile the penalty term of
proposed BIC uses the approximated weights of the chi-bar-square distribution.

As the values of the variance components increased, the PSR increased. From the
results obtained, we also saw that the ability to choose the true model also became larger
as the values of the variance components increased. We also noted that the standard
deviations were small for all cases. This means that the estimated PSR and FDR were
very consistent.

Figure 1 shows the comparison of the proposed BIC and regular BIC methods in terms
of the positive selection rate and correction rate for different values of σ1, σ2, and σ3 when
n = 500 and (N = 100) in Scenario 2.
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Figure 1. Comparison of the proposed BIC and regular BIC methods in terms of the positive selection
rate and correction rate for different values of σ1, σ2, and σ3, n = 500 (N = 100). In this simulation
setup, for each value of σ1 on the horizontal axis, the value of σ2 is 2 ∗ σ1 and the value of σ3 is 4 ∗ σ1;
σ4 = 0 and σ5 = 0.

Table 2. Comparison of the proposed BIC and regular BIC methods in terms of the positive selection
rate, the false discovery rate, and correction rate for different values of σ1, σ2, σ3, σ4 = 0, and σ5 = 0
in Scenario 2 with n = 500 and N = 100.

Proposed BIC Regular BIC

σ1 σ2 σ3 PSR (SD) FDR (SD) Correction Rate PSR (SD) FDR (SD) Correction Rate

0.00 0.00 0.00 0.029
(0.010)

0.067
(0.062) 0.00 0.004

(0.001)
0.009

(0.008) 0.00

0.05 0.10 0.20 0.118
(0.031)

0.060
(0.053) 0.00 0.037

(0.011)
0.013

(0.013) 0.00

0.10 0.20 0.40 0.392
(0.034)

0.033
(0.016) 0.01 0.292

(0.027)
0.007

(0.005) 0.00

0.15 0.30 0.60 0.537
(0.034)

0.027
(0.011) 0.03 0.429

(0.026)
0.008

(0.004) 0.01

0.20 0.40 0.80 0.657
(0.032)

0.026
(0.009) 0.12 0.568

(0.032)
0.007

(0.003) 0.04

0.25 0.50 1.00 0.734
(0.028)

0.016
(0.005) 0.23 0.660

(0.025)
0.003

(0.001) 0.10

0.30 0.60 1.20 0.796
(0.028)

0.019
(0.006) 0.37 0.719

(0.021)
0.004

(0.001) 0.18

0.35 0.70 1.40 0.854
(0.027)

0.018
(0.005) 0.53 0.777

(0.025)
0.004

(0.001) 0.33

0.40 0.80 1.60 0.902
(0.023)

0.013
(0.004) 0.67 0.830

(0.028)
0.004

(0.001) 0.48

0.45 0.90 1.80 0.945
(0.015)

0.015
(0.004) 0.80 0.888

(0.025)
0.004

(0.001) 0.66

0.50 1.00 2.00 0.960
(0.012)

0.016
(0.004) 0.83 0.916

(0.021)
0.003

(0.001) 0.74

PSR is positive selection rate, and FDR is false discovery rate; both are averaged over 1001 simulations. All values
in brackets are sample standard deviations.

Figure 2 shows the comparison of the positive selection rate (PSR) and correction rates
for Scenario 2 when n = 250, 500, and 1000 with N = 50, 100, and 200, respectively. Given
the same set of values of σ2

1 , . . . , σ2
5 , we observed that the positive sensitivity rate increased

as the number of clusters N increased.
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Figure 2. Comparison of the positive selection rate and correction rate for n = 250 (N = 50),
n = 500 (N = 100), and n = 1000 (N = 200). For each value of σ1 on the horizontal axis, the value of
σ2 is 2 ∗ σ1 and the value of σ3 is 4 ∗ σ1; σ4 = 0 and σ5 = 0.

