Adaptive Trajectory Tracking Algorithm for the Aerospace Vehicle Based on Improved T-MPSP
Abstract
:1. Introduction
- (1)
- To our best knowledge, no existing methods have applied the EKF with the T-MPSP to solve the trajectory problems of aerospace vehicles.
- (2)
- (3)
2. Model of the Aerospace Vehicle
2.1. Dynamic Equations
2.2. Flight Constraints
3. The Trajectory-Tracking Strategy
3.1. Online Parameter Identification Method
- Prediction
- b.
- Update
3.2. Improved T-MPSP Algorithm
3.3. Overall Structure and Operating Steps
4. Simulations
4.1. Comparison Simulations
4.2. The Monte Carlo Simulations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Scalar | |||
altitude | velocity | ||
flight path angle | angle of attack (AOA) | ||
mass | gravitational acceleration | ||
the specific impulse of the engine | the engine thrust | ||
the aerodynamic lift | the aerodynamic drag | ||
the thrust coefficient | the lift coefficient | ||
the drag coefficient | the atmospheric density | ||
the throttle | the reference area | ||
mach number | the terminal deviation thresholds | ||
uncorrelated white Gaussian noise | normal force coefficients | ||
axial force coefficients | k | the current time instant | |
Matrix | |||
the Jacobian matrix | P | the error covariance matrix | |
the state transition matrix | the noise covariance matrix | ||
the Kalman filter gain coefficient matrix | the noise covariance matrix | ||
Subscripts | |||
max | the maximum value | min | the minimum value |
f | the final value and the superscript | the desired value | |
the new augmented state |
References
- Chai, R.; Tsourdos, A.; Savvaris, A.; Chai, S.; Chen, C. Review of advanced guidance and control algorithms for space/aerospace vehicles. Prog. Aerosp. Sci. 2021, 122, 100696. [Google Scholar] [CrossRef]
- Gharib, M.R.; Koochi, A.; Ghorbani, M. Path tracking control of electromechanical micro-positioner by considering control effort of the system. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2021, 235, 984–991. [Google Scholar] [CrossRef]
- Salehi Kolahi, M.R.; Gharib, M.R.; Heydari, A. Design of a non-singular fast terminal sliding mode control for second-order nonlinear systems with compound disturbance. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 7343–7352. [Google Scholar] [CrossRef]
- Abdalla, T.Y.; Abdulkarem, A. PSO-based optimum design of PID controller for mobile robot trajectory tracking. Int. J. Comput. Appl. 2012, 47, 30–35. [Google Scholar] [CrossRef]
- Madhushani, T.; Maithripala, D.S.; Berg, J.M. Feedback regularization and geometric PID control for trajectory tracking of mechanical systems: Hoop robots on an inclined plane. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; pp. 3938–3943. [Google Scholar]
- Rabah, M.; Rohan, A.; Han, Y.-J.; Kim, S.-H. Design of fuzzy-PID controller for quadcopter trajectory-tracking. Int. J. Fuzzy Log. Intell. Syst. 2018, 18, 204–213. [Google Scholar] [CrossRef]
- Dang, T.S.; Duong, D.T.; Le, V.C.; Banerjee, S. A combined backstepping and adaptive fuzzy PID approach for trajectory tracking of autonomous mobile robots. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 156. [Google Scholar]
- Shen, G.; Xia, Y.; Ma, D.; Zhang, J. Adaptive sliding-mode control for Mars entry trajectory tracking with finite-time convergence. Int. J. Robust Nonlinear Control 2019, 29, 1249–1264. [Google Scholar] [CrossRef]
- Ai, X.; Yu, J. Fixed-time trajectory tracking for a quadrotor with external disturbances: A flatness-based sliding mode control approach. Aerosp. Sci. Technol. 2019, 89, 58–76. [Google Scholar] [CrossRef]
- Sun, L.; Liu, Y. Fixed-time adaptive sliding mode trajectory tracking control of uncertain mechanical systems. Asian J. Control 2020, 22, 2080–2089. [Google Scholar] [CrossRef]
- Zhou, B.; Huang, B.; Su, Y.; Zheng, Y.; Zheng, S. Fixed-time neural network trajectory tracking control for underactuated surface vessels. Ocean Eng. 2021, 236, 109416. [Google Scholar] [CrossRef]
- Shen, C.; Shi, Y.; Buckham, B. Nonlinear model predictive control for trajectory tracking of an AUV: A distributed implementation. In Proceedings of the 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA, 12–14 December 2016; pp. 5998–6003. [Google Scholar]
- Nascimento, T.P.; Dórea, C.E.T.; Gonçalves, L.M.G. Nonlinear model predictive control for trajectory tracking of nonholonomic mobile robots: A modified approach. Int. J. Adv. Robot. Syst. 2018, 15, 1729881418760461. [Google Scholar] [CrossRef]
