
Citation: Huang, C.; Fan, B.; Jiang, C.

A Task Orchestration Strategy in a

Cloud-Edge Environment Based on

Intuitionistic Fuzzy Sets. Mathematics

2024, 12, 122. https://doi.org/

10.3390/math12010122

Academic Editor: Xibei Yang

Received: 20 November 2023

Revised: 26 December 2023

Accepted: 26 December 2023

Published: 29 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Task Orchestration Strategy in a Cloud-Edge Environment
Based on Intuitionistic Fuzzy Sets
Chunmei Huang 1, Bingbing Fan 1,* and Chunmao Jiang 2

1 School of Computer Science and Information Engineering, Harbin Normal University, Harbin 150025, China;
huangchunmeihl@163.com

2 School of Computer Science and Mathematics, Fujian University of Technology, Fuzhou 350118, China;
jiang@fjut.edu.cn

* Correspondence: fbbhsd@163.com

Abstract: In the context of the burgeoning cloud-edge collaboration paradigm, powered by advance-
ments in the Internet of Things (IoT), cloud computing, and 5G technology, this paper proposes a task
orchestrating strategy for cloud-edge collaborative environments based on intuitionistic fuzzy sets.
The proposed strategy prioritizes efficient resource utilization, minimizes task failures, and reduces
service time. First, WAN bandwidth, edge server virtual machine utilization, delay sensitivity of the
task, and task length are used to determine whether the task should be executed on the cloud or edge
device. Then, the cloud-edge collaborative decision-making algorithm is used to select the task’s
target edge servers (either the local edge servers or the neighboring edge servers). Finally, simulation
experiments are conducted to demonstrate the effectiveness and efficacy of the proposed algorithm.

Keywords: edge computing; task orchestration; intuitionistic fuzzy sets; fuzzy inference; membership
function; non-membership function

MSC: 94D05

1. Introduction

One of the hot areas for research and application right now is edge computing,
an emerging computing paradigm caused by the rapid advancement of IoT, cloud comput-
ing [1], 5G, and other technologies. To reduce network latency and improve application
performance and security, edge computing shifts processing and storage resources to the
edge of the data [2]. At the moment, extensive research and applications on edge computing
are being conducted across a variety of sectors and domains. Researchers in academia are
exploring the ideas and tenets of edge computing and its practical applications. They are
working on new algorithms and models to perform complex computing tasks on edge
devices and improving edge devices’ performance and reliability. Large technological cor-
porations are currently investigating edge computing applications in the sector. To facilitate
the development and implementation of various applications, including industrial IoT,
smart cities, and self-driving cars, they are creating and implementing a range of edge
devices and platforms [3].

Meanwhile, governments and standardization organizations are promoting the de-
velopment and adoption of edge computing. Standards organizations are creating a set of
guidelines and standards to guarantee the security and interoperability of edge computing
systems, while government agencies are creating policies to encourage edge computing
research and use. Edge computing research and applications are developing, and in the
future, they will become more significant across a range of sectors and domains. As an
essential node of edge computing, the edge device performs more and more tasks such as
computation, storage, communication, and security, and the requirements for its perfor-
mance and quality are becoming greater and greater. So, cloud-edge collaboration is now

Mathematics 2024, 12, 122. https://doi.org/10.3390/math12010122 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12010122
https://doi.org/10.3390/math12010122
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math12010122
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12010122?type=check_update&version=1

Mathematics 2024, 12, 122 2 of 16

introduced to reduce pressure on the edge node. The cloud will share a portion of the work
execution, but how to effectively schedule and organize these tasks is a crucial concern to
guarantee the performance and quality of computing.

The following issues primarily affect task orchestration for cloud-edge collaboration.
The first is that edge devices are frequently uncertain and dynamic. For example, their
capabilities, resource usage, network environment, and other factors can change over time.
The second is that the edge tasks are complex and varied. Their types, sizes, and other
characteristics vary, necessitating flexible orchestration in the actual situation. The orches-
tration of tasks in cloud-edge collaboration faces key challenges due to the dynamic nature
of edge devices and the complexity of edge tasks. This dynamic environment requires a
flexible approach to manage the varying types, sizes, and characteristics of tasks.

Recent approaches have focused on better decision making using three-way deci-
sions [4–7], rough set theory [8–11], and intuitionistic fuzzy sets to handle uncertain
information. These methods effectively deal with uncertain and incomplete data. Ignoring
neutral uncertainties during decision making can result in insufficient information, leading
to suboptimal decision results. Intuitionistic fuzzy sets precisely compensate for this draw-
back by using hesitation values. Thus, in the face of inaccurate information or insufficient
data, an intuitionistic fuzzy set is a valuable mathematical tool.

Therefore, to achieve efficient task scheduling in cloud-edge environments, this pa-
per introduces intuitionistic fuzzy set description variables and makes decisions on task
scheduling based on the fuzzy reasoning results of intuitionistic fuzzy sets.

The remainder of this paper is organized as follows. Section 2 reviews current research
on task orchestration in a cloud-edge environment, the definition of intuitionistic fuzzy sets,
and cloud-edge architecture. Section 3 introduces a task orchestrating algorithm grounded
in intuitionistic fuzzy sets in a cloud-edge environment. Finally, Section 4 presents experi-
mental results and analyses, including performance evaluations and practical experiments,
to demonstrate the efficacy of our proposed algorithm.

2. Related Work

This section will introduce the background of task scheduling in a cloud-edge environ-
ment, the relevant intuitionistic fuzzy set theory, and the cloud-edge architecture adopted.

2.1. Task Orchestrating in a Cloud-Edge Collaboration Environment

An essential topic of study in edge computing is task orchestration for cloud-edge
collaboration. Task orchestration seeks to balance workloads among nodes and assign
tasks to the most effective computing nodes to maximize system performance and resource
efficiency. Researchers have developed many offloading models and optimization tech-
niques to address the issue of task offloading in edge environments in recent years. These
techniques are currently mainly divided into those that consider only the edge layer and
those that consider only the cloud layer. According to specific optimization objectives, they
can be roughly divided into the following three [12]: minimizing energy consumption,
minimizing delay, and improving service quality.

The first category of algorithms is designed to minimize energy consumption, which is
crucial in cloud-edge computing. Fan et al. [13] and Chen et al. [14] have made significant
strides in this area. Fan et al. developed an optimized hierarchical cloud-FEC network,
while Chen et al. focused on a genetic algorithm for energy-efficient offloading. However,
these solutions primarily focus on energy savings, often not addressing the broader impacts
on network and computing resource efficiency. This narrow focus can be a limitation in
improving overall service quality in cloud-edge environments.

