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Abstract: In this research study, we derive the exact solutions of the Bloch equations describing the
dynamics of a two-level atom with dephasing. In the two-level atom, a strong laser pump couples a
ground state to an upper excited state with a time-dependent Rabi-frequency. The exact solutions
are given for the atomic population inversion and the real and imaginary parts of the coherence
while the input pulse is an asymmetric hyperbolic cosine form. Additionally, the system is under a
chirped detuning. The method of solving the Bloch equations analytically is a very tedious part of
the research, and as far as we know, there are few exact solutions available in this field. Hence, our
solutions might be of great interest to various research areas, including nuclear magnetic resonance,
where analytical solutions to the Bloch equations play a major role in the study of the information on
the state of the medium as determined by the NMR signals.

Keywords: atomic population control; two-level atom; exact solutions
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1. Introduction

The Bloch equations, named after Felix Bloch in 1946 [1], provide exceptional insights
into many processes, not only in optics [2–11] but also in nuclear magnetic resonance
research [12–15]. In the field of optics, they are referred to as the optical Maxwell Bloch
equations and they describe the quantum dynamics of a multi-level atom interacting with
electromagnetic fields [16–20]. However, these equations can be difficult or impossible
to solve analytically. Hence, the solutions are usually limited to the two-level atom and
under some specific excitation shape pulses. Nonetheless, such systems constitute the
basic framework of many processes that are modeled and comprehended by the two-level
approximation. Zlatanov et al. [21], derived the “exact solution of the Bloch equations for
the non-resonant exponential model in the presence of dephasing”. The equations were
reduced to the Demkov model, and the solution was expressed in terms of the generalized
hypergeometric function. Exact solutions of a two-level atom pumped by generalized
double exponential quotient pulses with dephasing were also obtained in [22]. Further-
more, Boutabba et al. [23] studied the excitation of a multi-level atomic system using a
fast laser pulse with a q-deformed hyperbolic waveform. Hence, the authors first derived
the exact solution to the Bloch equations describing a two-level atom with dephasing
and time-dependent detuning. Next, they investigated the probe field’s absorption and
dispersion properties, as well as the coherence’s dependence on the q-deformation of the
Rb87 atomic system. To obtain an analytical solution, Zhang et al. solved the Bloch equa-
tion pumped by a hyperbolic-secant pulse in the field of medical magnetic resonance [24].
Additionally, Silver et al obtained the analytical solution of the Bloch equation by solving
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the Bloch–Riccatti and by considering the case of an initial magnetization parallel to the
z-axis [25].

The optical Bloch equations for the Demkov model were investigated in [26] and the
exact solutions were derived for the coherent resonant case of a two-level quantum system
excited by a time-dependent external field in the presence of dephasing. Moreover, by de-
riving the coherence components of the Bloch vector, the authors explained the mechanism
by which the population transfer is blocked.

In this paper, we solve the Bloch equations describing a two-level atom excited by a
shaped laser waveform and chirped detuning. These kinds of shaped waveforms are very
efficient in the realization of the atomic population inversion and are widely used in the
field of digital communications. For instance, a shaped waveform with the mathematical
description of a Tan-hyperbolic is used as sudden switching on–off RF-pulse generator [27].
In addition, it is worth noting that, the CPA laser technique (chirped population amplifica-
tion) makes extensive use of chirping pulses to create ultra-short, extremely high-energy
lasers [28–33]. These pulses are effective in implementing atomic population transfers in
molecules and atoms. This manuscript is structured as follows: in Section 2 we present the
model, then we describe our technique, followed by the analytical solutions of the Bloch
equations where we derive the real and the imaginary part of the coherence, as well as
determining the full exact solution of the atomic population inversion in Sections 3 and 4.
The pulse derived in the current research work is given by the generalized q-deformed
hyperbolic cosine pulse exciting a two-level atom with a chirped frequency.