- Chai, J.; Medagoda, E.; Kayacan, E. Adaptive and Efficient Model Predictive Control for Booster Reentry. J. Guid. Control Dyn. 2020, 43, 2372–2382. [Google Scholar] [CrossRef]
- Emami, S.A.; Banazadeh, A. Fault-tolerant predictive trajectory tracking of an air vehicle based on acceleration control. IET Control Theory Appl. 2019, 14, 750–762. [Google Scholar] [CrossRef]
- Padhi, R.; Kothari, M. Model predictive static programming: A computationally efficient technique for suboptimal control design. Int. J. Innov. Comput. Inf. Control 2009, 5, 399–411. [Google Scholar]
- Powell, W.B. Approximate Dynamic Programming: Solving the Curses of Dimensionality; John Wiley & Sons: Hoboken, NJ, USA, 2007; Volume 703. [Google Scholar]
- Halbe, O.; Raja, R.G.; Padhi, R. Robust reentry guidance of a reusable launch vehicle using model predictive static programming. J. Guid. Control Dyn. 2014, 37, 134–148. [Google Scholar] [CrossRef]
- Zheng, H.; Hong, H.; Tang, S. Model predictive static programming rendezvous trajectory generation of unmanned aerial vehicles. In Proceedings of the 2019 IEEE International Conference on Unmanned Systems (ICUS), Beijing, China, 17–19 October 2019; pp. 415–420. [Google Scholar]
- Wang, Y.; Hong, H.; Tang, S. Geometric control with model predictive static programming on SO (3). Acta Astronaut. 2019, 159, 471–479. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Padhi, R. Autonomous landing for uavs using t-mpsp guidance and dynamic inversion autopilot. IFAC-PapersOnLine 2016, 49, 18–23. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, S. Adaptive trajectory tracking algorithm based on tracking model-predictive-static-programming. Acta Aeronaut. Astronaut. Sin. 2018, 39, 322105–322113. [Google Scholar]
- Kara, T.; Mary, A. Robust trajectory tracking control of robotic manipulators based on model-free PID-SMC approach. J. Eng. Res. 2018, 6, 170–188. [Google Scholar]
- Emami, S.A.; Banazadeh, A. Intelligent trajectory tracking of an aircraft in the presence of internal and external disturbances. Int. J. Robust Nonlinear Control. 2019, 29, 5820–5844. [Google Scholar] [CrossRef]
- Dou, L.; Su, X.; Zhao, X.; Zong, Q.; He, L. Robust tracking control of quadrotor via on-policy adaptive dynamic programming. Int. J. Robust Nonlinear Control. 2021, 31, 2509–2525. [Google Scholar] [CrossRef]
- Qiu, X.; Hua, C.; Chen, J.; Zhang, L.; Guan, X. Model-free adaptive iterative sliding mode control for a robotic exoskeleton trajectory tracking system. Int. J. Syst. Sci. 2020, 51, 1782–1797. [Google Scholar] [CrossRef]
- Murillo, O.J. A Fast Ascent Trajectory Optimization Method for Hypersonic Air-Breathing Vehicles. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2010. [Google Scholar]
- Lopez-Sanchez, I.; Montoya-Chairez, J.; Perez-Alcocer, R.; Moreno-Valenzuela, J. Experimental Parameter Identifications of a Quadrotor by Using an Optimized Trajectory. IEEE Access 2020, 8, 167355–167370. [Google Scholar] [CrossRef]
Process constraints | 150 (kPa) | |
Control constraints | (°) | |
() | ||
Terminal constraint | 500 (m) | |
50 (m/s) | ||
0.5 (°) |
Terminal Height Deviations (m) | Terminal Velocity Deviations (m/s) | Terminal Flight Path Angle Deviations (°) | |
---|---|---|---|
Proposed method | 32.95 | −12.53 | 0.279 |
Open-loop tracking method | −444.49 | 272.40 | 1.124 |
T-MPSP method | −242.36 | −15.48 | 0.025 |
Terminal Height Deviations (m) | Terminal Velocity Deviations (m/s) | Terminal Flight Path Angle Deviations (°) | Dynamic Pressure (kPa) |
---|---|---|---|
148.73 | 47.26 | 0.313 | 142.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, C.; Shan, C.; Cheng, Z.; Long, Y. Adaptive Trajectory Tracking Algorithm for the Aerospace Vehicle Based on Improved T-MPSP. Mathematics 2023, 11, 2160. https://doi.org/10.3390/math11092160
Ou C, Shan C, Cheng Z, Long Y. Adaptive Trajectory Tracking Algorithm for the Aerospace Vehicle Based on Improved T-MPSP. Mathematics. 2023; 11(9):2160. https://doi.org/10.3390/math11092160
Chicago/Turabian StyleOu, Chao, Chengjun Shan, Zhongtao Cheng, and Yaosong Long. 2023. "Adaptive Trajectory Tracking Algorithm for the Aerospace Vehicle Based on Improved T-MPSP" Mathematics 11, no. 9: 2160. https://doi.org/10.3390/math11092160
APA StyleOu, C., Shan, C., Cheng, Z., & Long, Y. (2023). Adaptive Trajectory Tracking Algorithm for the Aerospace Vehicle Based on Improved T-MPSP. Mathematics, 11(9), 2160. https://doi.org/10.3390/math11092160