We also ran 104 simulations with three more competing methods: “cAIC”, “BICJ”,
and “Splmm”, using the same setting as in Scenario 2. The cAIC is the corrected conditional
AIC as implemented in the cAIC4 package in R [27]. The “BICJ” is a modified BIC for
linear mixed models as introduced in (Jones [11]). “Splmm” (simultaneous penalized
linear mixed-effects models) is a method for choosing both the fixed effects and random
effects for variable selection using the penalized likelihood function. This method is based
on the results in (Yang and Wu [28]) and was implemented in the R-package “Splmm”.
Figure 3 shows that the modified BIC performed better than the regular BIC, “BICJ”,
and “Splmm” in this scenario in terms of the positive selection rate and correction rate.
The ability to choose correct variables was higher for the cAIC than the modified BIC.
However, the correction rates for the cAIC were not always higher than that of the modified
BIC. The “Splmm” method did not seem to work well in this scenario. This may be because
the method works better for the case when the number of parameters is much higher than
the number of observations.
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Figure 3. Comparison of the positive selection rate and correction rate for n = 500 (N = 100)
with different competing methods for different values of σ1, σ2, and σ3. For each value of σ1 on the
horizontal axis, the value of σ2 is 2 ∗ σ1 and the value of σ3 is 4 ∗ σ1; σ4 = 0 and σ5 = 0.

Scenario 3: Table 3 summarizes the results of Scenario 3. We saw that, in all cases, for
the sample sizes n = 250, 500, 1000, the mean PSR and the correction rates were higher for
the proposed BIC; meanwhile, the FDRs kept around 5%.
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Table 3. Comparison of the proposed BIC and regular BIC methods in terms of the positive sensitivity
rate and correction rate for n = 250, n = 500, and n = 1000 in Scenario 3.

(n, N) Method Average PSR (SD) Average FDR (SD) Correction Rate

(250, 50) Proposed BIC 0.825 (0.015) 0.063 (0.014) 0.21
Regular BIC 0.771 (0.014) 0.017 (0.004) 0.15

(500, 100) Proposed BIC 0.883 (0.016) 0.051 (0.010) 0.40
Regular BIC 0.832 (0.015) 0.009 (0.002) 0.32

(1000, 200) Proposed BIC 0.959 (0.009) 0.041 (0.008) 0.67
Regular BIC 0.916 (0.014) 0.005 (0.001) 0.65

“Correction Rate” reports the proportion of times the selected model is the true data-generating model.

Table 4 shows the comparison of the proposed BIC, regular BIC, and cAIC methods in
terms of the positive selection rate, the false discovery rate, and correction rate for Case 1
to Case 4. In all cases, the correction rate for the proposed BIC was greater than that of the
regular BIC. The difference in the correction rate between these two methods was bigger
when the values of σ2

1 , σ2
2 , and σ2

3 were smaller. In most cases, the two methods seemed to
perform better than the cAIC method.

Table 4. Comparison of the proposed BIC, regular BIC, and cAIC methods in terms of the positive
selection rate, the false discovery rate, and correction rate for different values of σ0, σ1, σ2, σ3, σ4 = 0,
and σ5 = 0 with correlated random effects.

Proposed BIC Regular BIC cAIC

Case PSR (SD) FDR (SD) Correction Rate PSR (SD) FDR (SD) Correction Rate PSR (SD) FDR (SD) Correction Rate

1 0.99
(0.0032)

0.0007
(0.0002) 0.967 0.9837

(0.0052)
0.0007

(0.0002) 0.9481 0.9950
(0.0025)

0.1110
(0.0212) 0.6054

2 0.8911
(0.0244)

0.0003
(0.0001) 0.6733 0.8541

(0.0273) 0.0 (0.000) 0.5624 0.9933
(0.0026)

0.0935
(0.0188) 0.6603

3 0.7106
(0.0132)

0.0003
(0.0001) 0.1339 0.6893

(0.0084)
0.0003

(0.0001) 0.0739 0.9314
(0.0184)

0.0940
(0.0206) 0.5355

4 0.9204
(0.0202) 0.0 (0.000) 0.7612 0.8901

(0.0246) 0.0 (0.000) 0.6703 0.995
(0.0016)

0.0904
(0.0189) 0.6763

PSR is positive selection rate, and FDR is false discovery rate; both are averaged over 1001 simulations. All values
in brackets are sample standard deviations.

Table 5 shows the comparison of the proposed BIC, regular BIC, and cAIC methods in
terms of fixed effects correction rate, random effects correction rate, and both effects correc-
tion rate for both Case 1 and Case 2 when random effects were assumed to be correlated.

Based on the simulation results for the situation when random effects were assumed
correlated in Table 5, we saw that the proposed BIC method performed better than the
regular BIC and the cAIC methods in terms of the correction rate for selecting the fixed
effects, the correction rate for selecting the random effects, and also for selecting both
fixed effects and random effects simultaneously. We also saw that, when the values of the
variances for random effects were smaller, the correction rates were lower for all methods.
However, the performance of the proposed method was still much better than the other
two methods.