2. Model

Our model is based on the classical scheme of the two-level atom pumped by an
external time-dependent field [17,34,35]. Such systems serve as a basic framework to
illustrate pertinent light phenomena in atomic systems such as the absorption and the
fluorescence spectra of light, the coherent control of quantum systems, and other quantum
information processes (quantum bits, supraconductor quantum circuits, and squeezing
of light) [36,37]. The two-level atom is usually excited from the ground state to an upper
state with an external field that has a transition frequency ω so that, ω=ω2-ω1 and ω1 and
ω2 are, respectively, the frequencies of the atom at states |1〉 and |2〉 (See Figure 1). In
this situation, we describe the Hamiltonian [21,38,39] in the interaction picture under the
rotating wave approximation by using the Pauli matrices σx, and σz and by considering the
time-dependent Rabi frequency Ω(t):

H =
h̄
2
(∆(t)σz + Ω(t)σx) (1)

The Rabi frequency is related to the amplitude of the laser pulse as:

Ω(t) = −d
E(t)

h̄
(2)

d is the dipole moment, ∆ = ω2 −ω1 is the chirped detuning. The density matrix describes
the evolution of the system:

dρ(t)
dt

= −i[H, ρ] +
Γ
2
(σzρσz − ρ) (3)

The above equation is the Lindblad Equation of a two-level atomic system. In general,
the Lindblad equation describes the dynamics of the Markovian Master equation which
governs the coupling between a quantum system and its environment. The first term
illustrates the Liouville-von Neumann equation, which is linked to the unitary evolution
of the density operator. The last term of Equation (3) (the Lindblad operator) represents
the interaction with the environment which is related to the non-unitary evolution of the
density operator. The Lindblad operator typically expresses the different ways in which
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the environment can affect the system including dephasing, dissipation, and relaxation.
Although dephasing, relaxation, and dissipation are separate processes, they can all take
place at the same time in an open quantum system and are all explicable within the same
framework of the Lindblad equation. All these processes can be expressed in the Lindblad
operator, which describes the coupling between the quantum system and its surroundings.
Here, we focus on the effect of dephasing, a process involving the loss of coherence in the
quantum system due to its interaction with the environment, since it is crucial in several
physical systems, particularly in quantum computing and quantum information processing.
Dephasing in these systems has the potential to impair the performance of quantum devices
by causing errors in computation or information storage. Therefore, one of the key areas of
research in the field of quantum information science is understanding and minimizing the
loss of coherence effects. Therefore, Γ in Equation (3) can be interpreted as the dephasing
rate inversely proportional to the dephasing time.

Our purpose in the current study, is to establish exact analytical solutions of the density
matrix elements, then derive the atomic population inversion w = ρ22 − ρ11 at the steady
state (t = ∞).

|2〉
∆c

Ω

|1〉

Figure 1. Two-level atom.

The Bloch equations are given by:
du(t)

dt
dv(t)

dt
dw(t)

dt

 =

 −Γ −∆(t) 0
∆(t) −Γ −Ω(t)

0 Ω(t) 0

u(t)
v(t)
w(t)

 (4)

Here, the atomic population inversion between the higher state |2〉 and the ground state
|1〉 is denoted by w = ρ22 − ρ11,whereas u(t) and v(t) represent the real and the imaginary
part of the atom–field coherence 2ρ12(t).

3. The Exact Solutions: Method

This section’s objective is to develop precise analytical solutions for the atomic popu-
lation and the coherence of the following optical pulse form:

Ω = A1e−3Γt(1 + Ke−2Γt) (5)

under chirped detuning of the form:

∆ = A2e−2Γt(1 + Ke−2Γt) (6)

where A1 = −8ΓK, A2 = −8ΓK
3
2 are negative constants and K > 0. It is worth noting that

the considered optical pulse is a combination of two exponential pulses. These types of
pulses and their combinations are applied in [40,41]. The implementation of half-cycle
pulses is realized in [42,43]. Such half-cycle pulses are similar to the EMG waveforms
(Exponentially Modified Gaussians). A pertinent example was performed by D.J. Morrow
et al. [44], where the authors used a summation of exponentially modified Gaussians to
analyze time-resolved fluorescence data.
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Using the generalized q-deformed hyperbolic cosine, which is defined by [45]:

cosh(q,s) x =
ex + qe−sx

2
(7)

the exact solutions for the Bloch equations are derived for the asymmetric hyperbolic pulse
for s = − 5

3 , then the pulses can be expressed as follows

Ω = 2A1 cosh(K,−5
3 )(−3Γt) (8)

and

∆ = 2A2 cosh(K,−2)(−2Γt) (9)

It is worth noting that, for s = 1 in Equation (7), the Rabi frequency is given by Arai’s
q-deformed waveform function (See Figure 2). This asymmetric pulse was investigated in
three-level atoms to control the optical properties of the system in [23].

