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Abstract: We explore the effects of cross-diffusion dynamics in epidemiological models. Using
reaction–diffusion models of infectious disease, we explicitly consider situations where an individual
in a category will move according to the concentration of individuals in other categories. Namely,
we model susceptible individuals moving away from infected and infectious individuals. Here, we
show that including these cross-diffusion dynamics results in a delay in the onset of an epidemic
and an increase in the total number of infectious individuals. This representation provides more
realistic spatiotemporal dynamics of the disease classes in an Erlang SEIR model and allows us to
study how spatial mobility, due to social behavior, can affect the spread of an epidemic. We found
that tailored control measures, such as targeted testing, contact tracing, and isolation of infected
individuals, can be more effective in mitigating the spread of infectious diseases while minimizing
the negative impact on society and the economy.
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1. Introduction

Recent events have made it clear that not only are infectious diseases an inevitable
part of our life, but it is also very difficult to predict how an outbreak will evolve or which
sectors of a population will be affected the most [1–8]. More relevant to the present study,
they have also shown that mathematical models have become important tools needed
to understand how diseases spread, to predict future spread dynamics, and, in some
sense, to help eliminate some of the uncertainty associated with these diseases. Models
not only improve our understanding of the dynamics of the transmission of infections,
but they also guide data collection and its interpretation, aid in identifying what drives
epidemics, and provide in silico tools used to forecast future directions and to evaluate
the potential impact of an intervention [9–19]. It is understood that no model can possibly
capture all the intricacies associated with the spread of infectious diseases in a complex
social and geographical environment, to quote George Box ’all models are wrong but some
are useful’. Nonetheless, there is a continuing need to evolve existing epidemiological
models to include more ’realistic’ conditions that help advance our understanding of the
spatiotemporal evolution of epidemics.

Epidemiological models have been studied for almost 100 years. In 1927, McKendrick
and Kermack published the first modern mathematical study that employed epidemi-
ological models [20]. In their formulation, the dynamics of the epidemic process were
captured by a coupled system of differential equations, and solutions of the system describe
population dynamics in and out of the different groups. In its original form, the Kermack–
McKendrick theory divides a population into only two classes, susceptible and infected
(SI). Years later, it was transformed into a susceptible–infected–recovered (SIR) model and,
in subsequent works by other authors [21–24], an exposed (E) class was introduced (SEIR).
Other modifications have been introduced by adding additional classes to include different
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disease control measures, such as vaccination, quarantine, and isolation. The resulting mod-
els, in general, belong to a family of ODE models which identifies epidemiological states
(susceptible, infectious, immune, etc.) and considers constant transition rates between the
different classes containing individuals in each disease state. For a comprehensive review
of basic epidemic models, the reader is referred to [25].

One of the main assumptions of these SIR/SEIR class of models is that the rate of leav-
ing the exposed or infectious class is constant, regardless of the time spent in that class [26].
This exponential distribution is unrealistic since it is expected that the probability of leaving
a given class should depend on the time spent in it. Some studies have shown that the
shape of the distribution corresponding to the infectious period has no qualitative effects on
the asymptotic values or properties of the system [27–29]. However, other studies suggest
that the shape of the distribution function greatly affects the persistent likelihood of infec-
tions when seasonal variations are considered [10,30,31]. Wearing et al. [26] demonstrated
that models with exponential distribution show overoptimistic results that might lead to
inadequate levels of control during an epidemic. Consequently, more realistic dynamics are
captured if one assumes that the probability of leaving a given class is a function of the time
spent within it. In this multi-stage representation, initially, the chance of leaving the E or I
classes is small, but this probability increases with time, with upper bounds corresponding
to the mean latent or infectious time, respectively. A mathematically convenient way to
introduce these dynamics is using Erlang distributions, which can be viewed as gamma
distributions with integer shape parameters. Although the Erlang distribution is more
restricted in shape than the general gamma distribution, it is sufficiently flexible to provide
a good approximation of realistic distributions for latent and infectious periods [29], it is
computationally tractable, and it reduces to an exponential distribution when the shape
parameter is equal to one.

In this work, we use the so-called “Erlang SEIR model,” shown in Figure 1, which
divides the E and I classes into m and n sub-classes, respectively. Since all m latent sub-
classes are identical, as are all n infectious sub-classes, we will denote the Erlang SEIR
model as SEm InR.

Figure 1. In the SEIR model the population is divided into 4 compartments, Susceptible, Exposed,
Infected, and Recovered. In the SEm InR model, the transition probabilities are made more realistic
by subdividing the E and I compartments into m and n sub-compartments, respectively. In this
way, individuals in the E1 sub-compartment have a smaller probability than individuals in the Em

sub-compartment to move to the I class.

