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Abstract: This work considers the infinite horizon discounted risk-sensitive optimal control problem
for the switching diffusions with a compact control space and controlled through the drift; thus, the
the generator of the switching diffusions also depends on the controls. Note that the running cost of
interest can be unbounded, so a decent estimation on the value function is obtained, under suitable
conditions. To solve such a risk-sensitive optimal control problem, we adopt the viscosity solution
methods and propose a numerical approximation scheme. We can verify that the value function of
the optimal control problem solves the optimality equation as the unique viscosity solution. The
optimality equation is also called the Hamilton–Jacobi–Bellman (HJB) equation, which is a second-
order partial differential equation (PDE). Since, the explicit solutions to such PDEs are usually difficult
to obtain, the finite difference approximation scheme is derived to approximate the value function.
As a byproduct, the ϵ-optimal control of finite difference type is also obtained.
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1. Introduction

The past few decades have witnessed the emergence and development of optimal
control problems with risk-sensitive criteria. The reason why risk-sensitive criteria are often
desirable is that they can capture the effects of higher-order moments of the running costs
in addition to their expectations. To the best of our knowledge, refs. [1,2] are the earliest
works concerned with risk-sensitive optimal control problems. Since then, there has been a
lot of research on risk-sensitive optimal control problems. For the discrete time controlled
Markov chains, the risk-sensitive criteria have been studied in [3,4]; for the continuous
time Markov chains with risk-sensitive criteria see [5–8] and the reference therein; for
piecewise deterministic Markov decision processes see [9] and the reference therein; for the
controlled diffusions with risk-sensitive criteria, we refer the readers to [10–13]. Besides the
theoretical improvement, it has also has found applications in Q-learning [14], finance [15],
insurance [16], missile guidance [17], and many other applications.

As to controlled switching diffusion, it has been paid much attention in theory and
application in recent years. The state of such process consists of a continuous part and
a discrete part at the same time. Usually, the discrete part of the state is modelled by a
continuous time Markov chain with finite states. So much effort has been spent to learn
more about the properties of the processes, for instance [18,19] and the reference therein.
Much of the study originated from applications arising in manufacturing systems [20,21],
filtering [22], and financial engineering [23]. For more general theory on such hybrid
systems, we refer the readers to [24,25]. While [24] concerns the case when the generator
of the continuous time Markov chain is independent of the continuous part of the state,
and [25] studies the case when the generator of the continuous time Markov chain depends
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on the continuous part of the state. Such models can be widely used in many practical
applications. For example, [26] applies the switching diffusions to the ecosystems and let
the discrete part of the state represent the random environment. Within the framework of
financial applications, the discrete part of the state is usually used to capture the market
environment, say bull or bear, see [27].

However, to the best of our knowledge, there is little literature on controlled switching
diffusions with risk-sensitive criteria. The risk-sensitive optimal control problem to the
controlled switching diffusions is of interest and such an issue has not received so much
attention, which motivates us to consider such topics. In this work, we are going to
study the infinite horizon discounted risk-sensitive optimal control problem based on
the controlled switching diffusions. To be specific, we work on the process (X(t), α(t))
with X(t) being the continuous part of the state and α(t) being the discrete part, which is
governed by (1) and (2). Based on the controlled switching diffusion (X(t), α(t)) defined
above, we are going to minimize

J(θ, x, α, u(·)) = 1
θ

log
{

E
[

exp
(

θ
∫ ∞

0
e−ρtc(X(t), α(t), u(t))dt

)]}
,

with θ ∈ (0, 1] being the risk factor and ρ > 0 being the discount factor. Define the value
function as follows,

V(θ, x, α) = inf
u(·)

J(θ, x, α, u(·)).

Our aim is to find the optimal control u∗(·) such that V(θ, x, α) = J(θ, x, α, u∗(·)). Since the
logarithm function is increasing, to simplify the calculation, we only need to minimize the
following functional

I(θ, x, α, u(·)) = E
[

exp
(

θ
∫ ∞

0
e−ρtc(X(t), α(t), u(t))dt

)]
,

The corresponding value function is

W(θ, x, α) = inf
u(·)

I(θ, x, α, u(·)).

Similarly, if there exists a control u∗(·) such that W(θ, x, α) = I(θ, x, α, u∗(·)), we call it
optimal. It is easy to know that if u∗(·) such that W(θ, x, α) = I(θ, x, α, u∗(·)), then we can
also obtain V(θ, x, α) = J(θ, x, α, u∗(·)), and vice versa. Therefore, it is sufficient to work on
the optimization problem with exponential utility.

To solve such problem, similar to the risk neutral case, see [20,27], we should find
suitable characterizations to the value function W(θ, x, α) and the optimal control u∗(·). Due
to the dynamic program principle, such characterizations are usually given via the asso-
ciated optimality equation, or the HJB equation. Thus we formally derive the associated
HJB equation and rigorously prove that the value function W(θ, x, α) of the optimization
problem solves the associated HJB equation as the unique viscosity solution. We will see
that such equation is a second-order partial differential equation. The viscosity solution is
one of the commonly used weak solutions for this kind of equation; we recommend [27–29]
and the reference therein for readers who are not familiar with the concept of viscosity
solutions. In particular, the development of viscosity solutions is briefly introduced in
reference [28].

As is well known, explicit solutions to such HJB equations are usually difficult to
obtain, so we turn to study the numerical solutions. Finite difference approximation scheme
is a tool of commonly used. Moreover, associated with the viscosity solution method, we
can also give the convergence analysis to the finite difference approximation scheme. As a
byproduct, through the convergence analysis of the approximation scheme we can obtain
the ϵ-optimal control of finite difference type.
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This work has the following contributions: (a) We propose a suitable condition to
give a decent estimation on the value function of concerned with unbounded running cost.
Unlike in [10], we do not need the near-monotonicity condition as the structural assumption
on the running cost function. Further, compared with the assumptions adopted in [10],
under our assumption we can also drop the requirement that the coefficients of the systems
should be bounded. (b) We construct an appropriate truncation function to reduce the proof
of the global comparison theorem to the local case. To be specific, the difficulty of verifying
the uniqueness of viscosity solution is to prove the corresponding comparison theorem,
and the large obstacle of proving the corresponding comparison theorem is to construct
the corresponding truncation function. (c) We construct a finite difference approximation
scheme to approach the value function, and as a byproduct, we can obtain the existence of
ϵ-optimal control of finite difference type. This kind of idea can be extended to treat the
optimal control of controlled (switching) diffusions with other criteria.

The rest of the work is organized as follows: In Section 2, we introduce the mathemati-
cal background and arise the optimization problem. In Section 3, we derive the associated
HJB equation and show that the value function to the optimization problem solves the
associated HJB equation as the unique viscosity solution. In Section 4, we construct the
finite difference approximation scheme and give its convergence analysis, as a byproduct,
we also show the existence of ϵ-optimal control of finite difference type.

2. The Model

In this work, the underlying process (X(t), α(t)) is defined on the complete filtered
probability space (Ω,F , {Ft}t≥0, P) and governed by the following system,

dX(t) = b(X(t), α(t), u(t))dt + σ(X(t), α(t))dB(t), (X(0), α(0)) = (x, α), (1)

P(α(t + δ) = j|α(t) = i, X(s), α(s), s ≤ t) = qij(X(t), u(t))δ + o(δ), i ̸= j, (2)

with δ > 0 arbitrarily small. (X(t), α(t)) ∈ Rr ×M, with M = {1, 2, · · · , m} be a finite
set. b(·, ·, ·) : Rr ×M×U → Rr and σ(·, ·) : Rr ×M → Rr×r are drift term and diffusion
term, respectively. Q(x, u) = (qij(x, u)) ∈ Rm×m is the generator of the process of Markov
regime switching. The control process {u(t)}t≥0 is taking value in U, which is a given
compact metric space. B(t) is a standard Brownian motion.

