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Abstract: In this article we introduce an extension of the Akash distribution. We use the slash method-
ology to make the kurtosis of the Akash distribution more flexible. We study the general probability
density function of this new model, some properties, moments, skewness and kurtosis coefficients.
Statistical inference is performed using the methods of moments and maximum likelihood via the
EM algorithm. A simulation study is carried out to observe the behavior of the maximum likelihood
estimator. An application to a real data set with high kurtosis is considered, where it is shown that
the new distribution fits better than other extensions of the Akash distribution.
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1. Introduction

The slash distribution is an extended version of the normal distribution. It is charac-
terized by the ratio of two separate random variables: one following a normal distribution
and the other following a power of the uniform distribution. Therefore, we define a slash
distribution for variable S as:

S = U1/U2, (1)

where U1 ∼ N(0, 1), U2 ∼ Beta(q, 1), U1 is independent of U2 and q > 0; its representation
can be seen in Johnson et al. [1]. The distribution in question exhibits heavier tails compared
to the normal distribution, indicating a higher level of kurtosis. The characteristics of this
particular distribution are explored in detail in the works of Rogers and Tukey [2] and
Mosteller and Tukey [3]. Kafadar [4] delves into the topic of maximum likelihood estimation
for the location and scale parameters. Wang and Genton [5] present a multivariate version
of the slash distribution as well as a multivariate skew version. The slash distribution is
further extended by Gomez and Venegas [6] through the incorporation of the multivariate
elliptic distributions. This methodology to increase the weight of the queues has also
been used in distributions with positive support. To name a few, we mention the works of
Olmos et al. [7] in the half-normal and Rivera et al. [8] in the Rayleigh model, among others.
Based on the work of Rivera et al. [8], the scale mixture of Rayleigh (SMR) model is
proposed. We say that Y ∼ SMR(θ, q) with θ > 0 and q > 0 if the probability density
function (pdf) of Y is

fY(y; θ, q) =
q y

2θ
(

y2

2θ + 1
) q

2+1
, y > 0 . (2)
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Also, a necessary distribution in the development of this paper is the gamma distribution,
whose pdf is given by

g(t; a, b) =
ba

Γ(a)
ta−1e−bt, (3)

where a, b, t > 0. Its corresponding cumulative distribution function (cdf) is denoted by:

G(z; a, b) =
∫ z

0
g(t; a, b)dt (4)

Shanker [9] introduced the Akash distribution and applied it to real lifetime data sets
from medical science and engineering. Thus, we say that a random variable (r.v.) Y has an
Akash model (AK) with shape parameter θ if its pdf is

fY(y; θ) =
θ3

θ2 + 2
(1 + y2) exp(−θy), (5)

where θ, y > 0 and we denote it by Y ∼ AK(θ). The parameter θ is a shape parameter,
and if we add a scale parameter the pdf is given by

fY(y; σ, θ) =
θ3

σ(θ2 + 2)
(1 + y2/σ2) exp(−θy/σ), (6)

where σ > 0 is a scale parameter and θ > 0 is a shape parameter. We denote it by
Y ∼ AK(σ, θ).

Extensions of the AK distribution are carried out by Shanker and Shukla [10,11],
among others. Both extensions consider adding a parameter and we will compare them
with the new distribution. The two-parameter Akash distribution (TPAD) introduced by
Shanker and Shukla [10] has the following pdf:

fY(y; θ, α) =
θ3

αθ2 + 2
(α + y2) exp(−θy), (7)

where θ, α, y > 0 and we denote it by Y ∼ TPAD(θ, α).
The power Akash distribution (PAD), introduced by Shanker and Shukla [11], has the

following pdf:

fY(y; θ, α) =
αθ3

θ2 + 2
(1 + αy2α)yα−1 exp(−θyα), (8)

where θ, α, y > 0 and we denote it by Y ∼ PAD(θ, α).
The main motivation of this work is to introduce an extended version of the AK distri-

bution given in Equation (6), making use of the slash methodology, in order to obtain a new
distribution with greater kurtosis to be able to accommodate outliers. Pronounced fluctuations
in the data sets encountered in such diverse disciplines as economic and actuarial sciences,
environmental and earth sciences, among others, are very frequent. Thus, heavy-tailed models
are necessary to perform better modelling in the presence of extreme values. For example,
the normal distribution does not perform well in modelling data sets with extreme observations.
We must therefore resort to heavy-tailed distributions. For example, in problems in which
the involved r.v. has a high kurtosis, the probability that a rare event occurs can be highly
underestimated if a model without heavy tails is used, which is solved by using a model with
these characteristics. In the economy, practical examples of rare events are pandemics, and the
2008–2009 financial crisis, to name a few. In geology, a rare event might be a mega earthquake
or a sudden eruption of a volcano that has been dormant for centuries.