Figure 2. The pulse dynamics.

To determine the solutions of Equation (4), we consider three new variables, v1, u1
and w1, linked to the previous variables u(t), v(t), and w(t) as:

v1(t) = ν(t)eΓt (10)

u1(t) = u(t)eΓt (11)

w1(t) = w(t)eΓt (12)

In addition, by means of a new change of variables x =
∫

∆(t)dt, and considering
g(x) = Ω(x)

∆(x) and h(x) = Γ
∆(x) , Equation (4) gives:

du1

dx
= −v1(x) (13)

dv1

dx
= u1(x)− g(x)w1(x) (14)

dw1

dx
= h(x)w1(x) + g(x)v1(x) (15)
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This system of differential equations will serve as a basis for our analysis to establish
the exact solutions for the considered pulse. The variable x(t) is defined as:

x(t) = (1 + Ke−2Γt)2 (16)

We obtain the following ordinary differential equations by repetitive differentiation
and substitution of the Equations (13)–(15).

d3u1(x)
dx3 +

√
x

du1(x)
dx

= 0 (17)

v1(x) = −du1(x)
dx

(18)

w(x) = u1(x) +
d2u1(x)

dx2 (19)

To solve Equation (17), we let U1 = du1(x)
dx , then we obtain a second-order linear

differential equation
d2U1(x)

dx2 +
√

xU1(x) = 0

which has a solution given by

U1(x) = c1
√

xJ 2
5

(4
5

x
5
4
)
+ c2
√

xY2
5

(4
5

x
5
4
)

where c1, c2 are constants and Jν(x), Yν(x), are, respectively, the Bessel function of the first
kind and the Bessel function of the second kind. Integrating U1(x) leads to u1(x). Then,
by taking the derivatives of u1(x) and using Equations (18) and (19), we obtain v1(x) and
w(x).

4. Results and Discussion

Using the following initial conditions, we can determine the exact expressions of the
coherence and population inversion: u(0) = 2

√
A(1− A), v(0) = 0, w(0) = 1− 2A

where 0 < A < 1.

u1(x) = − 8
25

x
5
4 S
(
−4

5
,

3
5

,
4
5

x
5
4

)[
c2 J 2

5

(4
5

x
5
4
)
+ c3Y2

5

(4
5

x
5
4
)]
− (20)

4
5

x
5
4 S
(

1
5

,
2
5

,
4
5

x
5
4

)[
c2 J− 3

5

(4
5

x
5
4
)
+ c3Y− 3

5

(4
5

x
5
4
)]

v1(x) = − 48
125

x
3
2

[
c2 J 2

5

(4
5

x
5
4
)
+ c3Y2

5

(4
5

x
5
4
)]
× (21)[

S
(
−9
5

,
2
5

,
4
5

x
5
4

)
+

25
12

S
(

1
5

,
2
5

,
4
5

x
5
4

)]
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w(x) = − 1

25x
3
4

[(
− 10c2 J 2

5

(4
5

x
5
4
)
x

5
4 − 10c3Y2

5

(4
5

x
5
4
)
x

5
4 + (22)

4(5x2 − 5x
5
2 )

(
c2 J−3

5

(4
5

x
5
4
)
+ c3Y−3

5

(4
5

x
5
4
)))

S
(

1
5

,
2
5

,
4
5

x
5
4

)
+(

−24
5

c2 J 2
5

(4
5

x
5
4
)

x
5
4 − 24

5
c3Y2

5

(4
5

x
5
4
)

x
5
4 −

48
5

x
5
2

(
c2 J−3

5

(4
5

x
5
4
)
+ c3Y−3

5

(4
5

x
5
4
)))

S
(
−9
5

,
2
5

,
4
5

x
5
4

)
+

(8x2 + 8x
5
2 )

(
c2 J 2

5

(4
5

x
5
4
)
+ c3Y2

5

(4
5

x
5
4
))

S
(
−4
5

,
3
5

,
4
5

x
5
4

)
+

576
25

(
c2 J 2

5

(4
5

x
5
4
))

+ c3Y2
5

(4
5

x
5
4
)))