Remark 1. The probability space (Ω,F , {Ft}t≥0, P) mentioned above is constructed in the follow-
ing way. Firstly, for fixed x ∈ Rr, define

p(t, x, y) = (2πt)−r/2 exp
{
−|x − y|2

2t

}
,

for y ∈ Rr, t > 0. If 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk, define a measure νt1,...,tk on Rrk by

νt1,...,tk (F1 × · · · × Fk)
=

∫
F1×···×Fk

p(t1, x, x1)p(t2 − t1, x1, x2) · · · p(tk − tk−1, xk−1, xk)dx1 · · · dxk,

where Fi, i = 1, 2, · · · , k, are members of B(Rr), the Borel σ-field of Rr. Additionally, we use
the convention that p(0, x, y)dy = δx(y). Then by verifying that νt1,...,tk satisfies the consistent
properties and the Kolmogorov’s extension theorem (see [30] (p. 11, Theorem 2.1.5) and the reference
therein), there exists a probability space (ΩB,FB, PB) and a stochastic process {B(t)}t≥0 on ΩB

such that
PB(B(t1) ∈ F1, · · · , B(tk) ∈ Fk) = νt1,··· ,tk (F1 × · · · × Fk).

In fact, {B(t)}t≥0 is a standard Brownian motion.
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Moreover, Let λ be the Lebesgue measure on (R+ ×R,B(R+ ×R)) such that λ(dt × dz) =
dt × m(dz), where m is the Lebesgue measure on R. For arbitrary A ∈ B(R+ ×R) and λ(A) < ∞,
let

pA(n) = e−λ(A) [λ(A)]n

n!
, n = 0, 1, 2, · · · .

If λ(A) = ∞, then let
pA(∞) = 1.

It is easy to know that pA is a probability measure on Z̄+ = Z+ ∪ {∞}. Moreover, for each k ∈
Z+/{0}, Ai ∈ B(R+ ×R), and λ(Ai) < ∞, (i = 1, 2, · · · , k) and ij ∈ Z̄+, (j = 1, 2, · · · , k),
define the following finite dimensional distribution on (Z̄+)k

pA1,··· ,Ak (i1, · · · , ik) = Πk
n=1 pAn(in).

Then by verifying the above finite dimensional distribution admits several consistent properties, the
existence theorem of Poisson random measure (see in [31] [Chapter 11]) ensures that there exists a
probability space (Ωp,Fp, Pp) and a process of Poisson random measure p(dt, dz) defined on Ωp

with intensity dt × m(dz), where m(dz) denotes the Lebesgue measure on R, such that, for each
k ∈ Z+/{0}, Ai ∈ B(R+ ×R) and λ(Ai) < ∞, for i = 1, 2, · · · , k,

Pp(p(Aj) = ij, j = 1, 2, · · · , k) = pA1,··· ,Ak (i1, · · · , ik).

Then by letting (Ω,F , P) := (ΩB × Ωp,FB ×Fp, PB × Pp) and Ft = σ{B(s), p(E, F), (E, F) ∈
B([0, s))×B(R), 0 ≤ s ≤ t}, we have actually constructed the complete filtered probability space
(Ω,F , {Ft}t≥0, P). Throughout the work, we assume that the Poisson random measure p(dt, dz)
is independent of the Brownian motion B(·).

In order to get convenient compactness property, we introduce the notion of relaxed
control. Let Π = {π(t) ∈ P(U), t ≥ 0}, with P(U) being the space of all probability
measures defined on the control space U. In particular, u(t) is equivalent to δu(t), with δ
be the Dirac measure, for each t ≥ 0. To proceed, we also need the following definition of
admissible control.

Definition 1. We say that a relaxed control π ∈ Π is admissible if π(t) is Ft-adapted measurable
and the σ-fields Fπ

t and F B,p
[t,∞)

are independent, with Fπ
t = σ{π(s), s ≤ t} and F B,p

[t,∞)
=

σ{B(s)− B(t), p(E, F), E ∈ B([s, ∞)), F ∈ B(R), s ≥ t}.

Denote by ΠA the collecton of all admissible controls. Furthermore, if π(t) =
φ(X(t), α(t)) for a measurable function φ : Rr × M → P(U), the admissible control
π = {π(t), t ≥ 0} is called a stationary Markov control. We use ΠRM to represent the
family of all stationary Markov controls. Moreover, we call u(·) or π(·) = δu(·) the non-
randomized stationary Markov control, if u(t) = ϕ(X(t), α(t))and ϕ : Rr ×M → U is
measurable for all t ≥ 0. Denote all such controls by ΠDM. Obviously, ΠDM ⊂ ΠRM ⊂
ΠA ⊂ Π.

In order to guarantee that the system (1) and (2) admits a unique solution, we need
the following assumption.

Assumption 1.

(i) Q(x, u) = (qij(x, u)) ∈ Rm×m with qij(x, u) ≥ 0(i ̸= j), for all (x, u) ∈ Rr × U, and
∑m

j=1 qij(x, u) = 0 for all i ∈ M. Additionally, qij(x, u) is bounded continuous function for
all i, j ∈ M

(ii) The drift term b(·, ·, ·) and the diffusion term σ(·, ·) are continuous functions. Moreover, both
of them are Lipschitz continuous in their first component, uniformly for all α ∈ M and u ∈ U,
with Lipschitz constant k0 > 0.
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(iii) The system is non-degenerate, i.e., σσT ≥ k1 I for suitable constant k1 > 0, where I ∈ Rr×r

represents the identity matrix.

Associated with the assumptions above, we can get the following conclusion.

Theorem 1. Suppose that the Assumption 1 holds, then the system (1) and (2) admits an unique
strong solution (X(·), α(·)) for a given control π ∈ ΠRM, which is a Feller process and the
associated operator is given by

Lπ f (x, α) =
∫
U
Lu f (x, α)π(du|x, α), π ∈ ΠRM

where

Lu f (x, α) =
r

∑
l=1

bl(x, α, u)
∂ f (x, α)

∂xl
+

1
2

r

∑
l,k=1

alk(x, α)
∂2 f (x, α)

∂xl∂xk
+

m

∑
j=1

qαj(x, u) f (x, j), (3)

with a(x, α) = σ(x, α)σT(x, α) ∈ Rr×r and f ∈ C2,0(Rr ×M), which is the space consisting
of all real-valued functions, which are twice continuously differentiable with respect to x and
continuous with respect to α.

Proof 1. As well known, the Markov regime switching process α(·) can be represented by
the stochastic integral with respect to the forementioned Poisson random measure p(dt, dz)
as given is Remark 1. Then for π = {π(t), t ≥ 0} ∈ ΠRM, (1) and (2) have the following
equivalent form

dX(t) = b(X(t), α(t), π(t))dt + σ(X(t), α(t))dB(t),

dα(t) =
∫
R

h(X(t), α(t−), π(t), z)p(dt, dz), (4)

with initial state (X(0), α(0)) = (x, α). For more details, we refer the readers to [25,32],
[Chapter 2] and the reference therein. Thus the result follows by ([20] Theorem 2.1).

The Risk-Sensitive Criterion

Now, we are going to introduce the risk-sensitive criterion. For θ ∈ (0, 1] and ρ > 0,
define

J(θ, x, α, π) =
1
θ

log
{

E
[

exp
(

θ
∫ ∞

0
e−ρtc(X(t), α(t), π(·))dt

)]}
,

where c(x, α, π(·)) :=
∫
U c(x, α, u)π(du|x, α) for all control π ∈ ΠRM, θ is the risk-sensitive

parameter and ρ is the given discount factor. We are going to minimize J(θ, x, α, π) over
ΠRM. Let the value function be defined as follows,

V(θ, x, α) := inf
π∈ΠRM

J(θ, x, α, π).

The aim is to find a suitable control π∗ ∈ ΠRM such that V(θ, x, α) = J(θ, x, α, π∗), we call
such π∗ the optimal control. As mentioned in the introduction, to simplify the calculation,
we need to work with the following auxiliary functional

I(θ, x, α, π) = E
[

exp
(

θ
∫ ∞

0
e−ρtc(X(t), α(t), π(·))dt

)]
,

The corresponding value function is

W(θ, x, α) = inf
π∈ΠRM

I(θ, x, α, π).
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Since the logarithm function is an increasing function, thus the optimal control to the
auxiliary problem is also optimal to the original risk-sensitive problem. Henceforth, we
only need to work with W(θ, x, α).

To proceed we need the following assumption to ensure that the value function W is
well defined, which means that it admits a certain property of boundness.

Assumption 2. Suppose that the following conditions hold.

(i) The running cost function c(x, α, u) is continuous in (x, α, u), and supπ |c(x, α, π(·))| ≤
M0ω(x, α), for suitable M0 > 0, where ω : Rr ×M → R+ is a given positive function
and twice continuously differentiable in x ∈ Rr for each α ∈ M, and ω(x, α) ≥ 1, for all
(x, α) ∈ Rr ×M.