The paper is structured as follows: in Section 2 we deliver our proposal and present its
properties. In Section 3, we perform inference using the method of moments and maximum
likelihood via the EM algorithm and a simulation study is also carried out. In Section 4,
we apply the distribution to a real data set and compare it with other extensions of the AK
distribution. Finally, in Section 5, we provide the main conclusions.
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2. New Density and Its Properties

In this section, we introduce the representation, density and properties of the new
distribution.

2.1. Representation

The representation of this new distribution is given by

X =
Y
Z

, (9)

where Y ∼ AK(θ), Z ∼ Beta(q, 1), Y and Z are independent r.v.’s with θ, q > 0. We name
the distribution of X slash AK (SAK) and denote it by X ∼ SAK(θ, q).

2.2. Density Function

The following Proposition shows the pdf of the SAK distribution is generated using
the representation given in Equation (9).

Proposition 1. Let X ∼ SAK(θ, q). Then, the pdf of X is given by

fX(x; θ, q) =
q2Γ(q)x−(q+1)

(θ2 + 2)θq

{
θ2G(θx; q + 1, 1) + (q + 1)(q + 2)G(θx; q + 3, 1)

}
, (10)

where θ, q, x > 0 and G is the cdf of the gamma distribution given in Equation (4).

Proof. Using the stochastic representation given in Equation (9) and the Jacobian method,
we obtain

X = YZ−1

V = Z

}
⇒ Y = XV

Z = V

}
⇒ J =

∣∣∣∣ ∂Y
∂X

∂Y
∂V

∂Z
∂X

∂Z
∂V

∣∣∣∣ = ∣∣∣∣ v x
0 1

∣∣∣∣ = v.

fX,V(x, v) = |J| fY,Z(xv, v),

fX,V(x, v) = v fY(xv) fZ(v) , x > 0 , 0 < v < 1,

fX,V(x, v) =
θ3q

θ2 + 2
vq(1 + x2v2) exp(−θxv) , x > 0 , 0 < v < 1.

Then, marginalizing in relation to V we obtain the pdf of X, obtaining

fX(x; θ, q) =
θ3q

θ2 + 2

∫ 1

0
vq(1 + x2v2) exp(−θxv)dv.

With the change in variable t = θxv and using Equation (4), the result is obtained.

Observation 1. As the parameter q decreases, Table 1 and Figure 1 illustrate that the weight of the
right tail increases.

In particular, Table 1 compares P(X > x) in the AK and SAK distributions for different
values of x.

Table 1. Tail comparisons of the AK and SAK distributions

Distribution P(X > 5) P(X > 10) Distribution P(X > 15) P(X > 20)

SAK(1,1) 0.443 0.233 SAK(0.5,1) 0.367 0.278
SAK(1,5) 0.162 0.015 SAK(0.5,5) 0.063 0.020

SAK(1,10) 0.120 0.005 SAK(0.5,10) 0.034 0.007
AK(1) 0.085 0.002 AK(0.5) 0.018 0.003
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Figure 1. Left side: examples of the SAK(1, 1) (in black), SAK(1, 5) (in blue), SAK(1, 10) (in red).
Right side: examples of the SAK(0.5, 1) (in black), SAK(0.5, 5) (in blue), SAK(0.5, 10) (in red).

2.3. Properties

The following Proposition gives the cdf in closed form. It depends on G, which is the
cdf of the gamma distribution given in Equation (4).

Proposition 2. Let X ∼ SAK(θ, q). Then, the cdf of X is given by

FX(x; θ, q) =
(θ2 + 2G(θx; 3, 1))(θx)q − θ3qΓ(q)G(θx; q, 1)− Γ(q + 3)G(θx; q + 3, 1)

(θ2 + 2)(θx)q , (11)

where θ, q, x > 0 and G is given in Equation (4).

Proof. The result is obtained from a direct application of the definition of a cdf.

2.3.1. Reliability Analysis

The reliability function r(t) = 1 − F(t) and the hazard function h(t) = f (t)
r(t) of the SAK

distribution are provided in Corollary 1.

Corollary 1. The reliability and hazard functions of the SAK(θ, q) model are given by

1. r(t) = 1 − (θ2+2G(θt;3,1))(θt)q−θ3qΓ(q)G(θt;q,1)−Γ(q+3)G(θt;q+3,1)
(θ2+2)(θt)q ,

2. h(t) =
q2Γ(q)(θ2G(θt;q+1,1)+(q+1)(q+2)G(θt;q+3,1))

t(2(1−G(θt;3,1))(θt)q+θ3qΓ(q)G(θt;q,1)−Γ(q+3)G(θt;q+3,1)) ,

where θ, q > 0.

In Figure 2, we present the hazard function of the SAK model for several values of θ and q.
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Figure 2. Hazard function of the SAK(0.5, 1) distribution (in black), SAK(0.5, 2) distribution (in blue),
SAK(0.5, 3) distribution (in red).
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2.3.2. Right Tail of the SAK Distribution

According to Rolski et al. [12], a distribution has a heavy right tail if

lim sup
t→∞

(
− log r(t)

t

)
= 0.