Champredon et al. [32], showed the equivalency between the SEm InR model and the
renewal equation and formulated analytical expressions for the intrinsic generation-interval
distribution that can be used in the renewal equation to give the corresponding epidemic
dynamics. Krylova and Earn [29] investigated measles dynamics in NYC. In their study,
they used numerical bifurcation analysis to show that the dynamics of SEmInR models have
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less effect on the stage duration distribution relative to that of the SImR models [33]. How-
ever, to our knowledge, a study of whether this is the case when other compartments are
included has not been carried out. Getz and Dougherty [34] formulated the corresponding
discrete, stochastic model for the SEm InR to capture the inherent randomness in disease
transmission. Leontitsis et al. [35], used a susceptible–exposed–asymptomatic–hospitalized–
isolated–removed (SEAHIR) model to capture SARS-CoV-2 dynamics using data from the
United Arab Emirates. In their calculations, the number of stages was kept constant and
equal to 5, i.e., SE5 A5H5 I5R.

In addition to temporal dynamics, it is well understood that the spread of an epidemic
highly depends on the movement of individuals, and, consequently, including spatial
dependence on SEIR models has gathered a lot of attention over the years. Many modeling
efforts have been proposed to address several questions arising in this area [12,13,36–49].
A first approximation is to assume individuals’ mobility following a diffusion equation.
In their study of a susceptible–infected–susceptible, SIS, reaction–diffusion model, Deng
and Wu [42] showed that if the self-diffusion coefficient of the susceptible individuals is
equal to the self-diffusion coefficient of the infectious individuals, the disease-free equilib-
rium is globally attractive if the basic reproductive number is less or equal to one, R0 ≤ 1,
while the endemic equilibrium is globally attractive if R0 > 1. Wang et al. [49] showed that
diseases with larger R0 tend to spread less compared to those with smaller R0. Their studies
on the effects of varying diffusion coefficients indicate that diffusion greatly influences the
spatiotemporal dynamics in an epidemic model. Allen et al. [38] proposed a spatial SIR
reaction–diffusion model and studied the existence, uniqueness, and asymptotic behavior
of the endemic equilibrium as the diffusion rate of the susceptible individuals falls to zero
in the case where a so-called low-risk sub-habitat is created. Peng [46] continued this
research on the impacts of large and small diffusion rates of the susceptible and infectious
population on the persistence and extinction of the disease. Their results showed that differ-
ent strategies for controlling the diffusion rates of individuals might lead to very different
spatial distributions of the population. Al-Showaikh et al. also studied the influence of
diffusion coefficients in SEIR models [13], using a finite-difference scheme to compute the
solution of the spread of measles. Ahmed et al. continued this area of study to investigate
the behavior of stability points for measles and other diseases [12,36,37]. Liu [43] presented
numerical simulations which prove the global stability of disease-free equilibrium and
investigate the dependence of steady-state solutions on the reproductive number, R0. Hu
and Wang [50] studied a SIRS model with spatiotemporal distribution and population size
under both passive diffusion and chemotactic effects captured by cross-diffusion terms.
Their results showed that the cross-diffusion terms do not affect the global stability of
the corresponding system without cross-diffusion and that an SIRS disease cannot be
eradicated by only controlling the diffusive mobility of the susceptible class. Cai et al. [51]
investigated the dynamics of a 2D SI model with cross-diffusion dynamics and found that
different parameter values lead to different stationary 2D patterns.

Motivated by these previous studies, here we investigate the combined effects of
SEn ImR models with the addition of diffusion and cross-diffusion dynamics to simulate
spatial reorganization. Phenomenologically speaking, diffusion captures the movement of
individuals from regions of high concentration to regions of low concentration. However,
if the only effect considered is self-diffusion, individuals move only according to the
concentration of individuals in their same class; for instance, susceptible individuals will
move away from regions of high concentrations of susceptible individuals but not from
regions of high concentration of infectious or exposed individuals. Cross-diffusion, on the
other hand, captures the tendency of individuals to move away from high concentrations
of individuals in other categories. In practice, studying the effects of cross-diffusion is of
interest from a public health perspective since it allows us to investigate a different type of
behavior, namely how the movement of susceptible individuals away from regions of high
concentration of exposed or infectious individuals affects the evolution of an epidemic.
With this in mind, here we use mathematical models and numerical simulations to ask
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two simple questions: (i) how much does the movement of individuals who have not
been infected mitigate or instigate the spread of an infectious disease? And, (ii) what
parameters are most susceptible to these spatial dynamics? Additionally, we explore the
effects of cross-diffusion in four well-known infectious diseases, SARS, measles, smallpox,
and foot-and-mouth. We chose these four cases since their SEm InR model parameters are
available in the literature [1,11,14,52].