(ii) There have two constants A, Ã > 0 such that ρ > A > 0 and

Luω(x, α) +
1
2

r

∑
l,k=1

al,k(x, α)
∂ω(x, α)

∂xl

∂ω(x, α)

∂xk
≤ Aω(x, α) + Ã.

(iii) And assume that

E
{

exp
[

1
2

∫ ∞

0

(
e−As∂ω(X(s), α(s))σ(X(s), α(s))

)2
ds
]}

< ∞, (5)

with (∂ω(x, α)σ(x, α))k = ∑r
l=1

∂ω(x,α)
∂xl

σlk(x, α).

Henceforth, we denote ∂ω(x, α)σ(x, α) or its suitable variants ∂ω(X(s), α(s))σ(X(s), α(s))
by ∂ωσ, for simplicity.

Remark 2. Since the function ω can be unbounded, thus c(x, α, u) can also be unbounded. Unlike
in [10], we do not need the structural assumption on the running cost function, which is known as
near-monotonicity, and we also do not assume the cofficients of the diffusion to be bounded.

Under the assumption above, we can show that the value functions are well defined.
In fact, we can obtain the following conclusion.

Proposition 1. Under the Assumption 2, we have

W(θ, x, α) ≤ M1 exp{M2ω(x, α)},

with M1 = exp
{

M0

ρ − A

}
and M2 = 2 max

{
M0

ρ − A
,

M0 Ã
ρ(ρ − A)

}
.

Proof 2. Let f (t, x, α) = e−Atω(x, α), then by using the Itô’s formula we have

e−Atω(X(t), α(t))

= ω(x, α) +
∫ t

0
e−As[Luω(X(s), α(s))− Aω(X(s), α(s))]ds +

∫ t

0
e−As∂ω · σdB(s)

= ω(x, α) +
∫ t

0
e−As[Luω(X(s), α(s))− Aω(X(s), α(s))]ds +

1
2

∫ t

0

(
e−As∂ω · σ

)2
ds

+
∫ t

0
e−As∂ω · σdB(s)− 1

2

∫ t

0

(
e−As∂ω · σ

)2
ds

≤ ω(x, α) +
∫ t

0
e−As Ãds +

∫ t

0
e−As∂ω · σdB(s)− 1

2

∫ t

0

(
e−As∂ω · σ

)2
ds

(6)
Thus

ω(X(t), α(t)) ≤ eAtω(x, α) +
Ã
A
(eAt − 1) + eAtZt (7)
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with

Zt =
∫ t

0
e−As∂ω · σdB(s)− 1

2

∫ t

0

(
e−As∂ω · σ

)2
ds (8)

In addition, we have

E
{

exp
[

θ
∫ ∞

0
e−ρtc(X(t), α(t), π(·))dt

]}
≤ E

{
exp

[
θ
∫ ∞

0
e−ρt|c(X(t), α(t), π(·))|dt

]}
≤ E

{
exp

[∫ ∞

0
e−ρt M0ω(X(t), α(t))dt

]}
(by Assumption 2(i) and θ ≤ 1)

≤ E
{

exp
[∫ ∞

0
e−ρt M0

(
eAtω(x, α) +

Ã
A
(eAt − 1)

)
dt
]}

×E
{

exp
[∫ ∞

0
e−ρt M0

(
eAtZt

)
dt
]}

.

(9)

Furthermore, note that ρ > A, by direct calculation, we can derive that

E
{

exp
[∫ ∞

0
e−ρt M0

(
eAtω(x, α) +

Ã
A
(eAt − 1)

)
dt
]}

=
M0

ρ − A
ω(x, α) +

M0 Ã
ρ(ρ − A)

≤ M2ω(x, α) (by ω(x, α) ≥ 1),

with M2 := 2 max
{

M0

ρ − A
,

M0 Ã
ρ(ρ − A)

}
.

Moreover, by letting ν(dt) := (ρ − A)e−(ρ−A)tdt, and noting that it is a probability
measure on [0, ∞), we can derive that

E
{

exp
[∫ ∞

0
e−ρt M0

(
eAtZt

)
dt
]}

= E
{

exp
[∫ ∞

0

M0

ρ − A
Ztν(dt)

]}
≤ E

{∫ ∞

0
exp

[
M0

ρ − A
Zt

]
ν(dt)

}
=

∫ ∞

0
exp

[
M0

ρ − A

]
E[eZt ]ν(dt).

By the condition (5), we can derive that Zt is an exponential martingale and

E[eZt ] = E[eZ0 ] = 1.

Thus we have

E
{

exp
[∫ ∞

0
e−ρt M0

(
eAtZt

)
dt
]}

= exp
[

M0

ρ − A

]
=: M1.

Therefore, we can conclude that

W(θ, x, α) ≤ M1 exp{M2ω(x, α)},

for all θ ∈ (0, 1], with M1 = exp
[

M0

ρ − A

]
and M2 = 2 max

{
M0

ρ − A
,

M0 Ã
ρ(ρ − A)

}
. We are

done.
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Let ω̃(x, α) = exp{M2ω(x, α)}. Now, we can introduce the ω̃-norm and the definition
of ω̃ bounded. A function ψ : (0, 1]×Rr ×M → R, is called ω̃-bounded if

∥ψ∥ω̃ := sup
(θ,x,α)∈Rr×M

|ψ(θ, x, α)|
ω̃(x, α)

< ∞.

Then, we can see that W is a member of Bω̃((0, 1] × Rr × M), the collection of all ω̃-
bounded real valued functions defined on (0, 1]×Rr ×M, which is a Banach space. Thus,
the value function W is well defined. For simplicity, henceforth, let Q0 := (0, 1]×Rr ×M,
then Bω̃((0, 1]×Rr ×M) can be simply denoted by Bω̃(Q0).

To proceed, we need to illustrate that the set of models which satisfy Assumptions 1
and 2 is nonempty. We show this fact by giving a representative example.

Example 1. For simplicity, we consider the one-dimensional Ornstein–Uhlenbeck type process
with regime switching. Let (X(t), α(t)) ∈ R×M, with M = {1, 2}, and

dX(t) = (µ(α(t)) + u(t))X(t)dt + σ(α(t))dB(t) (10)

Q(x, u) =
(

q11(x, u) −q11(x, u)
−q22(x, u) q22(x, u)

)
(11)

with qii < 0, |qii| < ∞, i = 1, 2 and U = [0, U0], and consider the functional

I(θ, x, α, π(·)) = E
[

exp
(

θ
∫ ∞

0
e−ρtc(X(t), α(t), π(·))dt

)]
,

with c(x, α, u) = x + α + u, and ρ > µM +U0, with σM = max{σ(1), σ(2)}, µM = max{µ(1),
µ(2)}.

It is obvious to know that Assumption 1 holds and by taking ω(x, α) = x + α + 1,
it is easy to verify that Assumption 2 (i) and (ii) also hold with A = µM + U0 < ρ,
Ã = max{|q11|, |q22|} and M0 = max{U0, 1}. Now it remains to verify that Assumption 2
(iii) also holds. In fact,

E
{

exp
[

1
2

∫ ∞

0

(
e−As∂ω(X(s), α(s))σ(X(s), α(s))

)2
ds
]}

= E
{

exp
[

1
2

∫ ∞

0
(e−2Asσ(α(s))2ds

]}
≤ exp

[
1
2

∫ ∞

0
e−2Asσ2

Mds
]

= exp

[
σ2

M
4A

]
< ∞.

Therefore, Assumption 2 (iii) has been verified.
To conclude this section, now we formally derive the HJB equation for W. For any

T > 0 and given Markov control π ∈ ΠRM, it is easy to know that

W(θ, x, α)
= inf

π∈ΠRM
I(θ, x, α, π)

= inf
π∈ΠRM

E
[

exp
(

θ
∫ T

0
e−ρtc(X(t), α(t), π(·))dt + θ

∫ ∞

T
e−ρtc(X(t), α(t), π(·))dt

)]
= inf

π∈ΠRM
E
{

exp
(

θ
∫ T

0
e−ρtc(X(t), α(t), π(·))dt

)
×E(X(T),α(T))

[
exp

(
θe−ρT

∫ ∞

0
e−ρtc(X(t), α(t), π(·))dt

)]}
.
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Thus, formally we have

W(θ, x, α) = inf
π∈ΠRM

E
{

exp
(

θ
∫ T

0
e−ρtc(X(t), α(t), π(·))dt

)
W(θe−ρT , X(T), α(T))

}
, (12)

then by using Itô’s formula for exp
(

θ
∫ T

0 e−ρtc(X(t), α(t), π(·))dt
)

W(θe−ρT , X(T), α(T)),
and letting T approach 0, we obtain

−θρ
∂W(θ, x, α)

∂θ
+ inf

u∈U
{θc(x, α, u)W(θ, x, α) + LuW(θ, x, α)} = 0. (13)

Remark 3. In fact, (12) is the direct consequence of the multiplicative dynamic programming
principle, whose proof can be find in [12] and the reference therein.