The following result shows that the SAK distribution is heavy-tailed.

Proposition 3. The r.v. T ∼ SAK(θ, q) is heavy-tailed.

Proof. Applying L’Hospital’s rule twice we have,

lim sup
t→∞

(
− log r(t)

t

)
= lim sup

t→∞

(
fT(t; θ, q)

1 − FT(t; θ, q)

)
= lim sup

t→∞

(
q + 1

t
− θ3g(θt; q + 1, 1) + (q + 1)(q + 2)θg(θt; q + 3, 1)

θ2G(θt, q + 1, 1) + (q + 1)(q + 2)G(θt, q + 3, 1)

)
= 0.

The following Proposition shows that the SAK distribution can be represented as a
scale mixture between the AK and Beta distributions.

Proposition 4. If X|Z = z ∼ AK(z−1, θ) and Z ∼ Beta(q, 1) then X ∼ SAK(θ, q).

Proof. The joint density of X and Z is given by

fX,Z(x, z) =
qzqθ3

(θ2 + 2)
(1 + z2y2) exp(−θzy), x > 0, z ∈ (0, 1).

The marginal distribution of X is obtained as

fX(x) =
∫ 1

0
fX,Z(x, z)dz

=
qθ3

(θ2 + 2)

[∫ 1

0
zq exp(−θzx)dx + y2

∫ 1

0
zq+2 exp(−θzx)dz

]
=

qθ3

(θ2 + 2)

[
Γ(q + 1)
(θx)q+1

∫ θx

0

1
Γ(q + 1)

w(q+1)−1 exp(−w)dw

+
x2Γ(q + 3)
(θx)q+3

∫ θx

0
w(q+3)−1 exp(−w)dw

]
=

qΓ(q + 1)x−(q+1)

(θ2 + 2)θq

{
θ2G(θx; q + 1, 1) + (q + 1)(q + 2)G(θx; q + 3, 1)

}

The following proposition illustrates that the AK model is a particular case of the SAK
distribution for q → ∞.

Proposition 5. Let X ∼ SAK(θ, q) and Y ∼ AK(θ). If q → ∞, then X converges in law to Y.
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Proof. Using its representation X = Y
Z we analyze the convergence of this quotient, where

Y ∼ AK(θ) and Z ∼Beta(q, 1). In the Beta(q, 1) distribution we have, E[Z] = q
1+q and

Var[Z] = q
(q+2)(q+1)2 . Then, applying Chebychev’s inequality for Z, we have ∀ϵ > 0

P[|Z −E[Z]| > ϵ] ≤ Var(Z)
ϵ2 =

q
(q + 2)(q + 1)2ϵ2 . (12)

If q → ∞ then the right hand side of Equation (12) tends to zero, i.e., W = Z − E[Z]
converges in probability to 0. Also, E[Z] = q

1+q −→ 1, q → ∞, then we have,

Z = W +E[Z] P−→ 1, q → ∞.

As Y ∼ AK(θ), with the application of the Slutsky’s Lemma to X = Y
Z , it is obtained

X L−→ Y ∼ AK(θ), q → ∞.

Thus, when q is large enough, X converges in law to a AK(θ) distribution.

2.3.3. Moments

In this subsection we obtain the moments of the SAK distribution. To achieve this aim,
we first introduce the following lemma.

Lemma 1. Let Y ∼ AK(σ, θ) with σ, θ > 0. For r ∈ N, E[Yr] exists if and only if q > r and in
this case

E[Yr] =
σr(r!θ2 + (r + 2)!

)
θr(θ2 + 2)

. (13)

Proof. The r-th moment of the r.v. V ∼ AK(θ) is given by Shanker [9], which is E(Vr) =
r!θ2 + (r + 2)!

θr(θ2 + 2)
. Then calculating the r-th moment of Y = σV, where σ is a parameter of

scale, the result is obtained.

Proposition 6 presents the moments of the SAK distribution.

Proposition 6. Let X ∼ SAK(θ, q) with θ, q > 0. For r ∈ N, E[Xr] is given by

µr = E[Xr] =
q
(
r!θ2 + (r + 2)!

)
θr(θ2 + 2)(q − r)

, provided that q > r. (14)

Proof. Using the representation given in the Proposition 4 and by Lemma 1, we obtain

µr = E[Xr] = E[E(Xr|Z)] = E
[

Z−r(r!θ2 + (r + 2)!
)

θr(θ2 + 2)

]

=
r!θ2 + (r + 2)!

θr(θ2 + 2)
E
[
Z−r] = r!θ2 + (r + 2)!

θr(θ2 + 2)

∫ 1

0
qzq−r−1dz.

Solving the integral gives the result.