Another pursuit of efficient task orchestration in cloud-edge collaboration faces
the challenge of latency reduction and quality optimization in dynamic environments.
Dou et al. [15] addressed latency through a mixed integer nonlinear optimization prob-
lem, focusing on task offloading and resource allocation. Niu et al. [16] developed the

Mathematics 2024, 12, 122 3 of 16

BRT algorithm to minimize service delay. However, these algorithms often target a single
optimization goal, overlooking the dynamic and uncertain nature of practical applications.

To address dynamic task scheduling environments, the third category approach in-
volves optimizing overall service quality. Sonmon et al. [17] utilized fuzzy logic for two-
stage decision making in edge computing, adapting to changing conditions. Ali et al. [18]
applied a fuzzy logic-based task orchestrating algorithm, considering task requirements and
constraints. However, these methods may not fully capture the hesitancy and uncertainty
in expert evaluations, potentially leading to suboptimal decisions.

This paper designs a task orchestrating strategy for cloud-edge collaboration based on
intuitionistic fuzzy sets, which can more efficiently deal with the problem of hesitancy in
the actual scenarios based on the consideration of the dynamically changing environments.
The intuitionistic fuzzy set is an extension of fuzzy sets consisting of intuitionistic fuzzy
numbers. Intuitionistic fuzzy sets are composed of membership degrees, non-membership
degrees, and hesitancy degrees, which are more flexible than fuzzy sets in representing
uncertainties. When it is unsure whether the value belongs to a membership degree or a
non-membership degree, it is considered a hesitancy degree, giving more scope to represent
the uncertainty. The proposed algorithm solves problems such as the single optimization
objective of task orchestrating in the cloud-edge environment and the inability to better
deal with uncertainties.

2.2. Intuitionistic Fuzzy Set Theory

In recent years, there have been many applications of fuzzy theory. Ciric et al. [19]
proposed a formal decision-making process based on intuitionistic fuzzy theory to achieve
mechanized selection and rational use. Besiktepe et al. [20] have developed a resource-
efficient quantitative CA framework based on fuzzy theory, which can reduce subjectivity
when establishing conditional ratings. Wozniak et al. [21] proposed an intelligent control
system based on fuzzy logic type-two for humidity control and regulation. They apply
type-two fuzzy logic to system inference and decision making to adapt to complex and
uncertain humidity environments.

An expansion of fuzzy set theory, intuitionistic fuzzy sets are designed to address
specific issues that arise in the real-world applications of fuzzy set theory. Intuitionistic
fuzzy sets are currently the subject of extensive study that spans numerous domains
and use cases. Theoretically, many studies have been conducted on intuitionistic fuzzy
sets’ notions, properties, and inference methods. Numerous varieties of intuitionistic
fuzzy sets, including binary and ternary versions, have been proposed by researchers.
Numerous applications for intuitionistic fuzzy sets include data mining, intelligent control,
pattern detection, and many more domains. For instance, researchers have segmented and
recognized image regions using intuitionistic fuzzy sets in the field of pattern recognition,
with improved results [22]; in the field of intelligent control, intuitionistic fuzzy sets
have been applied to controller design, which can improve controller performance and
stability [23]; in the field of data mining, intuitionistic fuzzy sets can be used to process
multiattribute data, classify and cluster data, and so forth [24]. In conclusion, intuitionistic
fuzzy sets, as an extension of fuzzy set theory, have been widely studied and applied in
theory and application. The traditional fuzzy set is defined as [25]:

A =
{
< x, µA(x) >| x ∈ X

}
, (1)

where µA(x) is the degree of membership, the degree to which the element belongs to the
set, and these degrees of membership can be any real number between 0 and 1. Extending
the concept of classical sets to treat the degree of membership of an element as a continuous
quantity leads to a better representation of fuzzy and uncertain concepts in the real world.
The concept of intuitionistic fuzzy sets is defined as follows [26]:

A =
{
< x, µA(x), vA(x) >| x ∈ X

}
, (2)

Mathematics 2024, 12, 122 4 of 16

where µA(x), vA(x) ∈ [0, 1], and satisfies 0 ≤ µA(X) + vA(x) ≤ 1, ∀ x ∈ X, and µA(x) and
vA(x) are the degree of membership and non-membership, respectively, where µA(x) : x →
[0, 1], vA(x) : x → [0, 1], x ∈ X, πA(x) = 1 − µA(x) − vA(x) is called the hesitation degree
and also satisfies 0 ≤ πA(x) ≤ 1 .

For example, there is an intuitionistic fuzzy set A = {< x, 0.2, 0.6 >| x ∈ X},
which means that x belongs to A with degree 0.2, x does not belong to A with degree
0.6, and is neutral with degree 0.2. As an example to understand intuitionistic fuzzy sets
through simple examples in daily life, there are three types of voting: support, opposi-
tion, and neutrality. Under certain conditions, neutral individuals can become definite
supporters or opponents. Therefore, considering neutral individuals can better describe
practical problems. It corresponds to the membership degree, the non-membership degree,
and hesitation degree, respectively. Therefore, if we want to characterize an intuitionistic
fuzzy set, we need to use at least any two of the functions of the membership function,
the non-membership function, and the degree of hesitancy.

2.3. Cloud-Edge Architecture

In the field of cloud-edge architecture, initial research focused primarily on task
scheduling within cloud layers. However, the increasing volume of tasks led to network
congestion and slower cloud processing, resulting in higher task failure rates and prolonged
processing times. This situation necessitated the emergence of an edge layer, designed
to alleviate the load on cloud resources by handling data transmission and processing
more efficiently.

The cloud-edge architecture described in this paper adopts a multi-tier approach [27].
The model, illustrated in Figure 1, features a cloud center layer at the top, a middle edge
layer, and a device layer at the bottom composed of various mobile devices. Within this
structure, the edge layer, despite its limited capabilities, plays a crucial role in reducing the
burden on the cloud layer. However, overloading the edge layer with tasks can also lead to
increased failure rates, highlighting the need for a balanced approach in task allocation.

Edge layer

MANMAN

Mobile device layer

Cloud layer

WAN

Edge-orchestration

Edge-sever Edge-sever

WLAN

Computer Smartphone Smart
bracelet Ipad

Edge-sever

Figure 1. Cloud-edge structure.