Table 5. Comparison of the proposed BIC, regular BIC, and cAIC methods in terms of the correction
rate for fixed effects, random effects, and both for different values of σ0, σ1, and σ2 with σ3, σ4 = 0,
σ5 = 0, and correlated random effects.

Proposed BIC Regular BIC cAIC

Case FE-CR RE-CR Both-CR FE-CR RE-CR Both-CR FE-CR RE-CR Both-CR

1 0.983 0.999 0.982 0.982 0.997 0.979 0.3147 0.3177 0.1708
2 0.975 0.6673 0.6503 0.979 0.5684 0.5554 0.3377 0.3746 0.2128

FE-CR is the correction rate for fixed effects variables; RE-CR is the correction rate for random effects variables;
Both-CR is the correction rate of selecting the true model. All the rates are calculated over 1001 simulations.

When random effects were assumed uncorrelated, based on the simulation results
in Table 6, we saw that the proposed BIC and regular BIC still performed well and better
than the cAIC method. The proposed BIC method performed better than the regular BIC in
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Case 2, but did not perform better than the regular BIC in Case 1. This may be because the
penalty term of the regular BIC was calculated using the exact chi-squared distribution and
the calculation of the penalty term was without any error. However, for the proposed BIC,
the weights of the chi-bar-squared distribution were approximated. Therefore, the penalty
term was approximated only. From the simulation results, we noticed that when the values
of the variances for random effects were smaller, the correction rates were lower for the
proposed and regular BIC methods. However, the correction rates in Case 2 were better
than Case 1 for the cAIC method.

Table 6. Comparison of the proposed BIC, regular BIC, and cAIC methods in terms of fixed effects
correction rate, random effects correction rate, and both effects correction rate for different values of
σ0, σ1, σ2, and σ3 with σ4 = 0, σ5 = 0, and independent random effects.

Proposed BIC Regular BIC cAIC

Case FE-CR RE-CR Both-CR FE-CR RE-CR Both-CR FE-CR RE-CR Both-CR

1 0.985 0.9481 0.9351 0.986 0.994 0.981 0.5105 0.4865 0.2667
2 0.980 0.8661 0.8511 0.981 0.7672 0.7532 0.5664 0.5385 0.3017

FE-CR is the correction rate for fixed effects variables; RE-CR is the correction rate for random effects variables;
Both-CR is the correction rate of selecting the true model. All the rates are calculated over 1001 simulations.

Comparing the computational complexity, the proposed method requires Monte Carlo
simulations to estimate the weights so that the penalty parameter can be computed. This is
more computational intensive than the regular BIC. In our simulation, for one dataset with
a given model, for Setup A, it took about 0.11 to 0.42 s for the proposed BIC method and
about 0.04 to 0.07 s for the regular BIC. For Setup B, it took about 0.19 s for the proposed BIC,
0.10 s for the regular BIC, and 0.22 s for the cAIC. For Setup C with independent random
effects, it took about 0.11 s for the proposed BIC, 0.05 s for the regular BIC, and 0.09 s for the
cAIC. For Setup C with correlated random effects, it took about 0.19 s for the proposed BIC,
0.10 s for the regular BIC, and 0.21 s for the cAIC. We noted that the model with correlated
random effects took longer than the one with independent random effects. Furthermore,
the computational time of the proposed method was longer than that of the regular BIC,
but quite close to that of the cAIC method. The OS and CPU system specifications that
we used to run our methods were Windows 10, CPU: Intel Core i7− 8550U with 4 cores,
8 threads. The memory requirements of our methods are 8 GB RAM.

4. Real-Data Application

In this section, we applied the proposed BIC to a real dataset. We worked with a
dataset that is a subset of 120 schools of dataset “hsfull” from package “spida2” in R, which
was developed by Monette et al. [29]. This dataset was originally from the 1982 “High
School and Beyond” (HSB) survey dataset in Raudenbush and Bryk’s text on hierarchical
linear models (Raudenbush and Bryk [30]). The data include the mathematics achievement
test scores of 5307 students from 50 Catholic and 70 public high schools, with the number
of students in each school ranging from 19 to 66 students.

The variables included in the analysis were school identification number, mathematics
achievement score (Y), socioeconomic status (X1), sex (female (0) or male (1); X2), visible
minority status (yes (1) or no (0); X3), and school sector (Catholic (0) or public (1); X4).
Variables X1, X2, and X3 are group-centered. The objective was to study the relationship
between students’ mathematics achievement score and socioeconomic status, sex, and
visible minority status in public and Catholic schools and whether this relationship varies
across schools within each sector.