From Proposition 6, we can obtain expressions for the non-central moments,
µr = E[Xr], and the variance of X ∼ SAK(θ, q), Var(X), which are presented in Corollary 2.
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Corollary 2. Let X ∼ SAK(θ, q) with θ and q > 0. The noncentral moments and the variance of
X, Var(X), are obtained

µ1 =
qκ6

θκ2(q − 1)
, q > 1 , µ2 =

2qκ12

θ2κ2(q − 2)
, q > 2 ,

µ3 =
6qκ20

θ3κ2(q − 3)
, q > 3 , µ4 =

24qκ30

θ4κ2(q − 4)
, q > 4,

Var(X) =
q
[
2κ12κ2(q − 1)2 − qκ2

6(q − 2)
]

θ2κ2
2(q − 1)2(q − 2)

, q > 2.

where κi = θ2 + i.

Remark 1. Note that when q → ∞, Var(X) → θ4+16θ2+12
θ2(θ2+2)2 , which is the variance of an AK(θ)

distribution.

The next Corollary presents the skewness coefficient,
√

β1, of a SAK(θ, q) model.

Corollary 3. Let X ∼ SAK(θ, q), with θ > 0 and q > 3. Then the skewness coefficient of X is:

√
β1 =

2
√

q − 2
[
3κ20κ2

2(q − 1)3(q − 2)− 3qκ2κ6κ12(q − 1)2(q − 3) + q2κ3
6(q − 2)(q − 3)

]
√

q(q − 3)
[
2κ2κ12(q − 1)2 − q(q − 2)κ2

6
]3/2

Proof. Recall that

√
β1 =

E[(X −E(X))3]

(Var(X))3/2 =
µ3 − 3µ1µ2 + 2µ3

1
(µ2 − µ2

1)
3/2

,

where µ1, µ2 and µ3 were given in Corollary 2.

Also, the kurtosis coefficient, β2, of a SAK(θ, q) distribution is given in the follow-
ing Corollary.

Corollary 4. Let X ∼ SAK(θ, q) with θ > 0 and q > 4. The kurtosis coefficient of X is

β2 =
3(q − 2)

(
8κ3

2κ30q1 − 8qκ6κ20κ2
2q2 + 4q2κ2

6κ12κ2q3 − q3κ4
6q4

)
q(q − 3)(q − 4)

[
2κ12κ2(q − 1)2 − qκ2

6(q − 2)
]2 .

where q1 = (q − 1)4(q − 2)(q − 3), q2 = (q − 1)3(q − 2)(q − 4), q3 = (q − 1)2(q − 3)(q − 4)
and q4 = (q − 2)(q − 3)(q − 4).

Proof. Recall that

β2 =
E[(X −E(X))4]

(Var(X))2 =
µ4 − 4µ1µ3 + 6µ2

1µ2 − 3µ4
1

(µ2 − µ2
1)

2
,

where µ1, µ2, µ3, and µ4 were given in Corollary 2.
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Remark 2. Note that the skewness coefficient of the SAK(θ, q) model can be written as

√
β1 =

2(q − 1)3(q − 2)3/2
√

q(q − 1)3(q − 3)
×

[
3κ2

2κ20 − 3κ2κ6κ12
q(q−3)

(q−1)(q−2) + κ3
6

q2(q−3)
(q−1)3

]
[
2κ2κ12 − κ6

q(q−2)
(q−1)2

]3/2

= 2
(

(q − 2)3

q(q − 3)2

)1/2

×

[
3κ2

2κ20 − 3κ2κ6κ12
q(q−3)

(q−1)(q−2) + κ3
6

q2(q−3)
(q−1)3

]
[
2κ2κ12 − κ6

q(q−2)
(q−1)2

]3/2 .

From here, it is straighforward to check that

lim
q→∞

√
β1 =

2[3κ2
2κ20 − 3κ2κ6κ12 + κ3

6]

[2κ2κ12 − κ2
6]

2
=

2(θ6 + 30θ4 + 36θ2 + 24)
(θ4 + 16θ2 + 12)3/2 .

On the other hand, the kurtosis coefficient of the SAK(θ, q) model can be written as

β2 =
3(q − 1)4(q − 2)2(q − 3)
q(q − 1)4(q − 3)(q − 4)

×

[
8κ3

2κ30 − 8κ2
2κ6κ20

q(q−4)
(q−1)(q−3) + 4κ2κ2

6κ12
q2(q−4)

(q−1)2(q−2) − κ4
6

q3(q−4)
(q−1)4

]
[
2κ12κ2 − κ6

q(q−2)
(q−1)2

]2

=
3(q − 2)2

q(q − 4)
×

[
8κ3

2κ30 − 8κ2
2κ6κ20

q(q−4)
(q−1)(q−3) + 4κ2κ2

6κ12
q2(q−4)

(q−1)2(q−2) − κ4
6

q3(q−4)
(q−1)4

]
[
2κ2 − κ6κ12

q(q−2)
(q−1)2

]2 .