Each layer of the architecture has a distinct function. The mobile device layer, including
smartphones and tablets, handles simple, real-time tasks such as sensor data analysis, but is
limited in computational and storage capabilities. The edge layer, comprising several

Mathematics 2024, 12, 122 5 of 16

dispersed nodes with computing and communication abilities, processes and stores real-
time, low-latency data. The edge orchestrator layer, a programmable and distributed
platform, dynamically manages computational and service resources across the edge
network to ensure high performance and availability. Finally, the cloud layer, which serves
as a hub for cloud computing, management, and storage, tackles complex tasks such as
big data analysis and deep learning, with outcomes relayed back to the edge nodes or
end devices.

This cloud-edge collaborative architecture is well-suited to meet the demands of the
Internet of Things, the mobile Internet, and similar applications. It offers flexible resource
management, low-latency responses, and efficient data processing, supporting a range of
emerging industry applications such as smart manufacturing, smart cities, and intelligent
transportation. Communication within this architecture is facilitated by a wireless local area
network (WLAN) between the mobile device layer and the edge layer, a metropolitan area
network (MAN) connecting edge devices, and a wide area network (WAN) for interactions
between devices in the edge layer.

2.4. Problem Statement

Each user node in the network generates a set of tasks, denoted as T = {t1, t2, t3, . . . , ti}.
The edge orchestrator determines the execution location for each task. The decision-making
process in both stages is implemented by intuitionistic fuzzy reasoning. The result of fuzzy
reasoning is defined as IFS, and thresholds d1 and d2 are set. This decision making is
formalized by two functions:

Cloud or Edge Layer Decision:

f 1 : T → {Cloud, Edge}. (3)

where f 1(ti) =

{
Cloud if IFS(ti) > d1,
Edge otherwise.

(4)

Local or Neighboring Edge Server Decision:

f 2 : T → {Local Edge Server, Neighboring Edge Server}. (5)

where f 2(ti) =

{
Neighboring Edge Server if IFS(ti) > d2,
Local Edge Server otherwise.

(6)

3. Collaborative Task Orchestrating Algorithm for Cloud-Edges Based on
Intuitionistic Fuzzy Theory

This paper combines intuitionistic fuzzy theory with task scheduling in a cloud-
edge environment. The general process of intuitionistic fuzzy reasoning is introduced in
this section, and task scheduling algorithms in a cloud-edge collaborative environment
are proposed.

3.1. Intuitionistic Fuzzy Reasoning

The intuitionistic fuzzy inference [28] employed in this work is the outcome of linearly
combining the outputs of the two fuzzy systems after performing fuzzy inference on the
membership and non-membership functions independently. One can compute the final
output as follows:

IFS = (1 − π) ∗ FSµ + π ∗ FSv, (7)

where FSµ is the result of fuzzy inference of the membership function, FSv is the result
of non-membership function fuzzy reasoning, and π is the degree of hesitation in the
intuitionistic fuzzy set. It is clear that intuitionistic fuzzy reasoning degrades to traditional
fuzzy reasoning when π = 0. Intuitionistic fuzzy inference is divided into four steps of the
following specific process:

Mathematics 2024, 12, 122 6 of 16

Step 1: Intuitionistic Fuzzification
Establish the membership and non-membership function of the input and output

variables using the trapezoidal and the triangular membership function. For each input
variable, an intuitionistic fuzzy set A∗ = {< x, µA∗(x), vA∗(x) >|x ∈ X} is established,
in which µA∗(x) and πA∗(x) is generally given by the expert experience, then vA∗(x) =
1 − µA∗(x) − πA∗(x).

Step 2: Intuitionistic Fuzzy Reasoning
For the established intuitionistic fuzzy set A∗ and intuitionistic fuzzy relationship

(IF-THEN rule), the Mamdani fuzzy inference system is used to infer the membership and
non-membership functions of the input variables, respectively.

Step 3: Defuzzification
Applying the center of gravity method of defuzzification for the reasoning results in

the above steps, the value is given by:

w =

∫
xµ(x)dx∫
µ(x)dx

. (8)

Step 4: Output linear results
The final output of the intuitionistic fuzzy inference system, IFS, is calculated according

to Equation (7).
Two algorithms are designed in this paper using intuitionistic fuzzy reasoning; the

first uses the edge layer orchestrating algorithm to obtain the task’s target edge servers
(either the local edge servers or the neighboring edge servers), and the second uses the
cloud-edge collaborative decision-making algorithm to determine whether the task should
be executed on the cloud or edge device based on the WAN bandwidth, the edge server
VM utilization, the task latency sensitivity, and the task length.

3.2. Task Orchestrating Based on Intuitionistic Fuzzy Reasoning in Cloud-Edge Environments

In the edge computing environment, the decision of where to unload tasks is affected
by many factors, such as edge device utilization, network environment, and computing
resources. However, these influencing factors usually change dynamically in the uncertain
edge computing environment. Uncertainty cannot be accurately expressed in mathematical
terms. On the contrary, it can be described in a fuzzy and uncertain range. Intuitionistic
fuzzy sets are easy to understand and apply, and the ideas and processes of intuitionistic
fuzzy logic in this paper are referenced from [28]. It uses membership and non-membership
degrees in fuzzy sets to describe the fuzziness and uncertainty of problems, which is more
in line with the reality of the world and human thinking processes. Therefore, intuitionistic
fuzzy logic can generate decision results that are easier to understand and explain, enabling
the system to interact and communicate with people effectively.

3.2.1. Input Variables

Numerous factors affect the decision-making phase. We use the following factors as
input variables [17] for the intuitionistic fuzzy reasoning phase: WAN bandwidth, edge
device VM utilization, delay sensitivity of the task, and task length. It can be stated as:

F = (W, U, S, L). (9)

In this case, W stands for WAN bandwidth, U for edge server virtual machine utiliza-
tion, S for task latency sensitivity, and L for task length. The four parameters affecting the
task orchestrating process are considered while determining the target server for a task.

In the design of this article, the WAN bandwidth W significantly impacts the transmis-
sion with the cloud layer. One way to implement task offloading is to transfer a portion of
the computational workload to the cloud. WAN bandwidth directly impacts task offloading
efficacy since it necessitates data transmission over WAN for task offloading. Offloading
tasks from the edge device to the cloud will increase transmission latency, slow offload-

Mathematics 2024, 12, 122 7 of 16

ing, and perhaps result in unsuccessful offloading if the WAN bandwidth falls below a
specific threshold.