Later in this work, we will show that the value function W is the unique viscosity
solution to the associated HJB equation and construct a decent approximation scheme to
such equation. As a byproduct, we can also obtain the existence of the ϵ-optimal control of
finite difference type.

3. The Main Results
3.1. The Optimality Equation And Viscosity Property

One of the main result of this work is to verify that W is the unique viscosity solution
of the following optimality equation, also called the HJB equation:

−θρ
∂ϕ(θ, x, α)

∂θ
+ inf

u∈U
{θc(x, α, u)ϕ(θ, x, α) + Luϕ(θ, x, α)} = 0. (14)

Before giving the definition of viscosity solution, we introduce two notations, C(Q0) the set
of all continuous real-valued functions on Q0, and C1,2,0(Q0) the collection of all real-valued
functions on Q0, which are continuously differentiable, twice continuously differentiable
and continuous with respect to its corresponding components.

Definition 2.

(i) If w(θ, x, α) ∈ C(Q0)
⋂

Bω̃(Q0) such that

−θρ
∂ψ(θ0, x0, α0)

∂θ
+ inf

u∈U
{θc(θ0, x0, α0)ψ(θ0, x0, α0) + Luψ(θ0, x0, α0)} ≥ 0,

at every (θ0, x0, α0) ∈ Q0 which is a maximum of w − ψ, with w(θ0, x0, α0) = ψ(θ0, x0, α0),
whenever ψ(θ, x, α) ∈ C1,2,0(Q0) and limt→∞ ψ(θe−ρt, x, α) = 1, then we say that w is a
viscosity subsolution of (14) on Q0.

(ii) If w(θ, x, α) ∈ C(Q0)
⋂

Bω̃(Q0) such that

−θρ
∂ψ(θ0, x0, α0)

∂θ
+ inf

u∈U
{θc(θ0, x0, α0)ψ(θ0, x0, α0) + Luψ(θ0, x0, α0)} ≤ 0,

at every (θ0, x0, α0) ∈ Q0 which is a minimum of w − ψ, with w(θ0, x0, α0) = ψ(θ0, x0, α0),
whenever ψ(θ, x, α) ∈ C1,2,0(Q0) and limt→∞ ψ(θe−ρt, x, α) = 1, then we say that w is a
viscosity supsolution of (14) on Q0.

(iii) We say that w is a viscosity solution of (14) on Q0 if it is both a viscosity subsolution and a
viscosity supsolution of (14).
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In order to show that W(θ, x, α) is the unique viscosity solution to the corresponding
HJB equation, we define the following operator on C(Q0)

⋂
Bω̃(Q0),

Ttϕ(θ, x, α) = min
π∈ΠRM

Eπ
(x,α)

{
exp

(
θ
∫ t

0
e−ρsc(X(s), α(s), π(s))ds

)
ϕ(θe−ρt, X(t), α(t))

}
,

where Eπ
(x,α)[ f (X(t), α(t))] = E[ f (X(t), α(t))] for every bounded function f on Q0, with

Eπ
(x,α) be the expectation operator with respect to Pπ

(x,α), the probability law deduced by
(X(t), α(t)), the process corresponding to control π and initial state (x, α). E is the expecta-
tion operator with respect to the given probability measure P.

To proceed, we first need to verify that the operator has the following properties. Set

H(θ, x, α, ψ, Dθψ, Dxψ, D2
xψ) = −θρ

∂ψ(θ, x, α)

∂θ
+ inf

u∈U
{θc(x, α, u)ψ(θ, x, α) + Luψ(θ, x, α)}.

Lemma 1. If Assumptions 1 and 2 hold, then we have the following conclusions:

(i) T0ϕ(θ, x, α) = ϕ(θ, x, α), for all ϕ ∈ C(Q0)
⋂

Bω̃(Q0);
(ii) Ttϕ(θ, x, α) ≤ Ttψ(θ, x, α), if ϕ ≤ ψ, with ϕ, ψ ∈ C(Q0)

⋂
Bω̃(Q0);

(iii) and for each ψ(θ, x, α) ∈ C1,2,0(Q0)
⋂

Bω̃(Q0), we have

lim
r↓0

1
r
(Trψ(θ, x, α)− ψ(θ, x, α)) = H(θ, x, α, ψ, Dθψ, Dxψ, D2

xψ).

Proof 3. The conclusions (i) and (ii) are obvious by the definition. Now, the verification of
conclusion (iii) remains. For fixed u ∈ U, let π(·) = δu(·), thus by definition, it is easy to
obtain that

1
r
(Trψ(θ, x, α)− ψ(θ, x, α))

≤ 1
r

{
Eu
(x,α)

[
exp

(
θ
∫ r

0
e−ρsc(X(s), α(s), u)ds

)
ψ(θe−ρr, X(r), α(r))

]
− ψ(θ, x, α)

}
.

Let f (r, X(r), α(r)) := exp
(
θ
∫ r

0 e−ρsc(X(s), α(s), u)ds
)
ψ(θe−ρr, X(r), α(r)), by Itô’s formula,

we have

E[ f (r, X(r), α(r))]− f (0, x, α)

= E
{ ∫ r

0

[
∂

∂s
f (s, X(s), α(s)) + Lu f (s, X(s), u)

]
ds
}

= E
{ ∫ r

0
exp

(
θ
∫ s

0
e−ρtc(X(t), α(t), u)dt

)[
θ(−ρ)e−ρs ∂

∂θ
ψ(θe−ρs, X(s), α(s))

+ψ(θe−ρs, X(s), α(s))θe−ρsc(X(s), α(s), u)

+Luψ(θe−ρs, X(s), α(s))
]

ds
}

.

Thus, we have

lim
r↓0

1
r
(Trψ(θ, x, α)− ψ(θ, x, α))

≤ θ(−ρ)
∂

∂θ
ψ(θ, x, α) + ψ(θ, x, α)θc(x, α, u) + Luψ(θ, x, α).

Moreover, we have

lim
r↓0

1
r
(Trψ(θ, x, α)− ψ(θ, x, α))

≤ θ(−ρ)
∂

∂θ
ψ(θ, x, α) + min

u∈U
{ψ(θ, x, α)θc(x, α, u) + Luψ(θ, x, α)}.
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On the other hand, let {rn} be a sequence of positive numbers, such that rn < rm for n > m
and limn→∞ rn = 0. Obviously, for given rn, we have a control πn(·) := πrn(·) ∈ ΠRM
such that

Trn ψ(θ, x, α) + (rn)
2

≥ E
{

exp
(

θ
∫ rn

0
e−ρsc(Xn(s), αn(s), πn(s))ds

)
ψ(θe−ρrn , Xn(rn), αn(rn))

}
,

with (Xn(·), αn(·)), n ≥ 1 be the process corresponding to the control πn(·) and initial state
(x, α).

Let πn(0) ≡ δu for all n ≥ 1, with u arbitrarily taken from U and assume that {πn(·)}
convergents to π := π∞ ∈ ΠRM, with π∞(0) = δu. Then we can derive that

1
rn
(Trn ψ(θ, x, α)− ψ(θ, x, α))

≥ 1
rn

{
E
{

exp
(

θ
∫ rn

0
e−ρsc(Xn(s), αn(s), πn(s))ds

)
ψ(θe−ρrn , Xn(rn), αn(rn))

}
−ψ(θ, x, α)

}
− rn.