Therefore, it is simple to check that

lim
q→∞

β2 =
3[8κ2

2κ30 − 8κ2
2κ6κ20 + 4κ2κ2

6κ12 − κ4
6]

[2κ2κ12 − κ2
6]

2
=

3(3θ8 + 128θ6 + 408θ4 + 576θ2 + 240)
(θ4 + 16θ2 + 12)2 .

Note that the skewness and kurtosis coefficients of the SAK(θ, q) model coincides with that of
the AK(θ) for q → ∞ (see Shanker, 2015).

The findings from the data in Table 2 indicate that the skewness and kurtosis coeffi-
cients are influenced by the parameters θ and q. Moreover, it is observed that as the value
of q decreases, the skewness and kurtosis coefficients tend to increase. Conversely, when
the value of q increases, the skewness and kurtosis coefficients align with those of the AK(θ)
distribution (Proposition 5).

Table 2. Skewness and kurtosis of the SAK distribution for various values of the shape parameters.

θ q
√

β1 β2

0.5 5 1.974 16.574

1 1.952 15.180

0.5 6 1.570 9.039

1 1.596 8.650

0.5 7 1.391 7.009

1 1.438 6.863

0.5 10 1.201 5.460

1 1.271 5.470

0.5 100 1.085 4.788

1 1.166 4.837

0.5 ∞ 1.084 4.785

1 1.165 4.834
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3. Inference

In this section, our focus is on examining the estimation of parameters using the
method of moments and maximum likelihood (ML) through the EM algorithm. Addition-
ally, we conduct simulations to analyze the effectiveness of ML estimators in situations
with limited data samples.

3.1. Method of Moment Estimators

Let X1, . . . , Xn be a random sample from X ∼ SAK(θ, q). Let X = ∑n
i=1 Xi

n and

X2 =
∑n

i=1 X2
i

n be the first two sample moments.

Proposition 7. Given X1, . . . , Xn a random sample from X ∼ SAK(θ, q) with q > 2, the moment
method estimators of θ and q provides the following estimators

q̂M =
Xθ̂M(θ̂2

M + 2)

θ̂M(θ̂2
M + 2)X − θ̂2

M − 6
, (15)

X2θ̂M

[
2(θ̂2

M + 6)− θ̂MX(θ̂2
M + 2)

]
− 2X(θ̂2

M + 12) = 0 , (16)

where it is necessary to solve Equation (16) numerically to obtain θ̂M. Then θ̂M is replaced in
Equation (15) to obtain q̂M.

Proof. The equations for the method of moments are given by

E[X] =
q(θ2 + 6)

θ(θ2 + 2)(q − 1)
= X (17)

E[X2] =
2q(θ2 + 12)

θ2(θ2 + 2)(q − 2)
= X2 (18)

Solving the Equation (17) for the parameter q we obtain Equation (15). Then the
value of q̂M is substituted into the Equation (18) and the equation given in Equation (16) is
obtained.

3.2. ML Estimation

Let X1, . . . , Xn be a random sample from X ∼ SAK(θ, q). Then the log-likelihood
function is

l(θ, q) = c(θ, q)− (q + 1)
n

∑
i=1

log(xi) +
n

∑
i=1

log
[
θ2G(θxi; q + 1, 1) + (q + 1)(q + 2)G(θxi; q + 3, 1)

]
where c(θ, q) = 2n log(q) + n log(Γ(q))− n log(θ2 + 2)− nq log(θ). Taking partial deriva-
tives in l(θ, q) in relation to θ and q and equaling those equations to zero, we obtain

n

∑
i=1

2θG(θxi; q + 1, 1) + θ2 J(xi, q + 1) + (q + 1)(q + 2)J(xi, q + 3)
θ2G(θxi; q + 1, 1) + (q + 1)(q + 2)G(θxi; q + 3, 1)

=
2nθ

θ2 + 2
+

nq
θ

,

n

∑
i=1

θ2H(xi; q + 1) + (2q + 3)G(θxi; q + 3, 1) + (q + 1)(q + 2)H(xi; q + 3)
θ2G(θxi; q + 1, 1) + (q + 1)(q + 2)G(θxi; q + 3, 1)

= η(θ, q)−
n

∑
i=1

log(xi),

where J(xi, m) = xig(θxi; m, 1), H(xi; v) =
∫ θxi

0 log(t)g(t; v, 1)dt − ψ(v)G(θxi; v, 1) and
η(θ, q) = 2n

q + n(ψ(q)− log(θ)). Solving this system of equations to find the ML estimates
numerically may be a difficult task due to the functions it involves. However, an EM
algorithm can be implemented (see Dempster et al. [13]) to obtain the ML estimates.
The following subsection is dedicated to achieving this goal.
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3.3. EM Algorithm

A different way to represent the SAK model is provided through a stochastic approach.