The candidate variables in the fixed effects part were X1, X2, X3, and X4, which are
group-centered. The candidate variables in the random effects part were z1, z2, and z3,
which are the same as X1, X2, and X3.

We first fit a linear mixed model that included only the intercept term for fixed effects
and a random intercept. Then, we fit the models with only the intercept term for fixed
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effects and all possible combinations of z1, z2, and z3 with a random intercept for random
effects. Next, we fit the models with all possible combinations of X1, X2, X3, and X4 for
fixed effects and only a random intercept for random effects. Lastly, for each combination
of X1, X2, X3, and X4 for fixed effects, we fit the models with all possible combinations of
z1, z2, and z3 with a random intercept for random effects. For each model, we recorded the
values of the proposed BIC, regular BIC, and cAIC. There were 128 values for each method.
Now, for each method, we chose the model with the minimum value of the corresponding
criterion. We applied this procedure for both cases when random effects were assumed to
be correlated and uncorrelated.

When random effects were assumed to be correlated, the optimal model we obtained
using the proposed BIC was the model with all X1, X2, X3, and X4 and a random intercept;
the proposed BIC was 34,379.83. The optimal model we obtained using the regular BIC
was also the model with X1, X2, X3, and X4 and a random intercept only. The regular BIC
of this model was also 34,379.83. The cAIC yielded the optimal model, which contained X1,
X2, X3, and X4 with a random intercept and random slopes of z1 and z3. The cAIC of the
optimal model was 34,166.25.

When random effects were assumed to be uncorrelated, the optimal model we obtained
using the proposed BIC was the model with all X1, X2, X3, and X4, a random intercept,
and random slopes of z3; the proposed BIC value was 34,378.23. The optimal model we
obtained using the regular BIC was the model with X1, X2, X3, and X4 and a random
intercept only. The regular BIC of this model was 34,379.83. The cAIC yielded the optimal
model, which contained X1, X2, X3, and X4 with a random intercept and random slopes of
z1, z2, and z3. The cAIC of the optimal model was 34,165.13.

Table 7 shows the proposed BIC, regular BIC, and cAIC for all models that contained
X1, X2, X3, and X4 with correlated random effects considered.

Table 7. Results of the proposed BIC, regular BIC, and cAIC for all models with correlated random
effects considered for the subset of the “hsfull” dataset.

Model Proposed BIC Regular BIC cAIC

Random Intercept (RI) 34,379.33 34,379.83 34,176.92
RI, z1 34,380.61 34,385.4 34,167.38
RI, z2 34,391.38 34,396.17 34,181.23

RI, z1, z2 34,401.4 34,410.2 34,174.07
RI, z2 34,384.58 34,389.37 34,169.18

RI, z1, z2 34,391.03 34,400.38 34167.38
RI, z2, z2 34,405.59 34,414.63 34169.18

RI, z1, z2, z2 34,420.4 34,433.63 34,166.25
All values are rounded to two decimal places.

Table 8 shows the optimal model chosen by each method when the random effects
were assumed to be independent and when the random effects were correlated. All X1, X2,
X3, and X4 were included in the models.

Table 8. Comparison of the optimal model chosen by each method for correlated random effects and
independent random effects.

Proposed BIC Regular BIC cAIC

Case Optimal Model Proposed BIC Optimal Model Regular BIC Optimal Model cAIC

Correlated
Random Effects RI 34,379.33 RI 34,379.83 RI, z1, z2, z3 34,166.25

Independent
Random Effects RI, z3 34,377.73 RI 34,379.83 RI, z1, z3 34,165.13

RI means random intercept.

Based on the results presented above, we would choose the model with all X1, X2,
X3, and X4 for fixed effects and a random intercept and a random slope of z3 for random
effects assuming that random effects are uncorrelated. There was a significant relationship
between students’ math achievement score and socioeconomic status, sex, and visible
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minority status in public and Catholic schools, and the school mean math achievement
score and minority gap effect varied across the schools within each sector.