U is the utilization of edge server virtual machines in edge computing. U determines
whether tasks should be delegated to the cloud or the edge. It may be possible to fully
utilize the edge server’s computational resources by offloading tasks if its utilization is low.
By offloading work to the cloud, we can fully leverage the cloud’s computing capabilities
and balance the load and performance of the entire edge computing system, especially if
the edge servers are being used to a high degree.

The term “delay sensitivity S” describes a task’s sensitivity to its processing speed
within a relatively constrained processing period. This is particularly true for jobs that are
based on real-time input from sensors, like autonomous driving, where information about
the state of the road is evaluated and responded to promptly to guarantee safety. Edge
devices are better suited for tasks that are more responsive to latency because they can
process and respond to commands more quickly.

Offloading tasks to edge nodes can considerably reduce latency because the data may
be processed closer to the user when tasks are short. The task length, L, and execution
time are strongly connected. On the other hand, cloud offloading can be more suitable
for lengthy jobs. The cloud’s tremendous computation and storage capabilities can easily
solve large-scale computing processes. Long tasks usually need additional processing
power and storage capacity, and the cloud can supply more processing capacity to satisfy
these demands.

3.2.2. Step 1: Intuitionistic Fuzzification

The step of transforming the input variables’ unambiguous values into fuzzy values
is known as intuitionistic fuzzification [29]. The Mamdani fuzzy inference system [30] is
utilized in this work because of its simplicity and broader applicability. Triangular and
trapezoidal membership functions are used to determine each input variable’s membership
values and levels, first establishing the membership and non-membership functions of
the input variables [31]. Next, the membership function image is used to blur the clear
values of the input variables, resulting in fuzzy variables. The appropriate language
variables for the input variables should be defined. This method’s linguistic variables
correspond to low, medium, and high for the four input variables: WAN bandwidth,
edge device VM utilization, task delay sensitivity, and task length. The values of the
membership function are generally obtained from the experience of experts, and the values
of the membership function of the input variables used in this paper synthesize the values
of the experts’ experience from [17] as well as from [27]. To simplify the calculation,
the degree of hesitancy π is set to 0.1, and the non-membership function can be calculated
as vA(x) = 1 − µA(x) − πA(x). Figure 2 displays the membership function images for
the input variables WAN bandwidth and task length, whereas Figure 3 illustrates the
non-membership function images.

0 2 4 6 8 10
wan_bw

0.0

0.2

0.4

0.6

0.8

1.0

M
em

be
rs

hi
p

low
medium
high

0 5 10 15 20 25
task_size

0.0

0.2

0.4

0.6

0.8

1.0

M
em

be
rs

hi
p

low
medium
high

Figure 2. The membership functions of WAN bandwidth and task size.

Mathematics 2024, 12, 122 8 of 16

0 2 4 6 8 10
wan_bw

0.0

0.2

0.4

0.6

0.8

1.0

N
on

-m
en

be
rs

hi
p

low
medium
high

0 5 10 15 20 25
task_size

0.0

0.2

0.4

0.6

0.8

1.0

N
on

-m
en

be
rs

hi
p

low
medium
high

Figure 3. The non-membership functions of WAN bandwidth and task size.

3.2.3. Step 2: Intuitionistic Fuzzy Reasoning

Fuzzy variables in the reasoning machine are calculated using established fuzzy rules
to produce a new fuzzy variable. A fuzzy rule base consists of a set of fuzzy rules similar
to human reasoning processes. It is a simple if-then rule that covers all possible scenarios
of application features and system conditions. These rules play a crucial role in defining
overall system performance. An example of a rule is to offload a task to the cloud if it
has a low edge VM utilization, low task length, medium WAN bandwidth, and low delay
sensitivity. The output value will be used for the decision stage. Table 1 provides a part of
the system’s fuzzy rules. The main goal is to avoid node overload and provide low latency
for edge applications, affecting service time and task failure rate.

Table 1. Partial fuzzy rules.

Rules Edge VM
Utilization

Length of
Task WAN-bw Delay

Sensitivity Decision

1 low low low low edge
2 low low low medium edge
3 low low low high edge
4 low low medium low cloud
5 low low medium medium edge
6 low low medium high edge

A fuzzy logic if-then rule base with 81 rules is developed in our decision-making
algorithm with four input and two output variables. In this step, three stages of aggre-
gation, activation, and accumulation are necessary to obtain the new fuzzy value in the
inference machine.

3.2.4. Step 3: Defuzzification

Defuzzification is the third stage. The process of turning the fuzzy output that the
inference machine inferred into crisp values is called defuzzification. Numerous other
defuzzification techniques exist, and the center of gravity method is employed in the
proposed algorithm. FSµ and FSv can be computed using Equation (8).

3.2.5. Step 4: Output Linear Results

In this thesis, the threshold value d used to determine the location of task offloading
is set to 50. When the IFS value exceeds 50, the task will be offloaded to the cloud server;
otherwise, the edge orchestrator will schedule the task offloaded to the appropriate edge
server. This brings us to the decision-making phase. The decision value of the decision-
making phase can be obtained using Equation (7). Algorithm 1 illustrates the precise steps
of the algorithm, while Figure 4 illustrates the algorithm flow.

Mathematics 2024, 12, 122 9 of 16

Algorithm 1 : Cloud-edge task orchestration algorithm.

Input: The real-time values of these variables
W: WAN bandwidth
U: Edge server VM utilization
S: Latency sensitivity of the task
L: Task length
d1: Threshold

Output: IFS : Intuitionistic fuzzy reasoning result
Optimal position for task orchestrating

1: Read Wan-bw, Avg-edge-util, Delay-sensitivity, Task-size
2: Fuzzy inference is performed on the membership and non-menbership function of the

input variables to obtain FSµ and FSV
3: Calculate IFS = (1 − π) ∗ FSµ + π ∗ FSv
4: If IFS < d1 then
5: Task offloading to edge server
6: Else
7: Task offloading to cloud server
8: End
9: Return Outputs

Input
variables

Membership function
Yes

No

Intuitionistic Fuzzy Reasoning System

Intuitionistic
fuzzification

Intuitionistic
 Fuzzy

Reasoning

去模糊化

crisp
value

fuzzy
 value

fuzzy
value

Defuzzification

VM utilization

WAN-bw
Delay

sensitivity

Task length

IF WAN IS high AND……THEN decision IS edge
IF WAN IS low AND……THEN decision IS cloud

IF WAN IS nothigh AND……THEN decision IS notedge

IF WAN IS notlow AND……THEN decision IS notcloud

IFS=（1-π）FSμ＋πFSv>50

IF-THEN rules

IF-THEN rules

Non-membership function

FSμ and FSv

Cloud

Edge

Figure 4. Flow of task orchestrating based on intuitionistic fuzzy reasoning in cloud-edge environments.