Xi | Ui = ui, Zi = zi ∼ G(1 + 2ui, θzi),

Ui ∼ Bernoulli
(

2
θ2 + 2

)
,

Zi ∼ Beta(q, 1).

where Ui and Zi, i = 1, . . . , n, represent non-observable variables. This representa-
tion can be used for an alternative estimation procedure based on the EM algorithm
(Dempster et al. [13]). In this context, the observed data are given by Do = x⊤, where
x⊤ = (x1, . . . , xn). The vectors z⊤ = (z1, . . . , zn) and u⊤ = (u1, . . . , un) are the latent
variables and the vector Dc = (x⊤, z⊤, u⊤)⊤ are the complete data. Note that the joint
distribution of (Xi, Ui, Zi) is given by

f (xi, ui, zi) = f (xi | ui, zi)× f (ui)× f (zi)

=
(θzi)

1+2ui

Γ(1 + 2ui)
x2ui

i e−θzixi ×
(

2
θ2 + 2

)ui
(

θ2

θ2 + 2

)1−ui

× qzq−1
i

=
qθ3z2ui+q

i 2ui

(θ2 + 2)Γ(1 + 2ui)
x2ui

i e−θzixi .

Therefore, up to a constant that does not depend on the vector of parameters ψ = (θ, q),
the complete log-likelihood function for the model is given by

ℓc(ψ; Dc) = n
[
log q + 3 log θ − log(θ2 + 2)

]
+

n

∑
i=1

[q log zi − θxizi].

With this, the expected value of ℓc(ψ; Dc), given the observed data, is

Q(ψ | ψ(k)) = n
[
log q + 3 log θ − log(θ2 + 2)

]
+

n

∑
i=1

[
qκ̂

(k)
i − θxi ẑ

(k)
i

]
,

where ẑ(k)i = E(Zi | xi, ψ = ψ̂(k)) and κ̂
(k)
i = E(log Zi | xi, ψ = ψ̂(k)). Note that

f (zi, ui | xi) ∝
(θxi)

2ui+q+1

Γ(2ui + q + 1)
z(2ui+q+1)−1

i e−θxizi

G(1; 2ui + q + 1, θxi)︸ ︷︷ ︸
Zi |ui ,xi∼TG(0,1)(2ui+q+1,θxi)

× Γ(2ui + q + 1)
Γ(2ui + 1)

(
2
θ2

)ui

G(1; 2ui + q + 1, θxi)︸ ︷︷ ︸
Ui |xi∼Bernoulli(νi)

, (19)

where νi = Γ(q + 3)G(θxi; q + 3)/[θ2Γ(q + 1)G(θxi; q + 1) + Γ(q + 3)G(θxi; q + 3)],
G(x; a) =

∫ x
0

1
Γ(a) ta−1e−tdt is the cdf for the gamma model and TG(0,1)(a, b) denotes the

gamma distribution with shape a and rate b truncated in the interval (0,1). Therefore, us-
ing properties of conditional expectations, we have E(Zi | xi) = E(E(Zi | Ui, xi) | xi) and
by (19) such expectations are simple to be computed. In a similar manner, we can compute
E(log Zi | xi), obtaining as results

E(Zi | xi) =
νi(q + 3)G(θxi, q + 4)

θxiG(θxi, q + 3)
+

(1 − νi)(q + 1)G(θxi, q + 2)
θxiG(θxi, q + 1)

, (20)

E(log Zi | xi) =
νi

Γ(q + 3)G(1; q + 3, θxi)

∫ θxi

0
log

(
wi
θxi

)
wq+2

i e−wi dwi

+
(1 − νi)

Γ(q + 1)G(1; q + 1, θxi)

∫ θxi

0
log

(
wi
θxi

)
wq

i e−wi dwi. (21)

Therefore, the kth iteration of the algorithm comprises the following steps:
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• E-step: given θ̂(k−1) and q̂(k−1), for i = 1, . . . , n compute ẑ(k)i and κ̂
(k)
i using

Equations (20) and (21), respectively.
• M1-step: update q̂(k) as

q̂(k) =
−n

∑n
i=1 κ̂

(k)
i

.

• M2-step: update θ̂(k) as the solution for the non-linear equation

3
θ
− 2θ

θ2 + 2
=

1
n

n

∑
i=1

xi ẑ
(k)
i .

The E, M1 and M2 steps are iterated until convergence is achieved. Convergence is defined as
reaching a point where the difference between the estimates obtained in two consecutive iterations
is smaller than a predetermined value. Note that the M1-step was obtained in a closed form,
whereas the solution for θ can be obtained, for instance, with the uniroot function of R [14].

In the following subsection we run some simulations to study the behavior of the
ML estimators.