2. Model Formulation
2.1. Model Assumptions

• A given population is divided into four categories, which are functions of both time
and space.

– Susceptible (S(t, x)). Individuals capable of contracting the disease.
– Exposed (E(t, x)). Infected individuals who are not yet infectious.
– Infectious Symptomatic (I(t, x)). Individuals capable of transmitting the disease.
– Recovered (R(t, x)). Individuals from the infectious pool who have recovered.

• The population size is constant throughout the spatial domain but not at individual
points in space,

N0 = N(t) =
∫

Ω

(
S(t, x) +

m

∑
i=1

Ei(t, x) +
n

∑
k=1

Ik(t, x) + R(t, x)

)
dx, ∀x ∈ Ω

• The disease is not lethal, and birth and death rates are assumed to be equal to µ.
• The transmission parameter, β, is defined as the average number of effective contacts

with other individuals per infectious individual per unit time. An effective contact is
an encounter in which the infection is transmitted, we assume this has a probability b.
Assuming the contacts per unit time is given by k, the transmission parameter is given
by β = kb.

• The exposed class is divided into m subclasses and mσ is the rate of sequential pro-
gression through the subclasses, where 1/σ is the mean latent period. This is a proxy
of modeling the latent period as a gamma distribution with shape parameter m and
rate parameter σ, [26].

• The infectious class is divided into n subclasses and nγ is the rate of sequential
progression through the subclasses, where γ is the recovery rate so that 1/γ is the
mean infectious period. As before, this corresponds to a gamma distribution with
shape parameter n and rate parameter γ, [26].

• Recovered individuals are permanently immune.

2.2. System of Equations

The assumptions above lead to the following system of differential equations,

dS(t)
dt

= µN − µS(t)− kb
I(t) S(t)

N
+ diffusion terms, (1a)

dE1(t)
dt

= −µE1(t) + kb
I(t) S(t)

N
−mσE1(t) + diffusion terms, (1b)

dEi(t)
dt

= −µEi(t) + mσ
[

Ei−1(t)− Ei(t)
]
+ diffusion terms, i = 2, ..., m, (1c)

dI1(t)
dt

= −µI1(t) + mσEm(t)− nγ I1(t), (1d)

dIk(t)
dt

= −µIk(t) + nγ
[

Ik−1(t)− Ik(t)
]
, k = 2, ..., n, (1e)
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dR(t)
dt

= −µR(t) + nγIn, (1f)

with the total number of exposed and infectious individuals given by:

E =
m

∑
i=1

Ei, i = 1, . . . , m, (2a)

I =
n

∑
k=1

Ik, k = 1, . . . , n. (2b)

Initially, the population is composed of only susceptible and infectious individuals.
Susceptible individuals are distributed uniformly across the spatial domain. Infectious
individuals are placed within a band of width two around the center of the spatial domain,

S(x, 0) = S0, E(x, 0) = 0, I(x, 0) = I0h(x), R(x, 0) = 0, − L ≤ x ≤ L, (3)

where h(x) = H(x + 1)− H(x− 1), here H(·) is the Heaviside step function.

2.3. Spatial Structure

To the reaction kinetics discussed in the previous section, we add diffusion dynamics,

∂S(t, x)
∂t

= Reaction terms +
∂

∂x

(
DSS

∂S(t, x)
∂x

)
+

∂

∂x

(
DSE

∂S(t, x)
∂x

)
+

∂

∂x

(
DSI

∂S(t, x)
∂x

)
, (4a)

∂Ei(t, x)
∂t

= Reaction terms +
∂

∂x

(
DEE

∂Ei(t, x)
∂x

)
i = 1, . . . , m, (4b)

∂Ik(t, x)
∂t

= Reaction terms +
∂

∂x

(
DI I

∂Ik(t, x)
∂x

)
k = 1, . . . , n, (4c)

∂R(t, x)
∂t

= Reaction terms +
∂

∂x

(
DRR

∂R(t, x)
∂x

)
. (4d)

The cross-diffusion coefficient, Dab, determines how restrictive the movement of
individuals in class a is with respect to the spatial concentration of individuals in class
b. Dab > 0 indicates that a individuals will tend to move away from regions with a large
concentration of b individuals.

We impose Neumann boundary conditions in the 1D domain x ∈ [−L, L] as,

∂S(t,−L)
∂t

=
∂Ei(t,−L)

∂t
=

∂Ik(t,−L)
∂t

=
∂R(t,−L)

∂t
= 0, (5a)

∂S(t, L)
∂t

=
∂Ei(t, L)

∂t
=

∂Ik(t, L)
∂t

=
∂R(t, L)

∂t
= 0, (5b)

for i = 1, . . . , m, k = 1, . . . , n and t ≥ 0. We note that we keep the domain large enough
so that the evolution of the spread is uninfluenced by interactions with the boundary.
Investigations of the effects of boundary conditions will be left for future studies.

