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Abstract: In the information age, frequent information exchange has provided a breeding ground
for the spread of computer viruses. The significant losses caused by computer virus attacks have
long rung the alarm for information security. From academia to businesses, and even to government,
everyone remains highly vigilant about information security. Researchers have put forward various
approaches to combat computer viruses, involving innovative efforts in both the hardware and
software aspects, as well as theoretical innovation and practical exploration. This article is dedicated
to theoretical exploration, specifically investigating the stability of a computer virus model, known as
SLBRS, from the perspective of optimal control. Firstly, a control system is introduced with the aim of
minimizing the costs related to network detoxification and diminishing the percentage of computers
impacted by the virus. Secondly, we employ the Pontryagin maximum principle to analyze the
optimality of a control strategy for the proposed system. Thirdly, we validate the effectiveness of
our theoretical analysis through numerical simulation. In conclusion, both theoretical analysis and
numerical simulation reveal that the utilization of optimal control analysis to stabilize the SLBRS has
been demonstrated to be advantageous in restoring contaminated computer network environments.
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1. Introduction

In the information age, frequent information exchange has become an integral part
of our daily lives, greatly facilitating the transmission of computer viruses in the cyber
environment. The proliferation of network computer viruses has posed significant global
information security threats, leading to substantial losses in various sectors, including
finance, education, and energy.

From 1987 to 1988, F. Cohen and W. Murray discovered certain similarities between
computer viruses and biological infectious diseases [1,2]. Consequently, they suggested
applying the principles of infectious disease dynamics and qualitative and quantitative
analysis methods to study the patterns of computer virus transmission. Unfortunately, they
did not propose specific models for the spread of computer viruses at that time. It was not
until 1991 that J. O. Kephart and S. R. White adopted the recommendations of F. Cohen and
W. Murray [3]. Based on the similarity between computer viruses and biological viruses,
they introduced the SIS (susceptible–infected–susceptible) computer virus propagation
model for the first time, pioneering the application of biological virus propagation models
to the field of computer viruses. Since then, extensive research has been conducted on
computer viruses; a rough summary is provided in the Table 1 below.
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Table 1. Early computer virus transmission models.

Model Year Authors Character Reference

SIS 1991 Kephart, White Susceptible, infected computers
involved [3]

SIR 2001 Tian, Zheng Computers with permanent
immunity [4]

SIRS 2004 Chen, Carley Computers with temporary
immunity [5]

SEIR 2006 Yuan, Chen Computers in a dormant state [6]

SEIRS 2007 Mishra, Saini Computers with temporary
immunity or in dormant state [7]

SAIC 2008 Piqueira,
Vasconcelos

The infected computers exhibit
logarithmic growth [8]

SAIR 2009 Piqueira, Araujo Coexistence of multiple viruses [9]
SEIQRS 2010 Mishra, Jha Infected computers are isolated [10]

The computer virus models described above are based on a common assumption
borrowed from epidemiological virus modeling, where an infected computer that remains
in latency will not infect other computers. However, in the context of computer viruses, it
is a whole different story:

Difference 1: Upon infection, a computer typically gains the immediate capability to
propagate the infection.

Difference 2: Computers that have recovered may develop temporary immunity.
Considering the differences between computer viruses and biological viruses (Differences

1–2), Yang and Wen [11] and Yang, Zhang, and Li [12] proposed a mathematical model with
characteristics of computer viruses known as SLBRS. They categorize the computers in the
system into four groups, namely, S(t), L(t), B(t), and R(t):

S(t)—susceptible computers: computers not yet infected by the virus but suscep-
tible to being infected by latent or outbreak computers, subsequently transitioning into
latent computers.

L(t)—latent computers: computers that have been infected by the virus but do not
exhibit apparent destructive behavior yet retain the potential to spread the infection.

B(t)—outbreak computers: computers that are infected by the virus, exhibiting appar-
ent destructive effects and having the potential to spread the infection.

R(t)—recovery computers: computers that have been cleared of the virus by third-
party security software or firewall products, possessing temporary immunity.

For the convenience of mathematical calculations, we assume that S(t), L(t), B(t), and
R(t) represent the proportions of susceptible, latent, outbreak, and recovered computers
in the network, respectively. Therefore, S(t), L(t), B(t), and R(t) satisfy the following
normalization condition:

S(t) + L(t) + B(t) + R(t) = 1.

The transition relationships among the different states S(t), L(t), B(t), and R(t) are
determined by the following assumptions:

Assumption 1: susceptible computers S(t) are infected with a virus at a certain rate
βS(L + B) and transform into latent computers L(t).

Assumption 2: latent computers L(t) transition into outbreak computers B(t) at an
outbreak rate α.