By Itô’s formula, we have

E
{

exp
(

θ
∫ rn

0
e−ρsc(Xn(s), αn(s), πn(s))ds

)
ψ(θe−ρrn , Xn(rn), αn(rn))

}
− ψ(θ, x, α)

= E
{ ∫ rn

0
exp

(
θ
∫ s

0
e−ρtc(Xn(t), αn(t), πn(t))dt

)[
θ(−ρ)e−ρs ∂

∂θ
ψ(θe−ρs, Xn(s), αn(s))

+ψ(θe−ρs, Xn(s), αn(s))θe−ρsc(Xn(s), αn(s), πn(s))

+Lπn ψ(θe−ρs, Xn(s), αn(s))
]

ds
}

.

Since ψ ∈ C1,2,0(Q0)
⋂

Bω̃(Q0), and the fact that rn > 0 small enough, there exists a
ξn ∈ [0, rn] such that

lim
n→∞

1
rn

E
{ ∫ rn

0
exp

(
θ
∫ s

0
e−ρtc(Xn(t), αn(t), πn(t))dt

)
[

θ(−ρ)e−ρs ∂

∂θ
ψ(θe−ρs, Xn(s), αn(s)) + ψ(θe−ρs, Xn(s), αn(s))θe−ρsc(Xn(s), αn(s), πn(s))

+Lπn ψ(θe−ρs, Xn(s), αn(s))
]

ds
}

= lim
n→∞

E
{

exp
(

θ
∫ ξn

0
e−ρtc(Xn(ξn), αn(ξn), πn(ξn))dt

)
[

θ(−ρ)e−ρξn
∂

∂θ
ψ(θe−ρξn , Xn(ξn), αn(ξn))

+ψ(θe−ρξn , Xn(ξn), αn(ξn))θe−ρξn c(Xn(ξn), αn(ξn), πn(ξn))

+Lπn ψ(θe−ρξn , Xn(ξn), αn(ξn))

]}
= θ(−ρ)

∂

∂θ
ψ(θ, x, α) + ψ(θ, x, α)θc(x, α, u) + Luψ(θ, x, α).

So we have

lim
rn↓0

1
rn
(Trψ(θ, x, α)− ψ(θ, x, α))

≥ θ(−ρ)
∂

∂θ
ψ(θ, x, α) + ψ(θ, x, α)θc(x, α, u) + Luψ(θ, x, α)

≥ θ(−ρ)
∂

∂θ
ψ(θ, x, α) + min

u∈U
{ψ(θ, x, α)θc(x, α, u) + Luψ(θ, x, α)}.
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Thus, the result follows.

Now we can give one of the main results of this work.

Theorem 2. Under Assumptions 1 and 2, the value function W(θ, x, α) is the unique positive
viscosity solution of the HJB Equation (14).

Proof 4. Firstly, we should show that the value function W is continuous in (θ, x, α). It
should be pointed out that the continuity of W with respect to α is in the topological
sense. Let

IM(θ, x, α, π) = E
[

exp
(

θ
∫ ∞

0
e−ρt(c(X(t), α(t), π(·)) ∧ M)dt

)]
,

for given π(·) with c(x, α, u)∧ M := min{c(x, α, u), M}. By the estimation in Proposition 1,
there is no doubt that limM→∞ IM(θ, x, α, π) = I(θ, x, α, π). By the Feller property of the
process (X(t), α(t)), it is obvious that IM(θ, x, α, π) is continuous in (θ, x, α) for given π.
Then, associated with the following inequality

|I(θ, x, α, π)− I(θ, y, α, π)|
≤ |I(θ, x, α, π)− IM(θ, x, α, π)|+ |IM(θ, x, α, π)− IM(θ, y, α, π)|+ |IM(θ, y, α, π)− I(θ, y, α, π)|,

we conclude that I(θ, x, α, π) is continuous in (θ, x, α), for given π. Then, it follows that
W(θ, x, α) is continuous in (θ, x, α).

Now, we can verify that W solves the HJB Equation (14) as a viscosity solution. Let
ψ ∈ C1,2,0(Q0) and limt→∞ ψ(θe−ρt, x, α) = 1. Denote by (θ0, x0, α0) the maximizer of
W − ψ, with W(θ0, x0, α0) = ψ(θ0, x0, α0). Then, ψ(θ, x, α) ≥ W(θ, x, α), and associated
with Lemma 1 and (12), we can derive that

Trψ(θ, x, α) ≥ TrW(θ, x, α) = W(θ, x, α).

Furthermore, we can obtain that

H(θ0, x0, α0, ψ, Dθψ, Dxψ, D2
xψ) = lim

r↓0

1
r
(Trψ(θ0, x0, α0)− ψ(θ0, x0, α0)) ≥ 0,

thus, W is the subsolution of the HJB Equation (14). Similarly, we can also verify that W is
also a supsolution of the HJB equation. Then we conclude that W is a viscosity solution of
the HJB equation.

As to the uniqueness, it is the direct consequence of the following comparison result.

3.2. Comparison Result

In order to prove the uniqueness, we need some more preparations as follows. Let
Qν

R = [ν, 1]× BR ×M, where BR is the open ball in Rr with radius R and ν > 0 is arbitrarily
small. Suppose that w(θ, x, α) ∈ C1,2,0(Q0) is a classical solution of the HJB equation, i.e.,

−θρ
∂w(θ, x, α)

∂θ
+ inf

u∈U
{θc(x, α, u)w(θ, x, α) + Luw(θ, x, α)} = 0, (15)

Let ξR(θ, x) ∈ C1,2([ν, 1]× B̄R) the space of all real-valued functions defined on [ν, 1]× B̄R,
which are continuously differentiable with respect to θ and twice continuously differ-
entiable with respect to x. Further, we assume that ξR > 0, for all (θ, x) ∈ [ν, 1] × B̄R,
with ν arbitrarily small. Moreover, limR→∞ ξR(θ, x) = 1 for all (θ, x) ∈ [ν, 1] × BR and
limR→∞ ξR(θ, x) = 0 for all (θ, x) ∈ [ν, 1]× ∂BR. Set

ŵ(θ, x, α) = ξRw(θ, x, α), (θ, x, α) ∈ (0, 1]× B̄R ×M.
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Let (Dθϕ, Dxϕ) = (ϕθ , ϕx1 , · · · , ϕxr ) and D2
xϕ = (ϕxixj), i, j = 1, 2, · · · , r, with ϕ = ξR, w

or ŵ. Then, we can directly calculate that

ŵθ = ξR
θ w + ξRwθ , ŵxi = ξRwxi + ξR

xi
w,

and
ŵxixj = ξRwxixj + ξR

xi
wxj + ξR

xj
wxi + ξR

xixj
w.

Multiplying the HJB Equation (15) by ξR(θ, x) we have

−θρξR(θ, x)
∂w(θ, x, α)

∂θ
+ inf

u∈U
{ξR(θ, x)[θc(x, α, u)w(θ, x, α) + Luw(θ, x, α)]} = 0. (16)

Note that
ξRwθ = ŵθ − wξR

θ , ξRwxi = ŵxi − wξR
xi

,

and
ξRwxixj = ŵxixj − wξR

xixj
− ξR

xi
wxj − ξR

xj
wxi

= ŵxixj − wξR
xixj

−
ξR

xi

ξR ŵxj −
ξR

xj

ξR ŵxi + 2w
ξR

xi
ξR

xj

ξR ,

we can derive that

−θρ
∂ŵ(θ, x, α)

∂θ
+ inf

u∈U
{θĉ(x, α, u)ŵ(θ, x, α) + L̂uŵ(θ, x, α)} = −θρξR

θ w, (17)

with

ĉ := c(x, α, u)− 1
ξR

(
r

∑
l=1

bl(x, α, u)ξR
xl
+

1
2

r

∑
l,k=1

alk(x, α)ξR
xl xk

)
,

and

L̂u :=
r

∑
l=1

b̂l(x, α, u)
∂

∂xl
+

1
2

r

∑
l,k=1

al,k(x, α)
∂2

∂xl∂xk
+

m

∑
j=1

qαj(x, u),

where

b̂l(x, α, u) := bl(x, α, u)− 1
ξR

r

∑
k=1

alk(x, α)ξR
xk

.

In order to show that the value function W is the unique viscosity solution of the HJB
Equation (14) in Q0, we only need to show the following comparison result. To proceed, let
ϕ(x, α) := W(1, x, α), (x, α) ∈ Rr ×M.