S
(
−14

5
,

3
5

,
4
5

x
5
4

)
− 25c1x

3
4

]
where Jν(x), Yν(x), S(ν, µ, x) are, respectively, the Bessel function of the first kind, the
Bessel function of the second kind, and the Lommel function and c1, c2 and c3 are constants
defined as follows

c1 = −
50A S

(
1
5 , 2

5 , 4
5

)
− 24S

(
−9
5 , 2

5 , 4
5

)√
A(1− A)− 25S

(
1
5 , 2

5 , 4
5

)
12S

(
−9
5 , 2

5 , 4
5

)
+ 25S

(
1
5 , 2

5 , 4
5

) (23)

c2 =

125
(

2A− 1 + 2
√

A(1− A)

)
Y2

5

( 4
5
)

4
[

J 2
5

( 4
5
)
Y−3

5

( 4
5
)
−Y2

5

( 4
5
)

J−3
5

( 4
5
)][

12S
(
−9
5 , 2

5 , 4
5

)
+ 25S

(
1
5 , 2

5 , 4
5

)] (24)

c3 = −
125
(

2A− 1 + 2
√

A(1− A)

)
J 2

5

( 4
5
)

4
[

J 2
5

( 4
5
)
Y−3

5

( 4
5
)
−Y2

5

( 4
5
)

J−3
5

( 4
5
)][

12S
(
−9
5 , 2

5 , 4
5

)
+ 25S

(
1
5 , 2

5 , 4
5

)] (25)

Therefore, the expressions of the real and imaginary parts of the coherence are given by:

u(t) = −1
5

[(
4S
(

1
5

,
2
5

,
4
5
(1 + Ke−2Γt)

5
2

)(
c2 J− 3

5

(4
5
(1 + Ke−2Γt)

5
2
)
+ (26)

c3Y− 3
5

(4
5
(1 + Ke−2Γt)

5
2
))

+
4
5

(
2c2 J 2

5

(4
5
(1 + Ke−2Γt)

5
2
)
+

2c3Y2
5

(4
5
(1 + Ke−2Γt)

5
2
))

S
(
−4

5
,

3
5

,
4
5

(
1 + Ke−2Γt

) 5
2
))

(1 + Ke−2Γt)
5
2 e−Γt

]
and

v(t) = − 1
125

[(
144Ke−2Γt + 48Ke−6Γt + 144Ke−4Γt + 48

)(
c2 J 2

5

(4
5
(1 + Ke−2Γt)

5
2
)
+ (27)

c3Y2
5

(4
5
(1 + Ke−2Γt)

5
2
))

e−Γt
(

S
(
−9
5

,
2
5

,
4
5
(1 + Ke−2Γt)

5
2

)
+

25
12

S
(

1
5

,
2
5

,
4
5
(1 + Ke−2Γt)

5
2

))]
and the time evolution of the atomic population inversion as:
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w(t) =
1

125
√

1 + Ke−2Γt

[
24
((

(1 + Ke−2Γt)
3
2 c2 J 2

5

(4
5
(1 + Ke−2Γt)

5
2
)
+ (28)

(1 + Ke−2Γt)
3
2 c3Y2

5

(4
5
(1 + Ke−2Γt)

5
2
)
+ 8
(

Ke−2Γt +
1
4

Ke−8Γt + Ke−6Γt +
3
2

Ke−4Γt +
1
4

)
(

c2 J−3
5

(4
5
(1 + Ke−2Γt)

5
2
)
+ c3Y−3

5

(4
5
(1 + Ke−2Γt)

5
2
)))

S
(
−9
5

,
2
5

,
4
5
(1 + Ke−2Γt)

5
2

)
+(

25
12

(1 + Ke−2Γt)
3
2 c2 J 2

5

(4
5
(1 + Ke−2Γt)

5
2
))

+
25
12

(1 + Ke−2Γt)
3
2 c3Y2

5

(4
5
(1 + Ke−2Γt)

5
2
)
+

1
6

(
25
(

c2 J−3
5

(4
5
(1 + Ke−2Γt)

5
2
)
+ c3Y−3

5

(4
5
(1 + Ke−2Γt)

5
2
)

(
Ke−2Γt + Ke−8Γt + 3Ke−6Γt + 3Ke−4Γt)))S

(
1
5

,
2
5

,
4
5
(1 + Ke−2Γt)

5
2

)
−

1
5

(
96
(

Ke−2Γt +
1
4

Ke−8Γt + Ke−6Γt +
3
2

Ke−4Γt +
1
4

)
(

c2 J 2
5

(4
5
(1 + Ke−2Γt)