Assumption 3: outbreak computers B(t) are cured at an antivirus software recovery
rate γ1 and transform into recovery computers R(t).

Assumption 4: recovery computers R(t) lose immunity at a certain rate σ and trans-
form back into susceptible computers S(t).

Assumption 5: newly added computers are all susceptible computers S(t) with an
access rate p, and each state of computer has an exit rate µ.
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Based on the above assumptions (Assumptions 1–5), the state transition relationships
among computers in different states of SLBRS are illustrated in Figure 1:
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Figure 1. State transition diagram of SLBRS.

In reality, latent computers L(t) may recover due to users’ virus prevention and control
habits. Yang considered this factor in [13] and made the following additional assumption:

Assumption 6: latent computers L(t) are cured and transformed into recovery com-
puters R(t) at a certain rate γ2 due to third-party protective software or firewalls. Generally
speaking, the possibility of clearing the virus by reinstalling the system is lower than using
antivirus software, thus

γ2 < γ1.

Based on these assumptions (Assumptions 1–6), the state transition relationships
among computers in different states of SLBRS can be illustrated in Figure 2:
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In consideration of various virus prevention and control measures that can be taken
for outbreak computers B(t) in reality, the following assumption is further proposed:

Assumption 7: apart from using antivirus software, the virus can also be cleared by
reinstalling the system, thereby transitioning the infected computer B(t) into a susceptible
computer S(t) at a recovery rate of γ3. Obviously, due to the numerical advantage of out-
break computers over latent computers, the probability of latent computers transitioning to
the recovered state must be lower than the probability of outbreak computers transitioning
to the recovered state. Therefore, the following assumption is also reasonable:

γ3 < γ2 < γ1.

Under these assumptions (Assumptions 1–7), the state transition relationships of
SLBRS are illustrated as follows:

Figure 3 can be formulated as:
dS(t)

dt = p − βS(B + L) + γ3B + σR − µS,
dL(t)

dt = βS(B + L)− αL − γ2L − µL,
dB(t)

dt = αL − γ3B − µB − γ1B,
dR(t)

dt = γ2L − σR − µR + γ1B,

(1)
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The fact is that the severity of computer virus attacks varies over time, and protective
measures should be flexible and adaptable in response. Therefore, it is more reasonable to
consider that recovery rates vary with time [14]. In this paper, as an example, the authors
take the recovery rate γ1 as a continuous function of time µ1(t), representing the frequency
of running antivirus software on outbreak computers at time t. Consequently, we propose
SLBRS with variable recovery rates as follows:

Figure 4 can be reformulated by:
dS(t)

dt = p − βS(B + L) + γ3B + σR − µS,
dL(t)

dt = βS(B + L)− αL − γ2L − µL,
dB(t)

dt = αL − γ3B − µB − u1(t)B,
dR(t)

dt = γ2L − σR − µR + u1(t)B.

(2)
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Following the introduction of the SLBRS model and its variations (1) and (2) in [4–13],
the focus of analysis concerning them has primarily revolved around stability. This paper
will delve further into studying the system’s behavior from an optimal control perspective,
aiming to explore the mechanisms of computer virus transmission and prevention. The
organization of the remaining sections is as follows:

In Section 2, we will utilize the Hurwitz criterion to explore the stability conditions of
both non-toxic and toxic equilibria of the SLBRS (1) and prove the stability of these two
types of equilibrium.

In Section 3, we will focus on establishing the fundamental theoretical results con-
cerning the optimal control of SLBRS. This will encompass the following key aspects: the
existence of an optimal control strategy, the necessary conditions for optimal control, and
the uniqueness of the optimal control system.

In Section 4, we will perform simulations to offer a numerical illustration of the
practical implications of the theoretical discussions.

In Section 5, we will discuss the advantages of optimal control analysis in this paper
and the necessity of multi-control input analysis.

In Section 6, we will conclude the paper by summarizing the progress made in the
study of SLBRS.
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2. The Stability of SLBRS

Before investigating the optimal control of SLBRS, let us first conduct a brief analysis
of its stability. For the sake of convenience, under the normalization condition

S(t) + L(t) + B(t) + R(t) = 1,

the system of Equation (1) is transformed into:
dL(t)

dt = β(1 − L − B − R)(L + B)− αL − γ2L − µL,
dB(t)

dt = αL − γ1B − γ3B − µB,
dR(t)

dt = γ1B + γ2L − σR − µR,

(3)

2.1. Stability of the Non-Toxic Equilibrium

According to the definition of a non-toxic equilibrium, there are no infected computers
in the system. By (3), we deduced that L = 0, B = 0, and R = 0. Furthermore, utilizing the
normalization condition, we obtain the non-toxic equilibrium E0 = (1, 0, 0, 0). We define
the basic reproduction number as follows:

R0 =
[(α+ γ2 + µ− β)(γ1 + γ3 + µ)− βα](σ+ µ)

{(α+ γ1 + γ2 + γ3 + σ+ 3µ− β)∗ [(α+ γ1 + γ2 + γ3 + 2µ− β)(σ+ µ) + (α+ γ2 + µ− β)(γ1 + γ3 + µ)− βα]}

Theorem 1. For system (1), when R0 < 1, the non-toxic equilibrium E0 is locally asymptotically
stable; when R0 > 1, the non-toxic equilibrium E0 is unstable.