Figure 2 shows a typical three-dimensional view of the distribution of infectious
individuals as a function of both time and space, as well as its projection onto the time-
space plane. In addition, to compare the effects of different parameters in the evolution
dynamics, we introduce a separation metric. This metric captures the spatial separation of the
peaks in the number of infectious individuals at a given time, represented by a red arrow in
Figure 2. For consistency, we calculate this metric after 300 time steps from the time when
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the number of infectious individuals, at the middle of the spatial domain, reaches 1% of the
total number of individuals.

Figure 2. (Left) 3D plot of normalized number of infectious individuals. (Right) Projection onto the
time-space plane of the plot on the left. Red arrows show the separation between peaks after 300 time
steps after the number of infectious starts rising. The length of the red arrow defines our separation
metric, which will be used to compare different behaviors in the Results section.

2.4. Equilibrium Points

It can be shown that the system of Equation (1) has two equilibrium points. A disease-
free equilibrium where the only non-zero element is S∗ = N and an endemic equilibrium,

S∗ =
N
R0

, (6a)

E∗ =
m

∑
i=1

(E∗)i = N
(

1−
(

mσ

mσ + µ

)m)(
1− 1

R0

)
, (6b)

I∗ =
n

∑
k=1

(I∗)k =
µN
β

(R0 − 1), (6c)

R0 =
kb(mσ)m

µ

(nγ + µ)n − (nγ)n

(nγ + µ)n(mσ + µ)m . (6d)

Here R0 is the corresponding reproductive number and R∗ = N − S∗ − E∗ − I∗.
Figure 3 shows the dependence of the equilibrium points on the number of sub-classes

within the exposed and infectious classes. Grid planes show the equilibrium solution for
m = n = 1, in this case the system reduces to the well-known SEIR model, whose endemic
equilibrium point is found as [37],

S∗ =
N
R0

, E∗ =
µN

µ + σ

(
1− 1

R0

)
, I∗ =

µN
β

(R0 − 1), with R0 =
σβ

(µ + σ)(µ + γ)
. (7)

The stability of equilibrium points of epidemic systems is well studied. Li and
Wang [53] investigated an SEIR model, Deng and Wu [42] an SIS model, Liu and Li [43]
an SEIR model with a linear source, and Yand et al. [54] an SVEIR model with Erlang dis-
tributions. All of these studies showed that the endemic equilibrium is globally attractive
for cases when the reproductive number is greater than 1, R0 > 1, and the disease-free
equilibrium is asymptotically stable when the reproductive number is less than 1, R0 < 1.
We investigated the stability of our system of equations in Appendix A and reached the
same conclusions as these authors regarding local stability.
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Figure 3. Equilibrium points for the SEm InR as functions of n and m. Planes indicate the theoretical
equilibrium points for the SEIR model (Equation (7)); numerically, these values should correspond
to m = 1, n = 1, marked by a red x in the plots.

Then, for the system with diffusion and cross-diffusion terms, Equation (4), the equi-
librium points, at each location within the spatial domain, are the same as those of the
corresponding ordinary differential equation (ODE) system, Equation (1). The only differ-
ence between the two systems of equations is the time it takes for a point in space to reach
its equilibrium. Figure 4 shows how larger cross-diffusion coefficients decrease the time at
which the peak of infection is observed throughout the spatial domain. Since the center
of the domain is where, initially, all the infectious individuals are located, Figure 4 shows
that there is a dependence on this equilibration time as a function of the distance from the
center of the domain.

Figure 4. Equilibrium points for the SEm InR model. At the center of the domain, the evolution of
the system remains the same with or without cross-diffusion; other points within the domain will
change their behavior according to the cross-diffusion dynamics imposed on the system. The higher
the cross-diffusion coefficient, the faster all points in the domain will reach the steady state. Black
lines mark the corresponding theoretical equilibrium given by Equation (6).

3. Results and Discussion

As discussed in the introduction, our goal is to investigate the effects of cross-diffusion
on epidemic dynamics. In particular, we are interested in discerning the effects of the cross-
diffusion coefficients DSE and DSI . That is, we investigate the impact of having susceptible
individuals moving away from high concentrations of individuals that have been exposed
and might or might not be infectious. For comparison, recall that we use a separation
metric defined in Figure 2. In Figures 5–7, this metric is plotted in the z-axis as a function
of different model parameters.
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Figure 5. (Left) Effects of changing the cross-diffusion coefficient between susceptible and exposed
DSE and the transmission parameter β on the change in separation. (Right) Effects of changing the
cross-diffusion coefficient between susceptible and infectious DSI and the transmission parameter
β on the change in separation. Lower β and DS# result in a reduced spatial spread: the separation
between peaks is the smallest (blue regions), while large cross-diffusion coefficients and transmission
parameters result in a larger spread (yellow regions).