5
2
)
+ c3Y2

5

(4
5
(1 + Ke−2Γt)

5
2
))

S
(
−14

5
,

3
5

,
4
5
(1 + Ke−2Γt)

5
2

)
−

1
3

(
35
(

Ke−2Γt +
1
7

Ke−8Γt +
5
7

Ke−6Γt +
9
7

Ke−4Γt +
2
7

)
(

c2 J 2
5

(4
5
(1 + Ke−2Γt)

5
2
)
+ c3Y2

5

(4
5
(1 + Ke−2Γt)

5
2
))

S
(
−4
5

,
3
5

,
4
5
(1 + Ke−2Γt)

5
2

)))
+

125
24

c1

√
1 + Ke−2Γt

)]
At the steady state, we obtain:

W(∞) =

(
24A− 12 + 24

√
A(1− A)

)
S
(
−9
5 , 2

5 , 4
5

)
12S

(
−9
5 , 2

5 , 4
5

)
+ 25S

(
1
5 , 2

5 , 4
5

) (29)

In the following, we consider that the time is normalized to the unit of 1/Γ. A1, A2
are normalized to the unit of Γ. We plot our results in Figures 3–5. First, Figure 3 reports
the temporal dynamics of u(t,A), which is a real part of the coherence in the system. This is
interpreted as the dispersion profile of two-level atoms. A in the figure represents the initial
atomic population in the ground state. For A = 0, the initial atomic population is assumed
to be in the excited state (initially). For A 6= 0, the initial atomic population is distributed
among the ground and the excited state. We observe a switch from positive to negative
in the dispersion profile. This happens whenever A switches from 0 to any positive value
(i.e., from the atomic population being totally in the excited state initially, to the case where
the atomic population is distributed between the ground and the excited state). In the
transient regime, we notice that the dispersion is negative, it becomes positive after t ≥ 0.5.
Additionally, the peaks are more pronounced for bigger A. This means that the dispersion
peak is enhanced if initially we have more atomic populations at the ground state.
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Figure 3. The real part of the coherence: related to the dispersion for K = Γ = 1.

Figure 4. The imaginary part of the coherence: related to the absorption for K = Γ = 1.

Figure 4 shows the absorption profile of the two-level atom which is given by the
imaginary part of the coherence. The absorption spectra are positive except for the case
where the initial atomic population is considered to be fully at the excited state. Moreover,
we observe that the highest peak is obtained for A = 1 where the initial atomic population is
totally at the ground state. The peaks decrease as we consider the initial atomic populations
distributed among the ground and the excited state.

Figure 5. The atomic population inversion for K = Γ = 1.

Finally, Figure 5 reports the atomic population inversion at a large time (the infinity),
for various values of A. We recall that A denotes the initial atomic population at the ground
state. We clearly observe that the atomic population inversion at the steady state reaches
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50% when the initial atomic population is considered to be totally in the ground state,
whereas it decreases for greater values of A.

5. Conclusions

In this paper, we have derived the exact analytical solutions to the Bloch equations
for a two-level atom with dephasing under chirped detuning. Our system is excited by an
external asymmetric (generalized q-deformed) pulse, which couples the ground state to
the excited state. We obtained full analytical solutions for the absorption and dispersion
spectra (which are related to the real and imaginary parts of the coherence). Additionally,
we determined the exact expression of the atomic population inversion at the steady state.

Author Contributions: Conceptualization, H.E.; Methodology, S.G. and H.E.; Validation, S.G.; For-
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of optical Stark and Bloch-Siegert shifts in monolayer WSe 2 and MoS 2. Phys. Rev. B 2022, 106, 235304. [CrossRef]
3. Boutabba, N. Kerr-effect analysis in a three-level negative index material under magneto cross-coupling. J. Opt. 2018, 20, 025102.

[CrossRef]
4. Wendler, F.; Knorr, A.; Malic, E. Carrier multiplication in graphene under Landau quantization. Nat. Commun. 2014, 5, 3703.