Proof of Theorem 1. The Hurwitz criterion is as follows: If the coefficients of characteristic
equation

D(s) = a0s3 + a1s2 + a2s + a1 = 0, a0 > 0.

of the Jacobian matrix of the linearized system are positive, and a1a2 − a0a3 > 0 then the
linearized system is asymptotic stable. First, we linearize (3) at E0. The Jacobian matrix of
functions of the right-hand side of (3) is:

J(E0)
=

 β− 2βL − 2βB − βR − α− γ2 − µ β− 2βL − 2βB − βR −βL − βB
α −γ1 − γ3 − µ 0
γ2 γ1 −σ− µ


(E0)

=

 β− α− γ2 − µ β 0
α −γ1 − γ3 − µ 0
γ2 γ1 −σ− µ

,

Then, the linearized equations of (3) at E0 are as follows:
dL(t)

dt = (β− α− γ2 − µ)L + βB,
dB(t)

dt = αL − (γ1 + γ3 + µ)B,
dR(t)

dt = γ2L + γ1B − (σ+ µ)R,

The characteristic equation of the Jacobian matrix J(E0)
is:∣∣∣∣∣∣

λ− β+ α+ γ2 + µ −β 0
−α λ+ γ1 + γ3 + µ 0
−γ2 −γ1 λ+ σ+ µ

∣∣∣∣∣∣ = 0,

Expressed as a polynomial, it is:

p1(λ) = a0λ
3 + a1λ

2 + a2λ+ a3 = 0,
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where
a0 = 1,

a1 = α+ γ1 + γ2 + γ3 + σ+ 3µ− β,

a2 = (α+ γ1 + γ2 + γ3 + 2µ− β)(σ+ µ) + (α+ γ2 + µ− β)(γ1 + γ3 + µ)− βα,

a3 = [(α+ γ2 + µ− β)(γ1 + γ3 + µ)− βα](σ+ µ).

when R0 < 1, we have a1 > 0, a2 > 0, a3 > 0 and a1a2 − a0a3 > 0. By the Hurwitz
criterion, E0 is locally asymptotically stable.

The proof is finished. □

2.2. Stability of the Toxic Equilibrium

According to the definition of a toxic equilibrium, there exist infected computers in
the system. By (3), we deduced the toxic equilibrium

E1= (L ∗, B∗, R∗),

where

L∗ =
(γ1 + γ3 + µ)(σ+ µ)(µS∗ − p)

σγ2(γ1 + γ3 + µ) + α[(σ+ µ)γ3 + σγ1]− βS∗(γ1 + γ3 + α+ µ)(σ+ µ)
,

B∗ =
αL∗

(γ1 + γ3 + µ)
,

R∗ =
[αγ1 + (γ1 + γ3 + µ)γ2]L∗

(γ1 + γ3 + µ)(σ+ µ)
.

Furthermore, by (1), we obtain

S∗ =
(γ1 + γ3 + µ)(α+ γ2 + µ)

β(γ1 + γ3 + µ+ α)
.

We define the basic reproduction number as follows:

R1 =
βα(L∗+B∗)

[
L∗
B∗ (σ+µ)+γ1+

γ2L∗
B∗ +(σ+µ)

]
{[β(L∗+B∗+

S∗B∗
L∗ )+(γ1+γ3+σ+2µ)] ∗ [(β(L ∗+B∗+

S∗B∗
L∗ )+αL∗

B∗ )(σ+µ)+β(L∗+B∗)(
αL∗
B∗ +γ2+α)]}

Theorem 2. For system (1), when R1 < 1, the toxic equilibrium E1 is locally asymptotically stable;
when R1 > 1, the toxic equilibrium is unstable.