Figure 6. (Left): Effects of changing cross-diffusion coefficient DSE and latent time Te on the spatial
spread of an epidemic. (Right): Effects of changing cross-diffusion coefficient DSI and latent time
Te on the disease spread. Lower separation corresponds to lower spread (blue regions), and higher
separation to higher spread (yellow regions).

Figure 7. (Left): Effects of changing cross = diffusion coefficient DSE and infectious time Ti on the
change in separation. (Right): Effects of changing cross-diffusion coefficient DSI and infectious
time Ti on the change in separation. Lower separation corresponds to lower spread (blue regions),
and higher separation to higher spread (yellow regions).

3.1. Effect of Varying the Transmission Parameter When Cross-Diffusion Is Included

Figure 5 shows how variations of the transmission parameter, β, and the cross-diffusion
coefficients will change the evolution of the spatial spread of an epidemic. Regarding the
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role of cross-diffusion coefficients, we observe a behavior consistent with that shown
in Figure 4, where smaller coefficients give rise to less spatial spread. In addition, our
results show that the smaller transmissibility also leads to a smaller spatial spread. While
transmissibility (β) can be controlled by hygienic measures, social distancing, and mask-
wearing, mobility (DSE , DSI ) can be controlled by quarantine and restrictions in traveling.
Figure 5 shows that a combination of measures that reduce transmissibility and the mobility
of susceptible individuals with respect to infected (but not yet infectious) results in higher
control of the spread. While this effect is not as marked when the mobility of susceptible
individuals with respect to infectious is increased.

3.2. Effect of Variations in the Average Latent Period When Cross-Diffusion Is Included

Infectious diseases have varying latent (incubation) periods, and this factor plays a
crucial role in the spread of the disease. As shown in Figure 6, diseases with shorter latent
periods tend to spread more rapidly when combined with higher social mobility.

The latent time is inherent to each disease and, in general, cannot be controlled through
approaches aimed at modifying social behavior. However, knowledge of how high or low
is the impact of social mobility, given a disease’s latent period, can lead to better decision-
making. For instance, Figure 6 shows that for diseases with long latent time, restricting
mobility through DSE results in very little changes in the spread of the epidemic, while such
restrictive measures might negatively affect the population in other ways. On the other
hand, changes in DSI have a significant impact on the spread of the disease. In such cases,
imposing strict general lockdown measures that could negatively impact the economy may
not be a practical solution, while targeting control will be more efficient.

3.3. Effect of Variations in the Average Infectious Period When Cross-Diffusion Is Included

Infectious diseases also differ in the length of their infectious period. As with the
latency period, this is something that cannot be socially controlled. As shown in Figure 7,
diseases with longer infectious periods have a smaller impact on a spatial spread from
changes in cross-diffusion coefficients.

It is interesting to note that there is a “plateau” region for small to medium values
of DSE , with a sudden increase for larger values of the coefficient. This indicates that
for diseases with relatively larger infectious periods, very strict lockdowns and traveling
measures will not significantly reduce the spread of the disease, while some measures to
reduce mobility will definitely make a difference.

3.4. Effect of Varying Erlang Parameters When Cross-Diffusion Is Included

Instead of observing a generic behavior for different values of the Erlang parameters
m and n, it makes more physical sense to look at different probability distribution functions
(PDFs) resulting from different values of m and n. To do this, we chose four well-studied
infectious diseases whose latent and infectious periods had been previously fitted to Erlang
distributions and compare their evolution when cross-diffusion is considered. We note that
in this section our goal is not to do an in-depth analysis of our four different diseases, SARS,
Measles, Smallpox, and Foot-and-mouth disease, but rather use them as tools to aid in the
understanding of the role of cross-diffusion. Parameter values for the latent and infectious
periods are obtained from [1,11,14,26,52] and given in Table 1, and brief descriptions of
each disease are given next; for a more detailed analysis of each of the diseases, the reader
is referred to their corresponding references given in Table 1. We analyze the changes in
the overall number of infectious individuals and the peak infection both in time and space
and correlated these findings to the shape of the corresponding PDFs.
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Table 1. Model parameters for each of the four diseases considered in this study. Other model
parameters are, µ = 0.05, b = 0.3, k = 10, and β = 3. R0 values are found using Equation (6d).