Theorem 3. Assume that Assumptions 1 and 2 hold. Let w, v ∈ C(Q0)
⋂

Bω̃(Q0) be the viscosity
subsolution and viscosity supsolution of the HJB Equation (14) in Q0, respectively. And suppose
that w > 0 and v > 0 for all (θ, x, α) ∈ Q0 with w(1, x, α) = v(1, x, α) = ϕ(x, α). Then, we have

sup
Q0

(w − v) = sup
Rr×M

(w(1, x, α)− v(1, x, α)).

Proof 5. Set

ζR(x) = exp
{

1
R

}
− exp

{
|x|2 − R2

}
, x ∈ B̄R.

Then it is easy to note that ζR ∈ C2(B̄R) and ζR > 0, for all x ∈ B̄R with ν arbitrarily small.
We can also verify that limR→∞ ζR(x) = 1, for all x ∈ BR and limR→∞ ζR(x) = 0, for all
x ∈ ∂BR. Denote

wR(θ, x, α) = ζR(x) exp
{
−K2θ

R

}
w(θ, x, α), K2 > 0.
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Suppose that ψR(θ, x, α) ∈ C1,2,0(Qν
R)
⋂

Bω̃(Qν
R) and limt→∞ limR→∞ ψR(θe−ρt, x, α) = 1

for all (θ, x, α) ∈ QR, and wR −ψR has a maximum at (θ0, x0, α0) ∈ QR with wR(θ0, x0, α0) =

ψR(θ0, x0, α0). Let ψ(θ, x, α) = ψR(θ, x, α) exp
{

K2θ
R

}
/ζR. Thus it is easy to verify that

ψ(θ, x, α) ∈ C1,2,0(Qν
R)
⋂

Bω̃(Qν
R) and limt→∞ ψ(θe−ρt, x, α) = 1 for all (θ, x, α) ∈ QR, and

w−ψ has a maximum at (θ0, x0, α0) ∈ QR with w(θ0, x0, α0) = ψ(θ0, x0, α0). Since w(θ, x, α)
is a viscosity subsolution of the HJB Equation (14), by definition we have

−θρ
∂ψ(θ0, x0, α0)

∂θ
+ inf

u∈U
{θc(θ0, x0, α0)ψ(θ0, x0, α0) + Luψ(θ0, x0, α0)} ≥ 0,

Note that ψR(θ, x, α) = ζR exp
{
−K2θ

R

}
ψ(θ, x, α), and the calculations preceding the theo-

rem, we can verify that

−θρ
∂ψR(θ0, x0, α0)

∂θ
+ inf

u∈U
{θĉ(θ0, x0, α0)ψ

R(θ0, x0, α0) + L̂uψR(θ0, x0, α0)}

≥ θρ exp
{
−K2θ

R

}
w(θ0, x0, α0)

K2

R
ζR ≥ 0.

Since the constant K2 > 0, we conclude that wR is the viscosity subsolution of the the
following modified HJB equation

−θρ
∂ψ(θ, x, α)

∂θ
+ inf

u∈U
{θĉ(θ, x, α)ψ(θ, x, α) + L̂uψ(θ, x, α)} = 0, (18)

on QR. Similarly, we can also verify that

vR = ζR exp
(

θ
K3

R

)
v(θ, x, α),

with given constant K3 > 0, is the viscosity supsolution of the modified HJB Equation (18)
on QR. Then, by Lemma A1, we obtain that

sup
Qν

R

(wR − vR) = sup
∂∗Qν

R

(wR − vR), (19)

with ∂∗Qν
R := ([ν, 1]× ∂BR) ∪ ({1} × BR). Note that wR, vR approach w, v uniformly on

bounded subsets of Q0 as R → ∞, respectively. Moreover, since limR→∞ ζR(x) = 0, for all
x ∈ ∂BR, we have

lim
R→∞

sup
[ν,1]×∂BR

wR − vR ≤ lim
R→∞

M̃(∥w∥ω̃ + ∥v∥ω̃)ζ
R(x) = 0,

for a suitable constant M̃. Since ν > 0 can be arbitrarily small, the result follows by letting
R approaches to infinity in (19).

4. The Approximation Scheme

In order to solve the HJB equation numerically, we are going to introduce the finite
difference approximation scheme. For numerical purpose, we only need to work on the
case with the cutoff as follows,

IM(θ, x, α, π) = E
[

exp
(

θ
∫ ∞

0
e−ρt(c(X(t), α(t), π(·)) ∧ M)dt

)]
,

for given π(·), and we can also define

WM(θ, x, α) = inf
π∈ΠRM

IM(θ, x, α, π).
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By the estimation in Proposition 1, we can conclude that WM → W, as M → ∞. This
means that it is enough to work with WM when constructing the approximation scheme.
To proceed, we set

∆−
θ WM =

WM(θ, x, α)− WM(θ − h, x, α)

h
,

∆+
xi

WM =
WM(θ, x + δei, α)− WM(θ, x, α)

δ
,

∆−
xi

WM =
WM(θ, x, α)− WM(θ, x − δei, α)

δ
,

∆2
xi

WM =
WM(θ, x + δei, α) + WM(θ, x − δei, α)− 2WM(θ, x, α)

δ2 ,

∆+
xixj

WM

=
2WM(θ, x, α) + WM(θ, x + δei + δej, α) + WM(θ, x − δei − δej, α)

2δ2

−
WM(θ, x + δei, α) + WM(θ, x − δei, α) + WM(θ, x + δej, α) + WM(θ, x − δej, α)

2δ2 ,

∆−
xixj

WM

= −
2WM(θ, x, α) + WM(θ, x + δei + δej, α) + WM(θ, x − δei − δej, α)

2δ2

+
WM(θ, x + δei, α) + WM(θ, x − δei, α) + WM(θ, x + δej, α) + WM(θ, x − δej, α)

2δ2 ,

Replacing the derivatives by their corresponding finite difference quotients, and rearrang-
ing the terms we have the following approximation scheme

WM
h,δ(θ, x, α)

= inf
u∈U

{
C(h, δ, x, α, u)−1

[
θ

h
WM

h,δ(θ − h, x, α) +
r

∑
l=1

(
C+

l (h, δ, x, α, u)WM
h,δ(θ, x + δel , α)

+C−
l (h, δ, x, α, u)WM

h,δ(θ, x − δel , α) +
1
2 ∑

k ̸=l

|alk|
2δ2 WM

h,δ(θ, x + δel + δek, α)

+
1
2 ∑

k ̸=l

|alk|
2δ2 WM

h,δ(θ, x − δel − δek, α)

)
+ ∑

j ̸=α

qαj(x, u)WM
h,δ(θ, x, j)

]}
,

with
C(h, δ, x, α, u) :=

θρ

h
− θ(c(x, α, u) ∧ M)− qαα

+
r

∑
l=1

(
|bl(x, α, u)|

δ
+

|all(x, α)|
δ2 − ∑k ̸=l |alk(x, α)|

2δ2

)
,

and

C+
l (h, δ, x, α, u) :=

b+l (x, α, u)
δ

+
all(x, α)

2δ2 − ∑k ̸=l |alk(x, α)|
2δ2 ,

C−
l (h, δ, x, α, u) :=

b−l (x, α, u)
δ

+
all(x, α)

2δ2 − ∑k ̸=l |alk(x, α)|
2δ2 .

To proceed, we should first show that the above approximation scheme makes sense. To
show this, for given h, δ > 0, we need to verify that C(h, δ, x, α, u) ̸= 0 for all (x, α, u). We
also need the following assumption.
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Assumption 3. Supposing that

all(x, α)− ∑
k ̸=l

|alk(x, α)| ≥ 0.

Then under Assumptions 1 and 3, we can derive that C(h, δ, x, α, u) ̸= 0. In fact, by
Assumption 1 (i) and the fact that qαα < 0, we have M̃ > −qαα(x, u) > 0 for suitable
constant M̃ and all x and u. Additionally, by Assumption 3 we conclude that

r

∑
l=1

(
|bl(x, α, u)|

δ
+

|all(x, α)|
δ2 − ∑k ̸=l |alk(x, α)|

2δ2

)
> 0.

Moreover, if we choose that h = ρ
M+1 , then it is easy to have c(x, α, u) ∧ M < ρ

h =

M + 1, thus θρ
h − θ(c(x, α, u) ∧ M) > 0, for all x, α, u. Based on the statement above we

conclude that
C(h, δ, x, α, u) > 0.

Thus, the approximation scheme constructed above is well defined. Furthermore, we also
know that the value of h can be chosen such that h → 0, as M → ∞. Moreover, we can also
choose the value of δ such that δ → 0 as M → ∞. Then h, δ → 0 is equivalent to M → ∞.