[CrossRef] [PubMed]
5. Liang, D.; Zhu, Y.; Li, H. Collective Resonance of D States in Rubidium Atoms Probed by Optical Two-Dimensional Coherent

Spectroscopy. Phys. Rev. Lett. 2022, 128, 103601. [CrossRef] [PubMed]
6. Zlatanov, K.N.; Vitanov, N.V. Adiabatic generation of arbitrary coherent superpositions of two quantum states: Exact and

approximate solutions. Phys. Rev. A 2017, 96, 013415. [CrossRef]
7. Schreiber, M.A.; Popp, J.; Seitner, L.; Haider, M.; Jirauschek, C. Implementation of Partially Reflecting Boundary Conditions in

the Generalized Maxwell-Bloch Equations. In Proceedings of the 2022 International Conference on Numerical Simulation of
Optoelectronic Devices (NUSOD), Turin, Italy, 12–16 September 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 99–100.

8. Ossiander, M.; Golyari, K.; Scharl, K.; Lehnert, L.; Siegrist, F.; Bürger, J.; Zimin, D.; Gessner, J.; Weidman, M.; Floss, I.; et al. The
speed limit of optoelectronics. Nat. Commun. 2022, 13, 1620. [CrossRef]

9. Allen, L.; Eberly, J.H. Optical Resonance and Two-Level Atoms; Courier Corporation: Chelmsford, MA, USA, 1975.
10. Letokhov, V.S. Nonlinear Selective Photoprocesses in Atoms and Molecules; Moscow Izdatel Nauka: Moscow, Russia, 1983.
11. Andreev, A.V.; Emel’yanov, V.I.; Il’inski, Y.A. Cooperative Phenomena in Optics. Science 1988. Available online: https://catalog.

loc.gov/vwebv/search?searchCode=LCCN&searchArg=88162206&searchType=1&permalink=y (accessed on 23 February 2023).
12. Singh, H.; Srivastava, H. Numerical simulation for fractional-order Bloch equation arising in nuclear magnetic resonance by

using the Jacobi polynomials. Appl. Sci. 2020, 10, 2850. [CrossRef]
13. Reeves, L.; Shaw, K. Nuclear magnetic resonance studies of multi-site chemical exchange. I. Matrix formulation of the Bloch

equations. Can. J. Chem. 1970, 48, 3641–3653. [CrossRef]
14. Xu, Z.; Zhou, Y.; Peng, X.; Li, L.; Qiu, X.; Zhou, M.; Xu, X. Measuring the enhancement factor of the hyperpolarized Xe in nuclear

magnetic resonance gyroscopes. Phys. Rev. A 2021, 103, 023114. [CrossRef]
15. Xiao, W.; Wu, T.; Peng, X.; Guo, H. Atomic spin-exchange collisions in magnetic fields. Phys. Rev. A 2021, 103, 043116. [CrossRef]
16. Kocharovskaya, O.; Zhu, S.Y.; Scully, M.O.; Mandel, P.; Radeonychev, Y. Generalization of the Maxwell-Bloch equations to the

case of strong atom-field coupling. Phys. Rev. A 1994, 49, 4928. [CrossRef] [PubMed]
17. Wein, S.C.; Loredo, J.C.; Maffei, M.; Hilaire, P.; Harouri, A.; Somaschi, N.; Lemaître, A.; Sagnes, I.; Lanco, L.; Krebs, O.; et al.

Photon-number entanglement generated by sequential excitation of a two-level atom. Nat. Photonics 2022, 16, 374–379. [CrossRef]

http://doi.org/10.1103/PhysRev.70.460
http://dx.doi.org/10.1103/PhysRevB.106.235304
http://dx.doi.org/10.1088/2040-8986/aaa3ae
http://dx.doi.org/10.1038/ncomms4703
http://www.ncbi.nlm.nih.gov/pubmed/24739418
http://dx.doi.org/10.1103/PhysRevLett.128.103601
http://www.ncbi.nlm.nih.gov/pubmed/35333094
http://dx.doi.org/10.1103/PhysRevA.96.013415
http://dx.doi.org/10.1038/s41467-022-29252-1
https://catalog.loc.gov/vwebv/search?searchCode=LCCN&searchArg=88162206&searchType=1&permalink=y
https://catalog.loc.gov/vwebv/search?searchCode=LCCN&searchArg=88162206&searchType=1&permalink=y
http://dx.doi.org/10.3390/app10082850
http://dx.doi.org/10.1139/v70-612
http://dx.doi.org/10.1103/PhysRevA.103.023114
http://dx.doi.org/10.1103/PhysRevA.103.043116
http://dx.doi.org/10.1103/PhysRevA.49.4928
http://www.ncbi.nlm.nih.gov/pubmed/9910813
http://dx.doi.org/10.1038/s41566-022-00979-z