Proof of Theorem 2. First, we linearize (3) at E1. Then, the Jacobian matrix linearized
system is

J(E0)
=

β− 2βL − 2βB − βR − α− γ2 − µ β− 2βL − 2βB − βR −βL − βB
α −γ1 − γ3 − µ 0
γ2 γ1 −σ− µ


(E1)

=

−β(L∗ + B∗ − S∗)− α− γ2 − µ −β(L∗ + B∗ − S∗) −β(L∗ + B∗)
α −γ1 − γ3 − µ 0
γ2 γ1 −σ− µ

,

We simplify the characteristic equation |λE − J| = 0 to obtain

p2(λ) = a0λ
3 + a1λ

2 + a2λ+ a3 = 0,
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where
a0 = 1,

a1 = β(L∗ + B∗ +
S∗B∗
L∗

) + (γ1 + γ3 + σ+ 2µ),

a2 =

[
β

(
L∗+B∗ +

S∗B∗
L∗

)
+

αL∗
B∗

]
(σ+ µ) + β(L∗+B∗)

(
αL∗
B∗

+ γ2 + α

)
,

a3 = βα(L∗ + B∗)

[
L∗
B∗

(σ+ µ) + γ1 +
γ2L∗

B∗
+ (σ+ µ)

]
.

When R1 < 1,

R1 =
βα(L∗+B∗)

[
L∗
B∗ (σ+µ)+γ1+

γ2L∗
B∗ +(σ+µ)

]
{[β(L∗+B∗+

S∗B∗
L∗ )+(γ1+γ3+σ+2µ)] ∗ [(β(L ∗+B∗+

S∗B∗
L∗ )+αL∗

B∗ )(σ+µ)+β(L∗+B∗)(
αL∗
B∗ +γ2+α)]}

= a3
a1·a2

< 1,

We have a1 > 0, a2 > 0, a3 > 0 and a1a2 − a0a3 > 0. By the Hurwitz criterion, E1 is
locally asymptotically stable.

The proof is finished. □

3. Optimal Control of SLBRS

In the past, significant emphasis has been placed on mathematically modeling com-
puter viruses and analyzing the stability of these models [3–13]. Comparatively, fewer
studies have delved into the control strategies of computer virus models, as is evident
in [14–17]. Nevertheless, these limited investigations have offered valuable insights to our
understanding of restoration strategies of virus containment networks.

The focal point of this paper is to investigate the optimal control problem of SLBRS,
aiming at diminishing the percentage of infected computers within a network and reducing
network maintenance expenses.

3.1. The Formulation of the Optimal Control Problem

Now, let us establish an optimal control model based on SLBRS. Firstly, in Section 1,
we transformed the constant recovery rate γ1 into a time-varying function u1(t). The state
transition relationships of S(t), L(t), B(t), and R(t) are illustrated in Figure 4, and the relevant
mathematical model can be found in (2). Secondly, we will select an appropriate control set.
Thirdly, we will choose a suitable objective function based on the intention of control.

Let us assume T is a predefined time. We stipulate the allowable control set as follows:

U =
{

u1(t) ∈ L2(0, T) : 0 ≤ u1(t) ≤ 1, 0 ≤ t ≤ T
}

. (4)

Our goal is to reduce the prevalence of virus-infected computers within the network
while minimizing the system’s maintenance expenses. Therefore, the objective function
could be formulated as follows:

J(u1) =

T∫
0

[
B(t) +

εu2
1
(t)

2

]
dt, (5)

where ε is a positive constant.
Thus, the optimal control problem can be formulated as:

min
u1∈U

J(u1)

Subject to the differential equations in (2).
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In order to facilitate subsequent analysis of the problem and corresponding to the
objective function, we introduce the following Lagrangian function:

L(B, u1) = B(t) +
εu2

1(t)
2

and the following Hamiltonian function:

H(t) = L(B, u1) + λ1[p − βS(L + B) + γ3B + σR − µS]
+λ2[βS(L + B)− αL − γ2L − µL] + λ3[αL − γ3B
−µB − u1(t)B] + λ4[γ2L − σR − µR + u1(t)B].

(6)

3.2. Optimal Control Results and Their Proofs

In this section, we will establish the existence of an optimal control strategy, the
necessary conditions for the existence of optimal control, and the uniqueness of the optimal
control system. This will serve as the foundation for numerical simulations.

Theorem 3. An optimal control input, denoted as u∗
1(t), exists for the control system (5) with the

given initial data:

S(0) = S0 ≥ 0, L(0) = L0 ≥ 0, B(0) = B0 ≥ 0, R(0) = R0 ≥ 0,

such that
minu1∈UJ(u1) = J(u∗

1)

Proof of Theorem 3. According to [18], it is sufficient to verify the following four conditions:
Condition 1. U =

{
u1(t) ∈ L2(0, T) : 0 ≤ u1(t) ≤ 1, 0 ≤ t ≤ T

}
̸= Φ;

Condition 2. U =
{

u1(t) ∈ L2(0, T) : 0 ≤ u1(t) ≤ 1, 0 ≤ t ≤ T
}

is closed and convex
set;

Condition 3. The right-hand side of state equations
dS(t)

dt = p − βS(B + L) + γ3B + σR − µS,
dL(t)

dt = βS(B + L)− αL − γ2L − µL,
dB(t)

dt = αL − γ3B − µB − u1(t)B,
dR(t)

dt = γ2L − σR − µR + u1(t)B.

are restricted by linear functions in terms of S, L, B, R. We need only to show the con-
dition for the first equation (the second is similar). Indeed, by the normalization condition

S(t) + L(t) + B(t) + R(t) = 1

we have 0 ≤ B ≤ 1. Thus,

p − βS(B + L) + γ3B + σR − µS
≤ p − β(L + B) + γ3B + σR − µS
= p − βL + (γ3 − β)B + σR − µS.