Let

S(h, δ, θ, x, α, t, v)

= inf
u∈U

{
− C(h, δ, x, α, u)t +

[
θ

h
v(θ − h, x, α) +

r

∑
l=1

(
C+

l (h, δ, x, α, u)v(θ, x + δel , α)

+C−
l (h, δ, x, α, u)v(θ, x − δel , α) +

1
2 ∑

k ̸=l

|alk(x, α)|
2δ2 v(θ, x + δel + δek, α)

+
1
2 ∑

k ̸=l

|alk(x, α)|
2δ2 v(θ, x − δel − δek, α)

)
+ ∑

j ̸=α

qαj(x, u)v(θ, x, j)
]}

.

Then the approximation scheme can be rewritten as

S(h, δ, θ, x, α, WM
h,δ(θ, x, α), WM

h,δ) = 0.

Because of Assumption 3, it is easy to derive that the coefficients of v is positive. Thus, we
can easily verify that S(h, δ, θ, x, α, t, v) is monotone in v, i.e., for arbitrary t ∈ R, h, δ ∈ (0, 1),
(θ, x, α) ∈ Q0,

S(h, δ, θ, x, α, t, v) ≤ S(h, δ, θ, x, α, t, w),

with v ≤ w and v, w ∈ C(Q0)
⋂

Bω̃(Q0). In addition, we can also verify that S(h, δ, θ, x, α, t, v)
is consistent which means that

lim
ϵ→0,h↓0,δ↓0,ζ→θ,ξ→x

S(h, δ, θ, x, α, v(ζ, ξ, α) + ϵ, v + ϵ)

= H(θ, x, α, v(θ, x, α), Dθv(θ, x, α), Dxv(θ, x, α), D2
xv(θ, x, α))

Now we are going to verify the stability. LetOh,δ : (C(Q0)
⋂

Bω̃(Q0))
m → (C(Q0)

⋂
Bω̃(Q0))

m,
such that

Oh,δ(v(θ, x, 1), · · · , v(θ, x, m)) = (G1
h,δv(θ, x, 1), · · · ,Gm

h,δv(θ, x, m)),
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with

Gα
h,δv(θ, x, α)

= inf
u∈U

{
C(h, δ, x, α, u)−1

[
θ

h
v(θ − h, x, α) +

r

∑
l=1

(
C+

l (h, δ, x, α, u)v(θ, x + δel , α)

+C−
l (h, δ, x, α, u)v(θ, x − δel , α) +

1
2 ∑

k ̸=l

|alk(x, α)|
2δ2 v(θ, x + δel + δek, α)

+
1
2 ∑

k ̸=l

|alk(x, α)|
2δ2 v(θ, x − δel − δek, α)

)
+ ∑

j ̸=α

qαj(x, u)v(θ, x, j)
]}

.

If we claim that Oh,δ is a strict contraction mapping, the stability can be verified. Thus we
need to show that there exists a constant κ ∈ (0, 1) such that

∥Oh,δv −Oh,δw∥ ≤ κ∥v − w∥,

for all v, w ∈ C(Q0)
⋂

Bω̃(Q0). Note that

|Oh,δv−Oh,δw|2 ≤ |G1
h,δv(θ, x, 1)−G1

h,δw(θ, x, 1)|2 + · · ·+ |Gm
h,δv(θ, x, m)−Gm

h,δw(θ, x, m)|2,

and

Gα
h,δv(θ, x, α)− Gα

h,δw(θ, x, α)

= inf
u∈U

{
C(h, δ, x, α, u)−1

[
θ

h
v(θ − h, x, α) +

r

∑
l=1

(
C+

l (h, δ, x, α, u)v(θ, x + δel , α)

+C−
l (h, δ, x, α, u)v(θ, x − δel , α) +

1
2 ∑

k ̸=l

|alk(x, α)|
2δ2 v(θ, x + δel + δek, α)

+
1
2 ∑

k ̸=l

|alk(x, α)|
2δ2 v(θ, x − δel − δek, α)

)
+ ∑

j ̸=α

qαj(x, u)v(θ, x, j)
]}

− inf
u∈U

{
C(h, δ, x, α, u)−1

[
θ

h
w(θ − h, x, α) +

r

∑
l=1

(
C+

l (h, δ, x, α, u)w(θ, x + δel , α)

+C−
l (h, δ, x, α, u)w(θ, x − δel , α) +

1
2 ∑

k ̸=l

|alk(x, α)|
2δ2 w(θ, x + δel + δek, α)

+
1
2 ∑

k ̸=l

|alk(x, α)|
2δ2 w(θ, x − δel − δek, α)

)
+ ∑

j ̸=α

qαj(x, u)w(θ, x, j)
]}

,

thus
|Gα

h,δv(θ, x, α)− Gα
h,δw(θ, x, α)| ≤ max

u∈U
{Fh,δ(x, α, u)}∥v − w∥ω̃ω̃(x, α),

with

Fh,δ(x, α, u) =
θ
h + ∑r

l=1

(
C+

l (h, δ, x, α, u) + C−
l (h, δ, x, α, u) + ∑r

k ̸=l
|alk(x,α)|

2δ2

)
C(h, δ, x, α, u)

.

Since we can choose that h = ρ
M+1 , thus it is easy to know that

θ

h
<

θρ

h
− θ(c(x, α, u) ∧ M),

for all (x, α, u). Furthermore, we can derive that

max
u∈U

{Fh,δ(x, α, u)} < 1.

Thus, let κ = maxu∈U{Fh,δ(u)} we have

∥Oh,δv −Oh,δw∥ω̃ ≤ κ∥v − w∥ω̃,
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for all v, w ∈ C(Q0) ∩ Bω̃(Q0). This means that Oh,δ is a strict contraction mapping. Then,
there is a unique fixed point to Oh,δ, by the Banach fixed point theorem. We denote it by
vh,δ. Moreover, we define

v∗(θ, x, α) = lim
(ζ,ξ)→(θ,x)

sup
h,δ↓0

vh,δ(ζ, ξ, α),

and
v∗(θ, x, α) = lim

(ζ,ξ)→(θ,x)
inf

h,δ↓0
vh,δ(ζ, ξ, α).

Note that h, δ → 0 is equivalent to M → ∞. If we can verify that v∗ and v∗ are sub-
and supersolutions of the HJB Equation (14), respectively, then the result that follows is
associated with the comparison result. In fact, as in [27], we can show that

H(θ0, x0, α0, φ(θ0, x0, α0), Dθ φ(θ0, x0, α0), Dx φ(θ0, x0, α0), D2
x φ(θ0, x0, α0)) ≥ 0,

for any test function φ ∈ C1,2,0(Q0) ∩ Bω̃(Q0) such that (θ0, x0, α0) is a strictly local maxi-
mum of v∗ − φ with v∗(θ0, x0, α0) = φ(θ0, x0, α0). Since the proofs are alike, we omit the
details. Based on the statement above, we can obtain the following conclusion.

Theorem 4. The solution vh,δ of the approximation scheme S converges to the unique viscosity
solution of the HJB Equation (14).

4.1. Existence of ϵ-Optimal Controls of Finite-Difference-Type

In this section, we will first introduce the definition of the so-said ϵ-optimal control
and talk about its existence. Let

HWh,δ
M
(θ, x, α, u)

:= C(h, δ, θ, x, α, u)−1
[

θ

h
Wh,δ

M (θ − h, x, α) +
r

∑
l=1

(
C+

l (h, δ, θ, x, α, u)Wh,δ
M (θ, x + δel , α)

+C−
l (h, δ, θ, x, α, u)Wh,δ

M (θ, x − δel , α) +
1
2 ∑

k ̸=l

|alk(x, α)|
2δ2 Wh,δ

M (θ, x + δel + δek, α)

+
1
2 ∑

k ̸=l

|alk(x, α)|
2δ2 Wh,δ

M (θ, x − δel − δek, α)

)
+ ∑

j ̸=α

qαj(x, u)Wh,δ
M (θ, x, j)

]
,

with Wh,δ
M such that S(h, δ, θ, x, α, Wh,δ

M (θ, x, α), Wh,δ
M ) = 0.