Disease m n
Latent

Period 1/σ,
(Days)

Infectious
Period1/γ,

(Days)
R0 Reference

Measles 20 20 8 5 8.88 [11]

Foot-and-
Mouth 13 17 3.5 4.3 9.7 [14]

SARS 2 3 5.36 5.5 10.79 [52]

smallpox 40 4 14 8.6 10.05 [1]

3.4.1. SARS

Severe Acute Respiratory Syndrome (SARS) is a respiratory viral disease, the first case
of which was reported in November 2002 in southern China [55]. SARS begins with a fever
that usually occurs 2–7 days after infection, but, in some cases, symptoms do not develop
for up to 10 days. Chills, headaches, muscle pains, and a general feeling of discomfort often
occur. After 2–7 days from the onset of the disease, a dry cough appears. Sometimes SARS
progresses to severe pneumonia, leading to respiratory failure and hypoxemia. The patient
is most contagious when symptoms develop. It is still unclear whether it is possible to
infect other people before the onset of clinical symptoms of the disease or after they have
disappeared. The modeling of this disease has been extensively studied, with studies
examining its causes, risk factors, and possible treatments [3,18].

3.4.2. Measles

Measles is a viral infection that is easily transmitted and can be expressed as a rash all
over the body, accompanied by fever and damage to the mucous membrane of the eyes,
mouth, or throat. The disease is transmitted by close proximity to an infectious individual
through airborne droplets from talking, coughing, laughing, or sneezing, but it can also
spread through an unfiltered ventilation system. The danger of this disease lies in the
fact that it can also invade the respiratory tract and the nervous system, or even create
problems with the intestinal tract. Most often, children are susceptible to infection because
their immune system is not as strong as that of an adult. To this day, this virus can still be
found in the population, which can be expressed as an outbreak of infection, but, thanks
to vaccination, the disease does not progress as much as before [56]. Through extensive
research into the modeling of measles [10–13,19], scientists have found that prioritizing
efforts to prevent and treat the disease can make a meaningful difference in mitigating its
effects on populations.

3.4.3. Smallpox

Smallpox is a viral disease that is transmitted between individuals by airborne droplets.
It is expressed in the form of purulent rashes throughout the body. Some common symp-
toms include a feeling of malaise, chills, fever, vomiting, and/or back pain. The rashes
resemble ulcers, which often leave scars. This virus enters the human body and then causes
viremia [57]. In humans, death is reported in 30% of the cases. This disease is not only found
in humans but can also affect animals, such as cows, horses, or monkeys. To eradicate the
disease, the decision was made to vaccinate both animals and humans. The investigation
of smallpox [1,4,17] modeling in numerous studies has led to a better understanding of
how models can be used to inform planning efforts for the disease, especially in light of
recent outbreaks of emerging pathogens.

3.4.4. Foot-and-Mouth

Foot-and-mouth disease is a virus most commonly found in livestock. The disease
is manifested by a bright rash on the mucous parts of animals. Humans can also become
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infected by consuming products derived from infected animals. In particular, children
are more vulnerable to this disease. An individual who has foot-and-mouth disease feels
a strong fever, high temperature, burning in the larynx, redness of the eyes, or strong
salivation. The disease is very persistent, resisting frost or dryness, but heating is fatal
for the virus [58]. Extensive research has been conducted into the modeling of Foot-and-
Mouth disease [14–16], with studies assessing a range of factors, including the history and
potential duration of epidemics, control strategies, and the broader implications for disease
dynamics over time and space.

3.5. Probability Distribution Functions

One convenient way of describing and comparing these diseases is by looking at
the probability of being infectious or equivalently by considering the probability density
functions for infectious individuals. For Erlang distributions with shape parameter n and
scale parameter nγ, the probability density function and corresponding probability are
given by,

f (t, n, nγ) =
(γn)ntn−1e−γnt

(n− 1)!
, (8a)

P(n, t) =
∫ ∞

t
f (s, n, nγ)ds. (8b)

Here, P(n, t) represents the probability that an individual will be in the n-subclass at time t.
Similarly, Equation (8) will give the probability of an exposed individual to remain in the
m-subclass, if we replace the shape parameter to m and scale parameter to mσ.

Figure 8 shows the distribution functions and probabilities for the four diseases
considered in this study. Smallpox has the longest latent period and this is expressed in
the fact that the probability of being exposed remains high for much longer than in other
diseases. Similarly, although Measles has the lowest reproductive number, the fact that its
latent period is long results in a ‘longer’ probability of being exposed and/or infectious
than other diseases with larger R0. FM shows a fast peak for both exposure and infection,
meaning this is a highly contagious disease but relatively short-lasting. Finally, SARS is not
only highly transmittable, given by the R0 number, but has the ability to ‘linger’ as shown
by the temporal evolution of both the probability of exposure and infection.

Figure 8. The change in the probability of remaining exposed and infectious as a function of time for
all 4 diseases and their corresponding probability density functions. Equations given by Equation (8)
and parameters in Table 1.
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Further exploration of the data shows that, in measles, there is a big difference in
PDFs for exposed and infectious classes as compared to the other three diseases. It does
not spread fast in the exposed class, but the transition through the infectious class is fast.
In addition, the maximums for both PDFs are very different from each other.