3.3. Edge Task Orchestrating Based on Intuitionistic Fuzzy Reasoning

The edge orchestrator can choose whether to schedule a task to the cloud or the edge
using Algorithm 1. This paper designs Algorithm 2, which determines whether to schedule
a task to a local edge server or a neighboring edge server in the edge layer to fully utilize the
edge server resources. The optimal edge server is chosen for the task in the edge layer by
applying intuitionistic fuzzy reasoning to three input variables: the network delay, the local
edge server’s CPU utilization, and the neighboring edge server’s CPU utilization. This
helps to prevent some local edge servers from becoming overloaded during task execution
while also allowing other neighboring edge servers in the edge layer with lower utilization
to be taken into consideration in order to utilize the computational resources fully.

Mathematics 2024, 12, 122 10 of 16

Algorithm 2 : Edge task orchestration algorithm.

Input: The real-time values of these variables
N: Network delay
C1: CPU utilization of the local edge server
C2: CPU utilization of neighboring edge server
d2: Threshold

Output: IFS : Intuitionistic Fuzzy Reasoning Results
Optimal position for task orchestrating

1: Read local edge util, neighboring edge util, network delay
2: Fuzzy inference is performed on the membership and non-menbership function of the

input variables to obtain FSµ and FSV
3: Calculate IFS = (1 − π) ∗ FSµ + π ∗ FSv
4: If IFS < d2 then
5: Task offloading to the local edge server
6: Else
7: Task offloading to neighboring edge server
8: End
9: Return Outputs

3.3.1. Input Variables

The simulation scenario considers the following factors: the network delay, the local
edge server’s CPU utilization, and the neighboring edge server’s CPU utilization. We
employ low, medium, and high as linguistic variables for the three input parameters. This
allows us to create a fuzzy rule base with 27 rules. Figure 5 displays the membership and
non-membership function images of the input variable network delay.

In order to enhance computation efficiency and response time, edge computing must
manage computation activities to be executed in local edge servers. This will minimize
network latency and bandwidth usage between the computation tasks and the central
servers. In order to make the most use of computational resources and minimize network
congestion, task orchestrating may consider distributing computation tasks to neighbor
computation nodes if the network latency is very low.

The utilization of nearby edge servers and local edge servers impacts task orchestrating
for edge computing. In order to prevent overloading, make the best use of the server’s
resources, and increase computation speed and efficiency, the task orchestrating should
think about distributing the computation tasks to other relatively idle edge servers if the
local edge server’s CPU utilization is high.

0 2 4 6 8 10 12 14 16
network_delay

0.0

0.2

0.4

0.6

0.8

1.0

M
em

be
rs

hi
p

low
medium
high

0 2 4 6 8 10 12 14 16 18
network_delay

0.0

0.2

0.4

0.6

0.8

1.0

N
on

-m
en

be
rs

hi
p

low
medium
high

Figure 5. Membership and non-membership function of the network delay.

3.3.2. Edge Task Orchestration Algorithm

When the task is scheduled into the edge layer, it is determined whether it will
be scheduled to the local edge servers or the neighboring edge servers based on the
decision result of the output, which is compared with the size of the threshold after four

Mathematics 2024, 12, 122 11 of 16

steps of intuitionistic fuzzy reasoning, defuzzification, and calculating the linear output,
respectively. Algorithm 2 displays the particular orchestrating algorithm.

4. Simulation Performance Evaluation

This section delves into a meticulous simulation study aimed at substantiating the
efficacy of the proposed algorithm. The segment initially outlines the experimental setup
and the evaluation metrics utilized, and subsequently juxtaposes the performance of our
proposed algorithm against four other prominent algorithms in the domain.

4.1. Simulated Environment

For our simulation, we leveraged EdgecloudSim [32], an advanced Java-based sim-
ulation tool underpinned by the CloudSim [33] framework. EdgecloudSim is adept at
modeling a layered architecture typical of edge computing, making it an ideal choice
for scrutinizing various architectures’ effects on task orchestration, resource allocation,
and overall quality of service.

The simulations were carried out on a robust system featuring a 12th generation
Intel(R) Core(TM) i5-12500H 2.50 GHz processor and 16 GB RAM, all running on a Win-
dows 11 platform. We meticulously simulated four distinct types of application: enhanced,
computational complexity, health, and entertainment applications. These were carefully
selected to provide a holistic view of the algorithm’s performance in a range of scenarios
and are detailed in Table 2.

Furthermore, to position our algorithm within the context of the current edge com-
puting landscape, we conducted a comparative analysis against several cutting-edge al-
gorithms in the field. This comparison not only highlights the unique advantages of
our proposed approach, but also provides a detailed performance benchmark, reaffirm-
ing its position as a potent solution for the evolving demands of cloud-edge comput-
ing environments.

Table 2. Parameters.

Parameter Parameter Value

Time 33
Warm-up time 3

Virtual Machine Load Check Interval 0.1
Position check interval 0.1

Minimum number of devices 200
Maximum number of devices 2400

Number of hosts in cloud data centers 1
Number of virtual machines for cloud hosting 4

Number of cores of cloud VMs 4

4.2. Performance Metrics

In evaluating performance, the number of tasks is varied by altering the number of
devices, and the outcomes are contrasted with several contemporary algorithms, including
the fuzzy-competitor code offloading algorithm [34] and others. Our chosen metrics
include the average task failure rate, service time, and average VM utilization, providing a
comprehensive view of the algorithm’s effectiveness.

Average Task Failure Rate (ATFR): ATFR is defined as the ratio of the number of
failed tasks to the total number of tasks. It is given by:

ATFR =
Number of Failed Tasks
Total Number of Tasks

. (10)

Service Time (ST): Service time combines processing time and network latency. It is
defined for a task i as:

STi = Tprocess,i + Tlatency,i, (11)

Mathematics 2024, 12, 122 12 of 16

where Tprocess,i is the processing time and Tlatency,i is the network latency for task i. The av-
erage service time over N tasks is then:

ST =
1
N

N

∑
i=1

STi. (12)

Average VM Utilization (AVMU): AVMU is the average CPU usage of the virtual
machines in the edge server, calculated as:

AVMU =
1
M

M

∑
j=1

CPU Time Used by VMj

Total CPU Time Available for VMj
, (13)

where M is the number of virtual machines, CPU Time Used by VMj is the CPU time used
by the j-th VM, and Total CPU Time Available for VMj is the total available CPU time for
the j-th VM.