5. Discussion

In this article, we introduced a modified BIC for linear mixed models that can directly
deal with the boundary issue of variance components. First, we focused on selecting
random effects variance components and proposed a model selection criterion when the
random effects were assumed to be independent (the covariance matrix of random effects
was a diagonal matrix). Second, we proposed a criterion for choosing random effects
variance components when the random effects were assumed to be correlated. Instead of
working with a complex tangent cone to the alternative parameter space, we approximated
the tangent cone using a bigger, but simpler cone. This allowed us to obtain the weights
of the chi-bar-squared distribution. Lastly, we presented a model selection criterion for
choosing both fixed effects and random effects simultaneously in both cases: when random
effects were assumed to be independent and when they were correlated. We also proved
the consistency of the modified BIC.

Based on the simulation studies, the modified BIC performed quite well in terms
of the correction rate. The ability to select the data-generating model of the modified
BIC was better when the size of the random effects variance component or the size of
correlation component was bigger. Compared to the regular BIC, the modified BIC gave
higher correction rates, especially when the variances of random effects were small. Based
on the correction rate, the modified BIC and performed better than the regular BIC in most
cases. Furthermore, there was significant improvement in the positive selection rate in
most of the simulation scenarios.

One limitation of the modified BIC is that, when choosing the optimal model, the pro-
posed method looks at all possible models. Since the number of possible models increased
exponentially as the number of fixed effects and random effects increased, the model
selection process may be increasingly computationally intensive. We may combine the
proposed BIC with some selection procedure such as shrinkage methods or fence methods
as introduced in Müller et al. [31] to reduce the number of candidate models. Then, we can
use the proposed BIC method to perform model selection.
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Appendix A

Appendix A.1. Assumptions for Lemmas 1–3 and Theorems 1 and 2

(C1).The observations y = (y1, . . . , yN) from different clusters are independent random
vectors. All the assumptions of the linear mixed model (1) are satisfied.

(C2).Let lN(θ; y) be the log-likelihood function of the linear mixed model (1). Denote
by Θ the parameter space of the model parameter vector, θ, and let θ∗ be the true
value of the parameter vector. Denote the vector of first partial derivatives of lN(θ; y)
with respect to θ by l

′
N(θ), and denote the matrix of the second partial derivatives

of lN(θ; y) with respect to θ by l
′′
N(θ). Directional derivatives are used when θ is on

the boundary of Θ. (i) Assume that, for all θ, the first three partial derivatives of the

https://github.com/gmonette/spida2
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log-likelihood function with respect to θ exist almost everywhere. (ii) Furthermore,
assume that N−1 times the absolute value of the third derivative of lN(θ; y) is bounded
as a function of (Y1, . . . , Y N), whose expectation exists, and finite on the intersection
of the neighborhoods of θ∗ and Θ.

(C3).Assume that n1, . . . , nN are uniformly bounded. That is, there exists a constant K > 0
such that ni ≤ K for i = 1, . . . , N.

(C4).Let θT be the parameter vector of the true model MT , and let θT,0 denote the true value
of θT .

(i) For any under-fitting model, Mk, with model parameter θk ∈ Θk, assume that

ET,0

[
log f (y;θT,0)

f (y;θk)

]
exists and there exists a unique pseudo true, θk,0, such as

θk,0 = arg min
θk∈Θk

ET,0

[
log fi(y;θT,0)

fi(y;θk)

]
for all i.

(ii) For all θ, 1
N (l(θ; y)− ET,0[l(θ; Y)])

p→ 0.
(iii) For any two nested models, Mk ⊂ Ml , −2

(
l(θ̂k; Y)− l(θ̂l ; Y)

)
is bounded by an

integrable function, M(Y), and E[M(Y)] < ∞.

Appendix A.2. Graphs of Chi-Bar-Squared Distributions

In this section, we created graphs of some density functions of different chi-bar-
squared distributions.
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Figure A1. Chi-bar-squared distributions.

The graphs show that the distribution of a chi-bar-squared distribution depends on it
mixing weights.

Appendix A.3. Graphical Example of the Boundary Issue

In this example, we tested H0 : σ2
1 > 0, σ2

2 = 0 against H1 : σ2
1 > 0, σ2

2 > 0. The pa-
rameter space under the null hypothesis was the set of all points of the form (a, 0) with
a > 0, illustrated by the blue interval along the axis of σ2

1 . Under the alternative hypothesis,
the parameter space was the set of all points (a, b) with a > 0 and b ≥ 0 and is illustrated
by the shaded orange region on the graph. Under the null hypothesis, the testing value of
the parameter vector lies on the boundary of the parameter space.
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(0, 0)

(3, 0) σ2
1

σ2
2

Figure A2. Graphical example of boundary issue.
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