3.4. Simulation Study

In this subsection, we will conduct a brief simulation study using R software 4.3.2 to
evaluate the performance of the ML estimators obtained through the EM algorithm for the
SAK(θ, q) model discussed earlier. To generate the data, we will consider three different values
for θ (0.5, 3, and 10), three values for q (0.5, 1, and 2), and five sample sizes (30, 50, 100, 200,
and 500). For each combination of θ, q, and n, we will draw 1000 replicates and calculate the
ML estimators. The initial value to start the EM algorithm is based on θ̂(0), the estimation of θ
obtained from the AK model (with scale fixed at 1) and q̂(0) = 1. In addition, for each replicate
we estimate the standard errors based on the observed information matrix. Table 3 reports the
empirical bias (bias), the average of the estimated bias (bias), the mean of the standard errors,
the square root of the mean squared error based on empirical data, and the 95% probability
that the estimated parameters fall within the asymptotic distribution are all indicators of the
performance of maximum likelihood estimators. The table presented, Table 3, demonstrates
that as the sample size (n) increases, the estimator’s performance improves.
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Table 3. Estimated bias, SE, RMSE and CP of the ML estimators of the parameters of the SAK distribution for different sample sizes.

n = 30 n = 50 n = 100 n = 200 n = 500
θ q Estimator Bias SE RMSE CP Bias SE RMSE CP Bias SE RMSE CP Bias SE RMSE CP Bias SE RMSE CP

0.5 0.5 θ̂ −0.002 0.119 0.124 0.914 −0.004 0.092 0.094 0.930 −0.001 0.065 0.066 0.937 0.000 0.046 0.046 0.946 0.000 0.029 0.029 0.947
q̂ 0.036 0.122 0.139 0.961 0.025 0.092 0.100 0.958 0.012 0.063 0.065 0.952 0.005 0.043 0.044 0.952 0.001 0.027 0.027 0.951

1.0 θ̂ −0.004 0.110 0.114 0.918 −0.003 0.085 0.086 0.931 −0.002 0.060 0.061 0.940 −0.001 0.043 0.043 0.946 0.000 0.027 0.027 0.946
q̂ −0.159 0.236 0.253 0.924 −0.112 0.161 0.171 0.929 −0.087 0.108 0.115 0.939 −0.059 0.074 0.081 0.948 −0.046 0.046 0.051 0.948

2.0 θ̂ −0.003 0.105 0.107 0.931 −0.003 0.081 0.082 0.939 −0.002 0.057 0.058 0.940 −0.001 0.040 0.041 0.945 0.000 0.025 0.026 0.947
q̂ −0.137 0.597 0.622 0.904 −0.125 0.395 0.420 0.924 −0.077 0.233 0.250 0.932 −0.041 0.151 0.162 0.942 −0.023 0.092 0.095 0.948

3.0 0.5 θ̂ 0.136 1.063 1.236 0.891 0.095 0.794 0.861 0.915 0.035 0.537 0.556 0.927 0.013 0.373 0.380 0.940 0.005 0.234 0.235 0.947
q̂ 0.059 0.156 0.206 0.963 0.030 0.110 0.124 0.958 0.015 0.075 0.079 0.955 0.009 0.052 0.054 0.953 0.003 0.032 0.033 0.952

1.0 θ̂ 0.104 0.982 1.112 0.896 0.060 0.729 0.786 0.912 0.028 0.499 0.517 0.929 0.012 0.347 0.354 0.941 0.003 0.218 0.219 0.948
q̂ −0.087 0.398 0.446 0.892 −0.057 0.245 0.296 0.925 −0.021 0.145 0.188 0.938 −0.012 0.097 0.117 0.948 −0.002 0.060 0.066 0.947

2.0 θ̂ 0.145 0.976 1.070 0.922 0.068 0.709 0.747 0.929 0.018 0.478 0.491 0.934 0.006 0.332 0.339 0.941 0.000 0.208 0.210 0.946
q̂ −0.105 1.025 1.090 0.915 −0.084 0.724 0.790 0.924 −0.069 0.440 0.485 0.935 −0.048 0.255 0.282 0.942 −0.008 0.140 0.155 0.948

10.0 0.5 θ̂ 0.595 4.688 5.331 0.882 0.291 3.484 3.709 0.901 0.126 2.400 2.470 0.925 0.088 1.684 1.706 0.942 0.019 1.056 1.049 0.944
q̂ 0.069 0.175 0.184 0.964 0.035 0.113 0.128 0.963 0.016 0.075 0.080 0.957 0.007 0.052 0.053 0.951 0.003 0.032 0.033 0.951

1.0 θ̂ 0.559 4.440 4.910 0.904 0.222 3.260 3.453 0.910 0.102 2.248 2.328 0.926 0.059 1.574 1.600 0.941 0.009 0.987 0.980 0.948
q̂ −0.097 0.508 0.631 0.899 −0.051 0.284 0.389 0.903 −0.031 0.152 0.199 0.939 −0.023 0.098 0.117 0.948 −0.012 0.060 0.080 0.948

2.0 θ̂ 0.885 4.575 4.757 0.935 0.389 3.286 3.316 0.937 0.172 2.209 2.217 0.944 0.035 1.533 1.546 0.947 −0.006 0.955 0.955 0.947
q̂ −0.068 1.224 1.222 0.924 −0.057 0.834 0.950 0.931 −0.037 0.440 0.483 0.935 −0.027 0.305 0.313 0.942 −0.018 0.149 0.159 0.943
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4. Application