Mathematics 2023, 11, 2159 10 of 10

18. Grira, S.; Boutabba, N.; Eleuch, H. Atomic population inversion in a two-level atom for shaped and chirped laser pulses: Exact
solutions of Bloch equations with dephasing. Results Phys. 2021, 26, 104419. [CrossRef]

19. Devi, A.; Gunapala, S.D.; Premaratne, M. Coherent and incoherent laser pump on a five-level atom in a strongly coupled
cavity-QED system. Phys. Rev. A 2022, 105, 013701. [CrossRef]

20. Boutabba, N.; Grira, S.; Eleuch, H. Atomic population inversion and absorption dispersion-spectra driven by modified double-
exponential quotient pulses in a three-level atom. Results Phys. 2021, 24, 104108. [CrossRef]

21. Zlatanov, K.N.; Vasilev, G.S.; Ivanov, P.A.; Vitanov, N.V. Exact solution of the Bloch equations for the nonresonant exponential
model in the presence of dephasing. Phys. Rev. A 2015, 92, 043404. [CrossRef]

22. Grira, S.; Boutabba, N.; Eleuch, H. Exact solutions of the Bloch equations of a two-level atom driven by the generalized double
exponential quotient pulses with dephasing. Mathematics 2022, 10, 2105. [CrossRef]

23. Boutabba, N.; Grira, S.; Eleuch, H. Analysis of a q-deformed hyperbolic short laser pulse in a multi-level atomic system. Sci. Rep.
2022, 12, 9308. [CrossRef]

24. Zhang, J.; Garwood, M.; Park, J.Y. Full analytical solution of the bloch equation when using a hyperbolic-secant driving function.
Magn. Reson. Med. 2017, 77, 1630–1638. [CrossRef] [PubMed]

25. Silver, M.; Joseph, R.; Hoult, D. Selective spin inversion in nuclear magnetic resonance and coherent optics through an exact
solution of the Bloch-Riccati equation. Phys. Rev. A 1985, 31, 2753. [CrossRef] [PubMed]

26. Vasilev, G.; Ivanov, P.; Vitanov, N. Exact solution of the optical Bloch equation for the Demkov model. arXiv 2014, arXiv:1402.5648.
27. Longmire, C.L.; Hamilton, R.M.; Hahn, J.M. A Nominal Set of High-Altitude EMP Environments; Technical Report; Mission Research

Corp.: Santa Barbara, CA, USA; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1987.
28. Pretzler, G.; Kasper, A.; Witte, K. Angular chirp and tilted light pulses in CPA lasers. Appl. Phys. B 2000, 70, 1–9. [CrossRef]
29. Wang, M.; Li, P.; Li, S.; Xu, Y.; Yao, C. Hundred-watt level average power CPA system with all-fiberized laser amplifiers based on

CFBG stretcher and CVBG compressor. Optik 2022, 253, 168597. [CrossRef]
30. Roeder, S.; Zobus, Y.; Brabetz, C.; Bagnoud, V. How the laser beam size conditions the temporal contrast in pulse stretchers of

chirped-pulse amplification lasers. High Power Laser Sci. Eng. 2022, 10, e34. [CrossRef]
31. Li, H.; MacArthur, J.; Littleton, S.; Dunne, M.; Huang, Z.; Zhu, D. Femtosecond-Terawatt Hard X-Ray Pulse Generation with

Chirped Pulse Amplification on a Free Electron Laser. Phys. Rev. Lett. 2022, 129, 213901. [CrossRef]
32. Mao, D.; He, Z.; Zhang, Y.; Du, Y.; Zeng, C.; Yun, L.; Luo, Z.; Li, T.; Sun, Z.; Zhao, J. Phase-matching-induced near-chirp-free

solitons in normal-dispersion fiber lasers. Light Sci. Appl. 2022, 11, 25. [CrossRef]
33. Ghotra, H.S. Laser wakefield and direct laser acceleration of electron by chirped laser pulses. Optik 2022, 260, 169080. [CrossRef]
34. Meystre, P.; Scully, M.O. Quantum Optics; Springer: Berlin/Heidelberg, Germany, 2021.
35. Rogovin, D.; Scully, M.O. Does the “two-level atom” picture of a josephson junction have a theoretical foundation in BCS? Ann.