Figure 9 shows the separation metric as a function of DSE and DSI for the four diseases
investigated in this section. Using the separation as a metric of spatial spreading, it can
be seen that spreading monotonically increases as the cross-diffusion coefficients increase.
However, both the magnitude and the rate of the increase vary from disease to disease.
Finally, the effect of DSE is stronger than that of DSI .

Figure 9. Separation for varying values of the cross-diffusion coefficients (A) DSE and (B) DSI . These
coefficients capture the movement of susceptible individuals away from high concentrations of
infected and infectious individuals, respectively. The larger the coefficient the faster individuals move
away from the regions of high concentrations.

In terms of separation, a larger magnitude can be translated to a larger number of
places within the spatial domain that have reached the endemic equilibrium at a given time.
For the four diseases studied, the lower magnitude is that of smallpox, while the highest is
for FM. It is clear that smallpox having the smallest magnitude is due to the delay in the
first peak, discussed above. On the other hand, the spread of FM corresponds with this
disease having the fastest and highest peaks of the PDFs shown in Figure 8. From those
distributions, we can conclude that FM is a short-term but very contagious disease. This
results in a faster spread in the spatial domain compared to the other diseases, and, as such,
we observe a large separation between peaks and more places within the domain reaching
endemic equilibrium at a given time.

When the values remain relatively constant, the time scales for spatial spread are
comparable to those of the transition from a class to class, so changes in the cross-diffusion
coefficient result in minimal changes in the total spreading dynamics. On the other hand,
for large cross-diffusion coefficients, the separation starts to increase, meaning that for these
large numbers, one can start to see observable differences between the two-time scales.
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4. Conclusions

In this study, we explore the spatiotemporal dynamics of SEm InR models with the
addition of cross-diffusion dynamics. Through simulations, we show that controlling
the mobility of individuals in the susceptible class alone was insufficient to completely
eradicate the spread of the epidemic. In addition, measures to control epidemics based on
spatial mobility should be carefully tailored to each disease, since the temporal dynamics
specific to each disease greatly affect the evolution of the spatial dynamics. It is understood
that the temporal dynamics are controlled by the ODE model parameters (Equation (1)),
while spatial dynamics are controlled by the cross-diffusion coefficients (Equation (4)).

Our findings highlight the need for different strategies to control the spread of diseases
based on their transmissibility, latent, and infectious periods. This means that when consid-
ering measures that restrict mobility, such as quarantine and lockdowns, it is important to
recognize that not all measures for epidemic prevention are equally effective for different
diseases, and restrictions that are very costly and disrupting should be tailored to each
disease to avoid unnecessary collateral damage to the population. By taking into account
the specific characteristics of each disease, we can develop more effective approaches to
mitigate the spread of infectious diseases while minimizing the impact on society and
the economy. For instance, epidemics of diseases with large latent times cannot be effi-
ciently controlled by restrictions in the mobility of non-infected individuals, while such
measurements can result in devastating consequences for the general population [5–8].

It is important to note that our study uses a mathematical model which is not a
literal representation of real-life disease spread within the population. For the purpose of
modeling, we ignored such factors as traveling, natural growth and decay in population,
and contact with individuals outside of the population, among others. Those many factors
will definitely affect real-life disease propagation, we expect that future studies will include
such assumptions. In addition, future studies might investigate the role of other measures,
such as isolation and quarantine, which are more targeted toward individuals in specific
infected classes rather than to the population as a whole.
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Appendix A. Stability of Equilibrium Points

Appendix A.1. Local Stability

We consider the two equilibrium points of the system, U0 = (N, 0, 0, 0) and U1 =
(S∗, E∗, I∗, R∗), where S∗, E∗, I∗, and R∗ are given by Equation (6). We use the reproductive
number, given in Equation (6d), to evaluate stability and consider our system of the
equations in the form,

∂U (t)
∂t

+ DU (t) = F(U (t)),
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where

D =


DSS DSE DSI 0

0 DEE 0 0
0 0 DI I 0
0 0 0 DRR

.

Finally, we define A is the Jacobian of F(U (t)),

A =



−µ− βI
N 0 − βS

N 0

βI
N −µ−mσ

βS
N 0

0 mσ −µ− nγ 0

0 0 nγ −µ


.

We will use the results from the following two theorems [59],

Theorem A1. For the linearized system

∂z
∂t

= D∆z + Az, (A1)

Let 0 = λ0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . , be the sequence of eigenvalues of the operator −∆ subject to
the homogeneous Neumann conditions, then

• The zero solution is globally asymptotically stable if for each non-negative integer n the
eigenvalue of A− λnD have negative real parts. Further, there exists positive constants K, ω
such that for any t > 0,

||z(t, x)|| ≤ Ke−ωt||α(x)||.