In this section, we analyze a real data set showing that the SAK distribution can be more
appropriate than other commongly used distributions to model heavy right-tailed data for
this particular data set and based on some model selection criteria. The data correspond to
plasma beta-carotene levels (ng/mL) of 314 patients. This data set contains 14 variables and is
available online at http://Lib.stat.cmu.edu/datasets/PlasmaRetinol (accessed on 31 October
2023 ). In this study, we consider the variable Betaplasma. The medical interest in this variable
comes from the fact that low levels of plasma beta-carotene may be associated with higher
risk of developing certain types of cancer. In Table 4, we present some descriptive statistics
including the sample skewness, b1, and sample and kurtosis b2. We may observe high kurtosis
in this data set.

Table 4. Summary for betaplasma data.

n x s2 b1 b2

314 190.4968 33480.72 3.536562 16.8145

The moment estimates for the parameters of the SAK distribution are θ̂M = 0.025 and
q̂M = 2.810. These estimates are useful starting values, required to implement maximum
likelihood estimation using numerical methods. The ML estimates for the parameters of
the AK, TPAD, PAD, SMR, and SAK models are displayed in Table 5. For each distribution,
we present the maximum of the log-likelihood function. It can be seen that the SAK model
presented a larger value of log-likelihood than the other models.

Table 5. ML estimates for AK, TPAD, PAD, SMR and SAK models (standard errors are in parenthesis).

Parameter Estimates AK TPAD PAD SMR SAK

θ 0.387 (0.120) 0.016 (0.004) 0.012 (0.003) 16,998.167 (3399.076) 0.027 (0.002)
α − 1.830 (0.133) 1.052 (0.038) − −
q − − − 2.926 (0.385) 2.331 (0.294)
σ 25.767 (8.697) − − − −

log-likelihood −1952.939 −1955.297 −1953.632 −1910.472 −1908.147

In order to compare the fit of the distributions, we considered the usual Akaike information
criterion (AIC), introduced by Akaike [15], and the Bayesian information criterion (BIC),
proposed by Schwarz [16]. It is known that AIC = 2k − 2 log lik and BIC = k log n − 2 log lik
where k is the number of parameters in the model, n is the sample size and log lik is the
maximized value of the log-likelihood function. Table 6 shows the AIC and BIC for each model,
indicating that the SAK distribution leads to a better fit than the other distributions. Figure 3
presents the histogram for the data together with the fitted densities.

Table 6. AIC and BIC criteria for fitted models.

Criterion AK TPAD PAD SMR SAK

AIC 3909.878 3914.594 3911.264 3824.944 3820.294
BIC 3917.376 3922.092 3918.763 3832.443 3827.793

In our analysis, we also calculated the quantile residuals (QR). If the model is suitable
for the data, the QR should follow a distribution similar to the standard normal distribution,
as explained in Dunn and Smyth [17]. To confirm this assumption, conventional normality
tests such as the Anderson-Darling (AD), Cramer-von Mises (CVM), and Shapiro-Wilkes
(SW) tests can be used. Figure 4 demonstrates the quantile residuals of the PAD, SMR,
and SAK distributions through a qqplot. The QR results for the AK and TPAD models are

http://Lib.stat.cmu.edu/datasets/Plasma Retinol
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just as unsatisfactory as those of the PAD distribution. Considering the outcomes of all
three tests, it seems that the SAK model offers a better fit for the dataset.

betaplasma

pr
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ty
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n

0 500 1000 1500

0.000
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SAK

Figure 3. Betaplasma: histogram and fitted pdf for AK, TPAD, PAD, SMR and SAK distributions.
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AD: p−value <0.001 
CVM: p−value <0.001
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Figure 4. The qqplots of the quantile residuals for the fitted modelscand p-values of the AD, CVM
and SW tests.

5. Discussion

This paper presents an extended version of the AK model based on the slash method-
ology. Some properties of this new distribution are derived. It is also compared with two
other distributions using a real data set. Estimation is performed through ML via the EM
algorithm. The new SAK distribution is an alternative to fit heavy-tailed right-skewed data.
Additional features of the SAK distribution are:
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• The distribution has two stochastic representations, one of them based on the quotient
of two independent r.v.’s and another based on a scale mixture between the AK and
Beta distributions.

• The pdf, cdf and hazard function of the SAK distribution are explicit and are repre-
sented by the cdf of the gamma model.

• The proposed model has a heavy right tail.
• The model contains the AK distribution as a limit, that is, when the parameter q tends

to infinity in the distribution SAK, the AK distribution is obtained.
• The moments and the skewness and kurtosis coefficient have an explicit form.
• In the application, observing the AIC and BIC and the AD, CVM and SW statistical

tests, we may conclude that the SAK distribution fits the Betaplasma data set better
than the PAD and SMR distributions, which are also extensions of the AK distribution.
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