Condition 4. The Lagrangian function L(B, u1) exhibits concavity over the set U, and
there exists ρ > 1, η1 > 0, and η2 such that

L(B, u1) ≥ η1(|u|)ρ+ η2.

The proof is completed. □
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Next, through the utilization of the Pontryagin maximum principle, we will derive the
essential condition for the optimal control input:

Theorem 4. For the given optimal control input u∗
1(t) and the related states S∗, L∗, B∗, R∗ of

state Equation (2), there exist co-states λ1, λ2, λ3, and λ4 such that

dλ1

dt
= λ1[β(L + B) + µ]− λ2β(L + B), (7)

dλ2

dt
= λ1βS − λ2(βS − α− γ2 − µ)− λ3α− λ4γ2, (8)

dλ3

dt
= −1 + λ1(βS − γ3)− λ2βS + λ3[γ3 + µ+ u1(t)]− λ4u1(t), (9)

dλ4

dt
= −λ1σ+ λ4(σ+ µ), (10)

with the transversal conditions

λ1(T) = λ2(T) = λ3(T) = λ4(T) = 0. (11)

The optimal control is as follows:

u∗
1(t) = max

{
min

{
λ3 − λ4

ε
B∗, 1

}
, 0

}
.

Proof of Theorem 4. We differentiate the Hamiltonian function (6), and we obtain the
following co-state system:

dλ1

dt
= −HS∗(t),

dλ2

dt
= −HL∗(t),

dλ3

dt
= −HB∗(t),

dλ4

dt
= −HR∗(t),

which implies (7)–(10).
We deduce from the optimal conditions

∂H
∂u1

∣∣∣∣u1(t)=u∗
1(t)

= εu1(t)− λ3B + λ4B.

and the admissible condition

U =
{

u1(t) ∈ L2(0, T) : 0 ≤ u1(t) ≤ 1, 0 ≤ t ≤ T
}

that

u∗
1(t) = max

{
min

{
λ3 − λ4

ε
B∗, 1

}
, 0

}
.

By assembling the state equations of (2), co-state Equations (7)–(10), and the transversal
conditions of (11), we derive the optimal system as follows:

dS(t)
dt = p − βS(B + L) + γ3B + σR − µS,

dL(t)
dt = βS(B + L)− αL − γ2L − µL,

dB(t)
dt = αL − γ3B − µB − u1(t)B,

dR(t)
dt = γ2L − σR − µR + u1(t)B,

(12)
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and 
dλ1
dt = λ1[β(L + B) + µ]− λ2β(L + B),

dλ2
dt = λ1βS − λ2(βS − α− γ2 − µ)− λ3α− λ4γ2,

dλ3
dt = −1 + λ1(βS − γ3)− λ2βS + λ3[γ3 + µ+ u1(t)]− λ4u1(t),

dλ4
dt = −λ1σ+ λ4(σ+ µ),

(13)

with initial values
S0 ≥ 0, L0 ≥ 0, B0 ≥ 0, R0 ≥ 0 (14)

and the transversal conditions

λ1(T) = λ2(T) = λ3(T) = λ4(T) = 0. (15)

The proof is completed. □

Finally, we show the uniqueness of the optimal system (12)–(15):

Theorem 5. Given control time T, the solution of the optimal system (12)–(15) is unique.

Proof of Theorem 5. Assume that both (S, L, B, R; λ1, λ2, λ3, λ4) and (S, L, B, R; λ1, λ2,
λ3, λ4) are solutions of (12)–(15). Let

S = eλta, L = eλtb, B = eλtc, R = eλtd;

λ1 = e−λtw, λ2 = e−λtx, λ3 = e−λty, λ4 = e−λtz

and
S = eλta, L = eλtb, B = eλtc, R = eλtd;

λ1 = e−λtw, λ2 = e−λtx, λ3 = e−λty, λ4 = e−λtz,

where λ is a constant that will be determined later.
From (11), we obtain

u1(t) = max
{

min
{
(y − z)c

ε
, 1

}
, 0

}
,

u1(t) = max

{
min

{
(y − z)d

ε
, 1

}
, 0

}
.