• The zero solution is stable if for each non-negative integer n the eigenvalues of A− λnD have
non-positive real parts and those with zero real parts have simple elementary divisors.

• The zero solution is unstable if for some n there exists an eigenvalue of A− λnD with either
positive real part or zero real part with a non-simple elementary divisor.

Theorem A2. The zero solution of
∂z
∂t

= D∆z + f (z), is asymptotically stable if the zero solution
of the linearized problem (A1) is asymptotically stable.

Theorem A3. If R0 < 1, the disease-free equilibrium point U0 is asymptotically stable.

Proof. Let A = DF(U0). By Theorems A1 and A2 the equilibrium point U0 is asymptot-
ically stable if for each non-negative integer i the eigenvalue of matrix A − ξiD have a
negative real part.

Let P0 = A(N, 0, 0, 0)− ξiD− λI

P0 =

 −µ− ξiDSS − λ −ξiDSE −β− ξiDSI 0
0 −µ−mσ− ξiDEE − λ β 0
0 mσ −µ− nγ− ξiDI I − λ 0
0 0 nγ −µ−mσ− ξiDRR − λ

.

det(P0) = [−µ− ξiDRR − λ] [−µ− ξiDSS − λ] [p2(λ)],
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where

p(λ) = λ2 + (2µ + mσ + nγ + ξi(DEE + DI I ))λ + (µ + mσ + ξiDEE)(µ + nγ + ξiDI I )−mβσ.

This gives the eigenvalues,

λ1 = −µ− ξiDRR ≤ 0

λ2 = −µ− ξiDSS ≤ 0

λ3,4 =
−(2µ + mσ + nγ + ξi(DEE + DI I ))±

√
((DI I − DEE)ξ −mσ + nγ)2 + 4mσβ

2
.

Since −(2µ + mσ + nγ + ξi(DEE + DI I )) ≤ 0, the real parts of all the eigenvalues are nega-
tive and (N, 0, 0, 0) is asymptotically stable.

Theorem A4. If R0 > 1, the endemic equilibrium point U1 is asymptotically stable.

Proof. Let P1 = A(S∗, E∗, I∗, R∗)− ξiD− λI

P1 =



−µ− βI∗
N − ξiDSS − λ −ξDSE − βS∗

N − ξDSI 0

βI∗
N −µ−mσ− ξiDEE − λ

βS∗
N 0

0 mσ −µ− nγ− ξiDI I − λ 0

0 0 nγ −µ− ξiDRR − λ



=

 −µR0 − ξiDSS − λ −ξiDSE −β/R0− ξDSI 0
µ(R0 − 1) −µ−mσ− ξiDEE − λ β/R0 0

0 mσ −µ− nγ− ξiDI I − λ 0
0 0 nγ −µ− ξiDRR − λ



det(P1) = [µ + ξiDRR + λ]
[
λ3 + a2λ2 + a1λ + a0

]
,

where

a0 = (DSS DEE(µ + nγ) + DSS DI I (µ + mσ) + µDI I (DEE R0 + DSE(R0 − 1)))ξ2
i +

(µDSE(R0 − 1)(µ + nγ)DSS(µ + mσ)(µ + nγ) + µR0(DI I (µ + mσ) + DEE(µ + nγ)))ξi +

µR0(µ + mσ)(µ + nγ)−mσ
β

R0
(µR0 + ξiDSS),

a1 = (DSS DEE + DSS DI I + DEE DI I )ξ
2
i +

(nγ(DSS + DEE) + mσ(DSS + DI I + (µR0 − 1)DSI ) +

µ(2DSS + (R0 − 1)DSE + (DEE + DI I )(1 + R0)))ξi +

(1 + 2R0)µ
2 + ((mσ + nγ)(1 + R0))µ + mσ

(
nγ− β

R0

)
,

a2 = mσ + nγ + µ(2 + R0) + ξi(DSS + DEE + DI I ).

By the Routh–Hurwitz criterion λ3 + a2λ2 + a1λ + a0 = 0 have roots with negative real
parts if a0, a1, a2 > 0, and a1a2 > a0. Since R0 > 1, the real parts of all the eigenvalues are
negative and (S∗, E∗, I∗, R∗) is asymptotically stable.
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When m, n > 1 the stability of the equilibrium points cannot be determined analytically.
We calculated the eigenvalues for the four cases we investigate in this paper and their real
parts are plotted in Figure A1.

Figure A1. The real part of the eigenvalues for P1 using parameter values from Table 1 corresponding
to the four cases explored in this study.
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