Phys. 1974, 88, 371–396. [CrossRef]
36. Jabri, H.; Eleuch, H. Enhanced unconventional photon-blockade effect in one-and two-qubit cavities interacting with nonclassical

light. Phys. Rev. A 2022, 106, 023704. [CrossRef]
37. Zhao, C.; Peng, R.; Yang, Z.; Chao, S.; Li, C.; Zhou, L. Atom-Mediated Phonon Blockade and Controlled-Z Gate in Superconducting

Circuit System. Ann. Phys. 2021, 533, 2100039. [CrossRef]
38. Glushkov, A.V. Relativistic Quantum Theory. Quantum Mechanics of Atomic Systems; Astroprint: Odessa, Ukraine, 2008.
39. Shore, B.W. The Theory of Coherent Atomic Excitation. In two volumes. Vol. 1, Simple Atoms and Fields. Vol. 2, Multilevel

Atoms and Incoherence. Science 1990, 250, 1735.
40. Chollangi, A.; Ravi, Krishnan, N.; Bhowmick, K. An Investigation of Transmission Properties of Double-Exponential Pulses in

Core-Clad Optical Fibers for Communication Application. In Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering; Springer International Publishing: Cham, Switzerland, 2019; Volume 276.

41. Chollangi, A.; Thakur, A.K.; Rakesh, R.; Alharbi, S.; Bhowmick, K. Investigation of transmission properties of a practical double
exponential pulse for communication and sensing application. Optik 2022, 255, 168735. [CrossRef]

42. Arkhipov, M.V.; Arkhipov, R.M.; Pakhomov, A.V.; Babushkin, I.V.; Demircan, A.; Morgner, U.; Rosanov, N.N. Generation of
unipolar half-cycle pulses via unusual reflection of a single-cycle pulse from an optically thin metallic or dielectric layer. Opt.
Lett. 2017, 42, 2189–2192. [CrossRef] [PubMed]

43. Arkhipov, R.; Arkhipov, M.; Pakhomov, A.; Babushkin, I.; Rosanov, N. Half-cycle and unipolar pulses (Topical Review). Laser
Phys. Lett. 2022, 19, 043001. [CrossRef]

44. Morrow, D.J.; Ma, X. Rapid and facile reconstruction of time-resolved fluorescence data with exponentially modified Gaussians.
Opt. Open 2022, preprint.

45. Abdalla, M.S.; Eleuch, H. Exact analytic solutions of the Schrödinger equations for some modified q-deformed potentials. J. Appl.
Phys. 2014, 115, 234906. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.rinp.2021.104419
http://dx.doi.org/10.1103/PhysRevA.105.013701
http://dx.doi.org/10.1016/j.rinp.2021.104108
http://dx.doi.org/10.1103/PhysRevA.92.043404
http://dx.doi.org/10.3390/math10122105
http://dx.doi.org/10.1038/s41598-022-13407-7
http://dx.doi.org/10.1002/mrm.26252
http://www.ncbi.nlm.nih.gov/pubmed/27171915
http://dx.doi.org/10.1103/PhysRevA.31.2753
http://www.ncbi.nlm.nih.gov/pubmed/9895827
http://dx.doi.org/10.1007/s003400050001
http://dx.doi.org/10.1016/j.ijleo.2022.168597
http://dx.doi.org/10.1017/hpl.2022.18
http://dx.doi.org/10.1103/PhysRevLett.129.213901
http://dx.doi.org/10.1038/s41377-022-00713-y
http://dx.doi.org/10.1016/j.ijleo.2022.169080
http://dx.doi.org/10.1016/0003-4916(74)90175-4
http://dx.doi.org/10.1103/PhysRevA.106.023704
http://dx.doi.org/10.1002/andp.202100039
http://dx.doi.org/10.1016/j.ijleo.2022.168735
http://dx.doi.org/10.1364/OL.42.002189
http://www.ncbi.nlm.nih.gov/pubmed/28569878
http://dx.doi.org/10.1088/1612-202X/ac5522
http://dx.doi.org/10.1063/1.4883296

	Introduction
	Model 
	The Exact Solutions: Method 
	Results and Discussion 
	Conclusions
	References