From (12), we obtain

λeλta + eλta′ = p − βe2λta(b + c) + γ3eλtc + σeλtd − µeλta (16)

and
λeλta + eλta′ = p − βe2λta(b + c) + γ3eλtc + σeλtd − µeλta. (17)

From (13), we obtain

w′ − λw = (w + x)βeλt(b + c) + wµ,

and
w′ − λw = (w + x)βeλt(b + c) + wµ,

From (16) and (17), we obtain

λ(a − a) + (a′ − a′) = −βeλt[a(b + c)− a(b + c)]
+γ3(γ− γ) + σ(d − d)− µ(a − a),
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We then integrate from 0 to T, and we obtain

1
2 (a(T)− a(T))2 + λ

T∫
0
(a−a)2dt

= −β
T∫
0

eλt[a(b + c)− a(b + c)](a − a)dt + γ3

T∫
0
(γ− γ)(a − a)dt + σ

T∫
0
(d − d)(a − a)dt − µ

T∫
0
(a − a)2dt

= −β
T∫
0

eλt(ab − ab + ac − ac)(a − a)dt + γ3

T∫
0
(γ− γ)(a − a)dt

+ σ
T∫
0
(d − d)(a − a)dt − µ

T∫
0
(a − a)2dt

≤ C1eλt
T∫
0

[
(a − a)2 + (b − b)

2
+ (d − c)2

]
dt + C2

T∫
0
(a − a)2 + (b − b)

2
+ (c − c)2 + (d − d)

2

+ (w − w)2 + (x − x)2 + (y − y)2 + (z − z)2dt

where C1 and C2 are constants.
Similarly, we estimate the following:

1
2
(b − b)

2
(T),

1
2
(c − c)2(T),

1
2
(d − d)

2
(T).

Finally, we obtain

1
2 (a − a)2(T) + 1

2 (b − b)
2
(T) + 1

2 (c − c)2(T) + 1
2 (d − d)

2
(T) + 1

2 (w − w)2(0) + 1
2 (x − x)2(0) + 1

2 (y − y)2(0)

+ 1
2 (z − z)2(0) + λ

T∫
0

[
(a − a)2 + (b − b)

2
+ (c − c)2 + (d − d)

2
]
dt + λ

T∫
0

[
(x − x)2 + (y − y)2 + (z − z)2 + (w − w)2

]
dt

≤ (C3 + C3λt
4 )

T∫
0

[
(a − a)2 + (b − b)

2
+ (c − c)2 + (d − d)

2
]
dt + (C3 + C3λt

4 )
T∫
0

[
(w − w)2 + (x − x)2 + (y − y)2 + (z − z)2

]
dt.

Taking λ such that
λ > (C3 + C4e3λT)

and
T <

1
3λ

ln(
λ− C3

C4
)

then

(λ− (C3 + C4e3λT))
T∫
0

[
(a − a)2 + (b − b)

2
+ (c − d)

2
+ (d − d)

2
]
dt

+(λ− (C3 + C4e3λT))
T∫
0

[
(x − x)2 + (y − y)2 + (z − z)2 + (w − w)2

]
dt

≤ 0,

which implies that
a = a, b = b, c = c, d = d;

and
x = x, y = y, z = z, w = w.

Thus,
S = S, L = L, B = B, R = R;

λ1 = λ1, λ2 = λ2, λ3 = λ3, λ4 = λ4.

The proof is completed. □

Remark 1. The benefit of employing Pontryagin’s maximum principle to prove Theorem 2 is that,
alongside completing the proof, it sets the stage for our subsequent numerical simulations. In fact,
the state equation, co-state equation, transversality condition, and initial values generated during
the proof process serve as the very foundation for our upcoming numerical simulations.
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4. Numerical Simulation

In this section, we will conduct numerical simulations to examine the stability of (1)
and the controllability of (2) separately. To facilitate a comparative analysis, we will use
common initial values and parameter values for models (1) and (2) in the following section.

We take the initial value as follows:

S0 = 0.4, L0 = 0.3, B0 = 0.2, R0 = 0.1.

The parameter selection principle abides by the conditions specified in Theorems 1
and 2, ensuring that the basic reproduction number is less than 1. For detailed parameter
selection, refer to Table 2.

Table 2. Values of parameters.

Parameters Values Parameters Values

p 0.10 ε 2.00
α 0.60 β 0.90
γ2 0.10 γ1 0.15
σ 0.05 γ3 0.05
µ 0.10

4.1. Stability of SLBRS

Stability simulation is a relatively straightforward process. By utilizing the provided
parameters and initial values, we write a simple code employing ODE45 and execute it.
The outcomes of the simulation are illustrated in Figures 5 and 6.
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Figure 5 demonstrates that all the states S(t), L(t), B(t), and R(t) asymptotically stabilize
to the non-toxic equilibrium, in line with the conclusion of Theorem 1. Similarly, from
Figure 6, it is evident that all the states S(t), L(t), B(t), and R(t) asymptotically stabilize to
the toxic equilibrium, consistent with the conclusion of Theorem 2.