4.3. Experimental Results and Performance Comparison

The experimental results of the proposed algorithm, as shown in Figure 6, demonstrate
the great performance of the proposed algorithm in terms of service time and task failure
rate, especially as the number of devices increases. This highlights the effectiveness of the
algorithm in dynamic conditions and its potential for real-world applications.

In Figure 6a, all algorithms perform well when the number of task devices is small.
However, as the number of devices increases, the proposed algorithm excels by considering
various factors, such as network conditions and VM utilization, in relation to device
overload. Dynamically selecting devices suitable for the current environment and arranging
tasks more rationally ensures efficient resource utilization and improves the success rate of
task completion.

Figure 6b compellingly demonstrates the superiority of the intuitionistic fuzzy logic-
based algorithm, offering notably shorter service times compared to its counterparts.
Service time, composed of both processing time and network latency, tends to be relatively
short for several algorithms when device numbers are minimal. However, as device
numbers swell and task volumes burgeon, our algorithm begins to show its true colors.
It capitalizes on enhanced virtual machine utilization and effective task allocation, thus
curtailing task completion delays and subsequently diminishing overall service time.

400 800 1200 1600 2000

Number of Mobile Devices

0

5

10

15

20

25

30

Fa
ile

d
T

as
ks

 (
%

)

infuzzy
fuzzy
util.
hybrid
fuzzy.competitor

(a)

400 800 1200 1600 2000

Number of Mobile Devices

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Se
rv

ic
e

T
im

e
(s

ec
)

infuzzy
fuzzy
util.
hybrid
fuzzy.competitor

(b)

Figure 6. Comparative evaluation of the proposed algorithm based on all application types.
(a) The failure rate; (b) The service time.

In the context of the average utilization of virtual machines depicted in Figure 7a,
the performance of various algorithms appears marginal when the devices are few. In par-
ticular, our algorithm does not significantly outperform others in terms of average VM
utilization under these conditions. However, as device numbers escalate, the edge CPU uti-

Mathematics 2024, 12, 122 13 of 16

lization under our intuitionistic fuzzy algorithm remains lower, suggesting optimal and full
resource usage, thereby reflecting an uptick in overall resource efficiency. Figure 7b sheds
light on the processing times of different algorithms on varying devices. When devices
are few, processing times across different approaches are comparable. However, as device
numbers proliferate, our algorithm maintains a more stable and efficient processing time.
This stability is attributed to the superior handling of fuzzy input variables in dynamic
computing environments by the intuitionistic fuzzy algorithm. It allocates computing
resources more judiciously, ensuring that processing times remain consistently minimal,
a testament to the algorithm’s robust adaptability and efficiency in complex and dynamic
cloud-edge ecosystems.

400 800 1200 1600 2000

Number of Mobile Devices

0

10

20

30

40

50

60

70

A
ve

ra
ge

 V
M

 U
til

iz
at

io
n

(%
)

infuzzy
fuzzy
util.
hybrid
fuzzy.competitor

(a)

400 800 1200 1600 2000

Number of Mobile Devices

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Se
rv

ic
e

T
im

e
(s

ec
)

infuzzy
fuzzy
util.
hybrid
fuzzy.competitor

(b)

Figure 7. Comparison of the proposed algorithm with others. (a) VM utilization; (b) The processing time.

The experimental study was benchmarked against four other sets of comparative anal-
yses. The first set employed a fuzzy edge task arrangement that utilized conventional fuzzy
methods for task scheduling. This approach primarily considered membership degrees
while overlooking the hesitancy degree inherent in real-world expert decision making.
As device numbers incrementally rose, our proposed strategy demonstrated increased
virtual machine utilization, circumventing processing delays, and thereby reducing both
service time and task failure rates more effectively. In the second comparative experiment,
a bandwidth-based task scheduling strategy was assessed, focusing solely on the influence
of bandwidth on the results. The third set involved a mixed task scheduling strategy, which
integrated both bandwidth and edge server utilization considerations. However, because of
their limited scope in accommodating dynamic factors, both the second and the third
comparative experiments exhibited less robust results. The final comparative experiment
drew on traditional fuzzy theory, considering variables such as edge server utilization, CPU
speed, video execution rate, and task size. However, this approach did not comprehensively
address task scheduling in a cloud-edge environment, leading to a less pronounced overall
enhancement. Each of these comparative analyses underscores the superior adaptability
and performance of our proposed intuitionistic fuzzy logic-based task scheduling strategy,
particularly in dynamic and uncertain cloud-edge computing contexts.

In our study, we used the Edgecloudsim platform to simulate four different types of
application tasks (APP), as depicted in Figure 8. Specifically, Figure 8a illustrates the service
time of the Health App, which generates small tasks, while Figure 8b details the service
time of the Augmented Reality (AR) App, known for producing medium-sized tasks with
a low tolerance for latency. The results indicate that our proposed algorithm consistently
maintains a lower percentage of service time, highlighting its effectiveness. The primary
objective of our experiment was to reduce the task failure rate and enhance resource
allocation efficiency by leveraging an intuitionistic fuzzy process. The data clearly show
that as the number of devices increases, our method outperforms others by achieving the
lowest service time across various types of tasks generated by different apps. This efficiency
is attributed to the algorithm’s ability to optimize virtual machine (VM) utilization, thereby
reducing processing time and service time. Furthermore, Figure 8c,d elucidate the task

Mathematics 2024, 12, 122 14 of 16

failure rates for heavy computing applications and infotainment applications in different
algorithms. Computing-intensive tasks, typically large-scale, require careful allocation to
prevent device overload. Our approach effectively distributes tasks between cloud and
edge devices even under such conditions, dynamically considering bandwidth and device
utilization, significantly reducing processing latency, and consequently enhancing the
task completion rate. This customized allocation strategy is a testament to the robustness
and adaptability of our proposed algorithm, making it a viable solution for diverse and
demanding cloud-edge computing environments.