4.2. Controllability of SLBRS

The simulation of optimal control is quite complex. On one hand, there are many
equations that need to be solved (in fact, the optimal controllability simulation algorithm
involves solving the state equations, co-state equations, and control input equation). On the
other hand, for ensuring simulation accuracy, it is not only necessary to employ high-order
differences but also to utilize a combination of forward and backward differences.

For clarity, let us briefly outline the algorithm:
Step 1. Initialization: determine the time step, set iteration termination conditions,

and initialize the state, co-state, and control variables.
Step 2. Iteration Process: we solve the state equations using forward differences and

the co-state equations using backward differences.
Step 2.1. State Equation Solution: use fourth-order forward Runge-Kutta difference

to solve the state equation based on known control and initial value conditions.
Step 2.2. Co-state Equation Solution: employ fourth-order backward Runge-Kutta

difference, solving the co-state equation backward from the final time.
Step 2.3. Control Update: update control variables based on the results of the state

and co-state equations.
Step 2.4. Iterative Update: based on the updated control, repeat the solution of state

and co-state equations until the termination conditions are met.
Step 3. Simulation Results: obtain the optimal control strategy, state trajectory, and

other necessary numerical results.
The evolution trends of types S(t), L(t), B(t), and R(t) are presented in Figures 7–10.

The simulation results align well with the theoretical analysis results (Theorems 3–5).
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Figures 7 and 9 demonstrate that, under the effect of control, the proportion of un-
infected computers (S(t) and R(t)) gradually increases and stabilizes. This indicates the
restoration of the virus-contaminated network environment.

Figures 8 and 10 reveal that, under the influence of control, the proportion of infected
computers (L(t) and B(t)) gradually decreases and stabilizes. This, from another perspective,
reflects the ongoing restoration of the virus-infected network environment.

The evolution of control input is as follows.
The trend of the optimal control curve is consistent with reality (see Figure 11): Initially,

the computer virus attack intensity is high, and the level of protection is correspondingly
strong. However, as time passes, the intensity of the attack weakens, and the level of
protection decreases in parallel.



Mathematics 2024, 12, 132 14 of 16

Mathematics 2024, 12, 132 14 of 17 
 

 

Step 3. Simulation Results: obtain the optimal control strategy, state trajectory, and 
other necessary numerical results. 

The evolution trends of types S(t), L(t), B(t), and R(t) are presented in Figures 7–10. 
The simulation results align well with the theoretical analysis results (Theorems 3–5). 

 
Figure 7. Evolution of susceptible computer S(t). 

 
Figure 8. Evolution of outbreak computer B(t). 

 
Figure 9. Evolution of latent computer L(t). 

Figure 8. Evolution of outbreak computer B(t).

Mathematics 2024, 12, 132 14 of 17 
 

 

Step 3. Simulation Results: obtain the optimal control strategy, state trajectory, and 
other necessary numerical results. 

The evolution trends of types S(t), L(t), B(t), and R(t) are presented in Figures 7–10. 
The simulation results align well with the theoretical analysis results (Theorems 3–5). 

 
Figure 7. Evolution of susceptible computer S(t). 

 
Figure 8. Evolution of outbreak computer B(t). 

 
Figure 9. Evolution of latent computer L(t). Figure 9. Evolution of latent computer L(t).

Mathematics 2024, 12, 132 15 of 17 
 

 

 
Figure 10. Evolution of recovered computer R(t). 

Figures 7 and 9 demonstrate that, under the effect of control, the proportion of unin-
fected computers (S(t) and R(t)) gradually increases and stabilizes. This indicates the res-
toration of the virus-contaminated network environment. 

Figures 8 and 10 reveal that, under the influence of control, the proportion of infected 
computers (L(t) and B(t)) gradually decreases and stabilizes. This, from another perspec-
tive, reflects the ongoing restoration of the virus-infected network environment. 

The evolution of control input is as follows. 
The trend of the optimal control curve is consistent with reality (see Figure 11): Ini-

tially, the computer virus attack intensity is high, and the level of protection is correspond-
ingly strong. However, as time passes, the intensity of the attack weakens, and the level 
of protection decreases in parallel. 

 

Figure 11. Optimal control function 
*
1u (t) . 

Remark 2. We use the forward Runge-Kutta method to solve the state equations and the backward 
Runge-Kutta method to solve the co-state equations, and the simulation results are superior to 
simply using either forward or backward Runge-Kutta methods for solving them. 

5. Discussion 
At this point in the paper, let us address a few issues for discussion. 
Firstly, is it necessary to introduce control to SLBRS? 
To address this question, we directly compare the stable values of SLBRS with and 

without control input (Equations (1) and (2)). Utilizing the same parameters and initial 
states, we calculate the stable values of each state variable in (1) and (2) (see Table 3 for 
details). 

  

Figure 10. Evolution of recovered computer R(t).

Mathematics 2024, 12, 132 15 of 17 
 

 

 
Figure 10. Evolution of recovered computer R(t). 

Figures 7 and 9 demonstrate that, under the effect of control, the proportion of unin-
fected computers (S(t) and R(t)) gradually increases and stabilizes. This indicates the res-
toration of the virus-contaminated network environment. 

Figures 8 and 10 reveal that, under the influence of control, the proportion of infected 
computers (L(t) and B(t)) gradually decreases and stabilizes. This, from another perspec-
tive, reflects the ongoing restoration of the virus-infected network environment. 

The evolution of control input is as follows. 
The trend of the optimal control curve is consistent with reality (see Figure 11): Ini-

tially, the computer virus attack intensity is high, and the level of protection is correspond-
ingly strong. However, as time passes, the intensity of the attack weakens, and the level 
of protection decreases in parallel. 

 

Figure 11. Optimal control function 
*
1u (t) . 

Remark 2. We use the forward Runge-Kutta method to solve the state equations and the backward 
Runge-Kutta method to solve the co-state equations, and the simulation results are superior to 
simply using either forward or backward Runge-Kutta methods for solving them. 

5. Discussion 
At this point in the paper, let us address a few issues for discussion. 
Firstly, is it necessary to introduce control to SLBRS? 
To address this question, we directly compare the stable values of SLBRS with and 

without control input (Equations (1) and (2)). Utilizing the same parameters and initial 
states, we calculate the stable values of each state variable in (1) and (2) (see Table 3 for 
details). 

  

Figure 11. Optimal control function u∗
1(t).



Mathematics 2024, 12, 132 15 of 16

Remark 2. We use the forward Runge-Kutta method to solve the state equations and the backward
Runge-Kutta method to solve the co-state equations, and the simulation results are superior to
simply using either forward or backward Runge-Kutta methods for solving them.

5. Discussion

At this point in the paper, let us address a few issues for discussion.
Firstly, is it necessary to introduce control to SLBRS?
To address this question, we directly compare the stable values of SLBRS with and

without control input (Equations (1) and (2)). Utilizing the same parameters and initial
states, we calculate the stable values of each state variable in (1) and (2) (see Table 3
for details).

Table 3. The comparison of Equations (1) and (2).

Model S* L* B*

Equation (1) 0.30 0.12 0.25
Equation (2) 0.36 0.11 0.17

Table 2 illustrates that toxicity-free nodes (S*, R*) increase, and toxic nodes (L*, B*)
decrease. This observation strongly suggests that optimal control is beneficial for the
restoration of a contaminated network.

Secondly, there are several issues regarding the selection of the optimal control input
function:

(1) What if the recovery rate (γ2 or γ3) is used as the control input? It is similar to γ1, so
we omit the details.

(2) What if more than one recovery rate is utilized in the control inputs? The fact is that
the more control inputs are employed, the greater the ability to control the system.

Thirdly, there are questions regarding model improvement.
The selected model in this paper does not account for time-delay factors. However, in

reality, the transformation from latent to active computers and the recovery of virus-infected
computers both take a certain amount of time. Therefore, in future work, consideration
of time-delay factors can be introduced to establish an optimal computer virus control
model with time-delay factors. This is expected to yield results that are more practically
meaningful. Please refer to [15] for further details.

This paper employs optimal control theory to study the SLBRS model and has ob-
tained research conclusions that align with expectations. Introducing current popular
research directions such as stochastic control and adaptive control into the study of SLBRS
would undoubtedly open up new possibilities. For more details, please refer to the latest
literature [19–24].

6. Conclusions

In this paper, we have introduced the SLBRS computer virus model with triple recovery
rates. Subsequently, we have investigated its stability through both linearization and
optimal control. The primary findings are as follows.

Firstly, using the Hurwitz criterion, we have demonstrated the stability of both the non-
toxic equilibrium point and the toxic equilibrium point. Furthermore, we have validated
these findings through simulation.

Secondly, the existence and uniqueness of the optimal solution have been rigorously
established and confirmed through the application of the Pontryagin maximum principle.

Thirdly, for numerical simulations, we have employed an iterative algorithm. The re-
sults of these simulations illustrate that the optimal control strategy can effectively minimize
the outbreak of a virus in the network, all the while reducing network maintenance costs.
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