400 800 1200 1600 2000

Number of Mobile Devices

0

0.5

1

1.5

2

2.5

Se
rv

ic
e

T
im

e
fo

r
H

ea
lth

 A
pp

 (
se

c) infuzzy
fuzzy
util.
hybrid
fuzzy.competitor

(a)

400 800 1200 1600 2000

Number of Mobile Devices

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Se
rv

ic
e

T
im

e
fo

r
A

ug
m

en
te

d
R

ea
lit

y
A

pp
 (

se
c)

infuzzy
fuzzy
util.
hybrid
fuzzy.competitor

(b)

400 800 1200 1600 2000

Number of Mobile Devices

0

5

10

15

20

25

30

35

40

Fa
ile

d
T

as
ks

 f
or

 H
ea

vy
 C

om
p.

 A
pp

 (
%

)

infuzzy
fuzzy
util.
hybrid
fuzzy.competitor

(c)

400 800 1200 1600 2000

Number of Mobile Devices

0

5

10

15

20

25

30

35

Fa
ile

d
T

as
ks

 f
or

In
fo

ta
in

m
en

t A
pp

 (
%

)

infuzzy
fuzzy
util.
hybrid
fuzzy.competitor

(d)

Figure 8. Comparative evaluation of the proposed mechanisms based on all application types.
(a) Service Time for Health App (sec); (b) Service Time for Augmented Reality App (sec); (c) Failed
Tasks for Heavy Comp. App; (d) Failed Tasks for Infotainment App.

5. Conclusions

This research delves into cloud-edge collaboration, introducing a task orchestrating
approach grounded in intuitionistic fuzzy sets. Through nuanced consideration of WAN
bandwidth, edge server virtual machine utilization, task latency sensitivity, and task length,
the proposed method mirrors the real-world scenario more closely, where hesitation and
ambiguity often exist. It effectively improves task execution efficiency and optimizes
resource utilization within edge computing environments. Comparative analysis with
alternative algorithms demonstrates that the approach presented here effectively manages
uncertainty through intuitionistic fuzzy logic, leverages the cloud-edge architecture with
an orchestrator for improved task resource management, and significantly boosts the task
completion success rate. The viability and efficacy of this novel approach are further
validated through comprehensive simulation experiments.

In the future, we will pave the way for further explorations and improvements. One
notable limitation of the current study is the assumption of task independence, overlooking
potential interdependencies among tasks. Future research will aim to address this gap,
exploring the intricacies of task dependency in cloud-edge environments. This includes
developing more sophisticated orchestration strategies that can dynamically adapt to the
complex interplay of tasks, thereby further enhancing the decision-making process and

Mathematics 2024, 12, 122 15 of 16

overall system performance. Furthermore, expanding the scope to include real-world
applications and more diverse computing scenarios will provide a more comprehensive
understanding of the potential and limitations of the proposed approach.

Author Contributions: Conceptualization, B.F.; methodology, C.J.; validation, C.H.; formal analysis,
C.H.; writing—original draft, B.F.; writing—review & editing, C.J. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: This work was supported in part by Fujian University of Technology Research
Fund Project (GY-Z220212).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Jiang, C.; Duan, Y.; Yao, J. Resource-utilization-aware task scheduling in cloud platform using three-way clustering. J. Intell.

Fuzzy Syst. 2019, 37, 5297–5305. [CrossRef]
2. Rasheed, A.; Chong, P.H.J.; Ho, I.W.H.; Li, X.J.; Liu, W. An overview of mobile edge computing: Architecture, technology and

direction. KSII Trans. Internet Inf. Syst. (TIIS) 2019, 13, 4849–4864.
3. Cao, K.; Liu, Y.; Meng, G.; Sun, Q. An overview on edge computing research. IEEE Access 2020, 8, 85714–85728. [CrossRef]
4. Wang, P.; Shi, H.; Yang, X.; Mi, J. Three-way k-means: Integrating k-means and three-way decision. Int. J. Mach. Learn. Cybern.

2019, 10, 2767–2777. [CrossRef]
5. Wang, P.; Yang, X. Three-way clustering method based on stability theory. IEEE Access 2021, 9, 33944–33953. [CrossRef]
6. Wang, P.; Yao, Y. CE3: A three-way clustering method based on mathematical morphology. Knowl.-Based Syst. 2018, 155, 54–65.

[CrossRef]
7. Wu, T.; Fan, J.; Wang, P. An improved three-way clustering based on ensemble strategy. Mathematics 2022, 10, 1457. [CrossRef]
8. Jiang, Z.; Yang, X.; Yu, H.; Liu, D.; Wang, P.; Qian, Y. Accelerator for multi-granularity attribute reduction. Knowl.-Based Syst.

2019, 177, 145–158. [CrossRef]
9. Liu, K.; Yang, X.; Yu, H.; Fujita, H.; Chen, X.; Liu, D. Supervised information granulation strategy for attribute reduction. Int. J.

Mach. Learn. Cybern. 2020, 11, 2149–2163. [CrossRef]
10. Liu, K.; Yang, X.; Fujita, H.; Liu, D.; Yang, X.; Qian, Y. An efficient selector for multi-granularity attribute reduction. Inf. Sci. 2019,

505, 457–472. [CrossRef]
11. Yang, X.; Yao, Y. Ensemble selector for attribute reduction. Appl. Soft Comput. 2018, 70, 1–11. [CrossRef]
12. Tang, B.; Luo, J.; Obaidat, M.S.; Vijayakumar, P. Container-based task scheduling in cloud-edge collaborative environment using

priority-aware greedy strategy. Clust. Comput. 2022, 26, 3689–3705. [CrossRef]
13. Fan, X.; Zheng, H.; Jiang, R.; Zhang, J. Optimal design of hierarchical cloud-fog&edge computing networks with caching. Sensors

2020, 20, 1582. [PubMed]
14. Chen, X.; Zhang, J.; Lin, B.; Chen, Z.; Wolter, K.; Min, G. Energy-efficient offloading for DNN-based smart IoT systems in

cloud-edge environments. IEEE Trans. Parallel Distrib. Syst. 2021, 33, 683–697. [CrossRef]
15. Dou, H.; Xu, Z.; Jiang, X.; Cui, J.; Zheng, B. Mobile edge computing based task offloading and resource allocation in smart grid.

In Proceedings of the 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP), Changsha,
China, 20–22 October 2021; pp. 1–5.

16. Niu, X.; Shao, S.; Xin, C.; Zhou, J.; Guo, S.; Chen, X.; Qi, F. Workload allocation mechanism for minimum service delay in edge
computing-based power Internet of Things. IEEE Access 2019, 7, 83771–83784. [CrossRef]

17. Sonmez, C.; Ozgovde, A.; Ersoy, C. Fuzzy workload orchestration for edge computing. IEEE Trans. Netw. Serv. Manag. 2019,
16, 769–782. [CrossRef]

18. Ali, H.S.; Rout, R.R.; Parimi, P.; Das, S.K. Real-time task scheduling in fog-cloud computing framework for iot applications: A
fuzzy logic based approach. In Proceedings of the 2021 International Conference on COMmunication Systems & NETworkS
(COMSNETS), Bangalore, India, 5–9 January 2021; pp. 556–564.

19. Ciric P, Z.; Stojic, D.; Sedlak, O.; Marcikic Horvat, A.; Kleut, Z. Innovation model of agricultural technologies based on
intuitionistic fuzzy sets. Sustainability 2019, 11, 5457. [CrossRef]

20. Besiktepe, D.; Ozbek, M.E.; Atadero, R.A. Condition assessment framework for facility management based on fuzzy sets theory.
Buildings 2021, 11, 156. [CrossRef]

21. Woźniak, M.; Szczotka, J.; Sikora, A.; Zielonka, A. Fuzzy logic type-2 intelligent moisture control system. Expert Syst. Appl. 2024,
238, 121581. [CrossRef]

22. Vlachos, I.K.; Sergiadis, G.D. Intuitionistic fuzzy information—Applications to pattern recognition. Pattern Recognit. Lett. 2007,
28, 197–206. [CrossRef]

http://doi.org/10.3233/JIFS-190459
http://dx.doi.org/10.1109/ACCESS.2020.2991734
http://dx.doi.org/10.1007/s13042-018-0901-y
http://dx.doi.org/10.1109/ACCESS.2021.3057405
http://dx.doi.org/10.1016/j.knosys.2018.04.029
http://dx.doi.org/10.3390/math10091457
http://dx.doi.org/10.1016/j.knosys.2019.04.014
http://dx.doi.org/10.1007/s13042-020-01107-5
http://dx.doi.org/10.1016/j.ins.2019.07.051
http://dx.doi.org/10.1016/j.asoc.2018.05.013
http://dx.doi.org/10.1007/s10586-022-03765-2
http://www.ncbi.nlm.nih.gov/pubmed/32178300
http://dx.doi.org/10.1109/TPDS.2021.3100298
http://dx.doi.org/10.1109/ACCESS.2019.2920325
http://dx.doi.org/10.1109/TNSM.2019.2901346
http://dx.doi.org/10.3390/su11195457
http://dx.doi.org/10.3390/buildings11040156
http://dx.doi.org/10.1016/j.eswa.2023.121581
http://dx.doi.org/10.1016/j.patrec.2006.07.004

Mathematics 2024, 12, 122 16 of 16

23. Castillo, O. Optimization of type-2 and intuitionistic fuzzy systems in intelligent control. In Uncertainty and Imprecision in Decision
Making and Decision Support: New Challenges, Solutions and Perspectives, Proceedings of the BOS-2018, Warsaw, Poland, 24–26 September
2018, and Proceedings of the IWIFSGN-2018, Warsaw, Poland, 27–28 September 2018; Springer: Cham, Switzerland, 2021; pp. 292–300.

24. Kaushal, M.; Solanki, R.; Lohani, Q.D.; Muhuri, P.K. A novel intuitionistic fuzzy set generator with application to clustering. In
Proceedings of the 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8.

25. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
26. Atanassov, K.T.; Stoeva, S. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [CrossRef]
27. Almutairi, J.; Aldossary, M. A novel approach for IoT tasks offloading in edge-cloud environments. J. Cloud Comput. 2021, 10, 28.

[CrossRef]
28. Castillo, O.; Melin, P. A new method for fuzzy inference in intuitionistic fuzzy systems. In Proceedings of the 22nd International

Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003, Chicago, IL, USA, 24–26 July 2003;
pp. 20–25.

29. Cherkassky, V. Fuzzy inference systems: A critical review. In Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration
With Applications; Springer: Berlin/Heidelberg, Germany, 1998; pp. 177–197.

30. Iancu, I. A Mamdani type fuzzy logic controller. Fuzzy Log.-Control. Concepts Theor. Appl. 2012, 15, 325–350.
31. Mendel, J.M. Fuzzy logic systems for engineering: A tutorial. Proc. IEEE 1995, 83, 345–377. [CrossRef]
32. Sonmez, C.; Ozgovde, A.; Ersoy, C. Edgecloudsim: An environment for performance evaluation of edge computing systems.

Trans. Emerg. Telecommun. Technol. 2018, 29, e3493. [CrossRef]
33. Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; De Rose, C.A.; Buyya, R. CloudSim: A toolkit for modeling and simulation of cloud

computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 2011, 41, 23–50. [CrossRef]
34. Flores, H.; Srirama, S. Adaptive code offloading for mobile cloud applications: Exploiting fuzzy sets and evidence-based learning.

In Proceeding of the fourth ACM Workshop on Mobile Cloud Computing and Services, Taipei, Taiwan, 25–28 June 2013; pp. 9–16.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/S0165-0114(86)80034-3
http://dx.doi.org/10.1186/s13677-021-00243-9
http://dx.doi.org/10.1109/5.364485
http://dx.doi.org/10.1002/ett.3493
http://dx.doi.org/10.1002/spe.995

	Introduction
	Related Work
	Task Orchestrating in a Cloud-Edge Collaboration Environment
	Intuitionistic Fuzzy Set Theory
	 Cloud-Edge Architecture
	Problem Statement

	Collaborative Task Orchestrating Algorithm for Cloud-Edges Based on Intuitionistic Fuzzy Theory
	Intuitionistic Fuzzy Reasoning
	Task Orchestrating Based on Intuitionistic Fuzzy Reasoning in Cloud-Edge Environments
	Input Variables
	Step 1: Intuitionistic Fuzzification
	Step 2: Intuitionistic Fuzzy Reasoning
	Step 3: Defuzzification
	Step 4: Output Linear Results

	 Edge Task Orchestrating Based on Intuitionistic Fuzzy Reasoning
	Input Variables
	Edge Task Orchestration Algorithm

	Simulation Performance Evaluation
	Simulated Environment
	Performance Metrics
	Experimental Results and Performance Comparison

	Conclusions
	References