Definition 3. We call u∗
h,δ(θ, x, α) the ϵ-optimal control, if there exists a pair of constants (hϵ, δϵ)

such that h ≤ hϵ, δ ≤ δϵ and

HWh,δ
M
(θ, x, α, u∗

h,δ) = inf
u∈U

{
HWh,δ

M
(θ, x, α, u)

}
.

Now, we first illustrate why such controls are called ϵ-optimal controls. Note that
h, δ → 0 is equivalent to M → ∞ and u∗

h,δ(θ, x, α) is corresponding to Wh,δ
M (θ, x, α). By

Theorem 4, we know that for arbitrary ϵ > 0, there exists a constant M0 > 0 such that for
all M > M0,

|Wh,δ
M − W| < ϵ.

Thus, it is understandable to say that u∗
h,δ(θ, x, α) is the ϵ-optimal control.

Lemma 2. Under Assumptions 1–3, there always exist ϵ-optimal controls.
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Proof 6. If Assumptions 1–3 are all satisfied. Then it is easy to find that HWh,δ
M
(θ, x, α, u) is

continuous in u, for given (h, δ, θ, x, α). Note that we assume that U is compact. Thus it is
obvious that there exist a control u∗

h,δ(θ, x, α), such that

HWh,δ
M
(θ, x, α, u∗

h,δ) = inf
u∈U

{
HWh,δ

M
(θ, x, α, u)

}
.

Thus the result follows.

4.2. Numerical Simulation

In order to demonstrate our theoretical results, we will give a numerical simulation
example in this section. We consider the one-dimensional stochastic process with regime
switching given in Example 1. Let (X(t), α(t)) ∈ R×M, with M = 1, 2, and

dX(t) = (µ(α(t)) + u(t))X(t)dt + σ(α(t))dB(t), (20)

Q(x, u) =
(

q11(x, u) −q11(x, u)
−q22(x, u) q22(x, u)

)
, (21)

with qii < 0, |qii| < ∞, i = 1, 2 and U = [0, U0], consider the functional

I(θ, x, α, π(·))) = E[exp(θ
∫ ∞

0
e−ρtc(X(t), α(t), π(·))dt)], (22)

with c(x, α, u) = x + α + u, and ρ > µM + U0, with σM = max{σ(1), σ(2)}, µM =
max{µ(1), µ(2)}.

Previously, we have verified that the model in Example 1 satisfies the assumptions
proposed in this paper, so based on the approximation scheme in the previous section,
for the one-dimensional example mentioned above, we can obtain the following iterative
format of the value function with α, j = 1, 2 and α ̸= j,

WM
h,δ(θ, x, α) = inf

u∈U
{C(h, δ, x, α, u)−1[

θ

h
WM

h,δ(θ − h, x, α) + C+
l (h, δ, x, α, u)WM

h,δ(θ, x + δ, α)

+ C−
l (h, δ, x, α, u)WM

h,δ(θ, x − δ, α) + qαjWM
h,δ(θ, x, j)]},

(23)

with

C(h, δ, x, α, u) =
θρ

h
− θ(c(x, α, u) ∧ M)− qαα +

|bl(x, α, u)|
δ

+
|all(x, α)|

δ2 , (24)

C+
l (h, δ, x, α, u) =

b+l (x, α, u)
δ

+
all(x, α)

2δ2 , (25)

C−
l (h, δ, x, α, u) =

b−l (x, α, u)
δ

+
all(x, α)

2δ2 , (26)

and
bl(x, α, u) = (µ(α(t) + u(t))X(t), all(x, α) = σ(α(t)) (27)

b+l (x, α, u) = max{bl(x, α, u), 0}, b−l (x, α, u) = max{−bl(x, α, u), 0} (28)

Furthermore, we choose the appropriate parameters for this example as follows,
δ = 0.1, h=0.1, M = 5, µ(1) = −0.2, µ(2) = 0.2, σ(1) = −0.1, σ(2) = 0.1, ρ = 0.8,
u ∈ U = [0, U0] = [0, 0.5], thus the following condition ρ > µM + U0 holds. The interval of
θ is selected as [0, 1], and we set q11 = −u, q12 = u, q21 = 2u, q22 = −2u.

According to the iterative format and parameter settings mentioned above, we conduct
the numerical experiments by using the Matlab software (latest version R2023b) to obtain
the following results:
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In Figure 1, we can observe that the value function decreases with respect to X, and
increases with respect to θ, and it can also be observed that the value function at state 2 is
significantly larger than the value function at state 1.

Figure 1. Optimal value function W.

Figure 2 shows that the ϵ-optimal control µ remains almost constant with the change
of X, and the control in state 2 is larger than that in state 1.

Figure 2. ϵ-optimal control µ.

5. Discussion

This work considers the controlled switching diffusions with infinite horizon dis-
counted risk-sensitive criterion. The associated HJB equation has been derived. Since
the explicit solution to such an equation is not easy to obtain, we figure out a numeri-
cal approximation scheme through the finite difference method. However, there is still
an open problem. As to the existence of optimal control, in the risk-neutral case [20,27],
the occupation measure method is usually used. By introducing the occupation measure
method, one can pose the risk-neutral optimal control problem as a convex optimization
problem. Moreover, as in [29] (Chapter 2, Section 5), except for the conditions similar to
Assumption 1, by supposing that the pair of functions, consisting of the coefficients of the
dynamic system and the running cost, maps the control space U into a convex set, one
can show the existence of the optimal control for the controlled diffusion model. Such a
technique can also be extended to deal with the risk-neutral optimal control problem within
the controlled switching diffusion model. However, it seems that such methods can not be
directly used to handle the risk-sensitive case. Thus, we need to find other ways to show the
existence of optimal control to the risk-sensitive optimal control problem to the controlled
switching model. Open problem: We guess that u∗

h,δ(θ, x, α) is the approximation of the
optimal control when h, δ approach 0, under suitable conditions.
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Appendix A

To complete the proof of the comparison result in Theorem 3, we also need the
following result. Before going further we need to introduce the following notions. Such
notions are original from [28]. We modified them for our own purpose. Let Sr be the set of
all r × r symmetric matrices.

Definition A1. Let w ∈ C(Qν
R), with Qν

R as given in Theorem 3.

(i) The set of second-order superdifferentials of w at (θ, x) ∈ [ν, 1]× BR for each α is

D+(1,2)w(θ, x, α)

=

{
(q, p, A) ∈ R×Rr × Sr :

lim
(h,y)→0

sup
(θ+h,x+y)∈Qν

R

w(θ + h, x + y)− w(t, x)− qh − py − 1
2 Ay · y

|h|+ |y|2 ≤ 0
}

.

(ii) The set of second-order subdifferentials of w at (θ, x) ∈ [ν, 1]× BR for each α is

D−(1,2)w(θ, x, α)

=

{
(q, p, A) ∈ R×Rr × Sr :

lim
(h,y)→0

inf
(θ+h,x+y)∈Qν

R

w(θ + h, x + y)− w(t, x)− qh − py − 1
2 Ay · y

|h|+ |y|2 ≥ 0
}

.

We also need the closure of the set of second-order subdifferentials and supdiffer-
entials for the continuous functions. That is, for w ∈ C(Qν

R) and (θ, x) ∈ [ν, 1] × BR,
(q, p, A) ∈ cD±(1, 2)w(θ, x, α) if and only if there exist sequences (θn, xn) ∈ [ν, 1]× BR and
(qn, pn, An) ∈ D±(1,2)w(θn, xn, α) → (q, p, A), with α fixed.

If we assume that w ∈ C1,2,0(Qν
R), (θ, x) ∈ [ν, 1]× BR and fixed α,

cD+(1,2)w(θ, x, α) =

{(
∂

∂θ
w(θ, x, α), Dxw(θ, x, α), D2

xw(θ, x, α) + B
)∣∣∣B ≥ 0

}
,

cD−(1,2)w(θ, x, α) =

{(
∂

∂θ
w(θ, x, α), Dxw(θ, x, α), D2

xw(θ, x, α)− B
)∣∣∣B ≥ 0

}
Now, also assume that w ∈ C1,2,0(Qν

R) is a classical solution of the HJB Equation (14) in
QR. Since for every semidefinite matrix B ≥ 0

tr[σσT(x, α)B] ≥ 0.
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Then the above characterization of the second order sub- and supdifferentials yields

−θρq + H(θ, x, α, p, A, w(θ, x, α)) ≥ 0, ∀(q, p, A) ∈ cD+(1,2)w(θ, x, α),

−θρq + H(θ, x, α, p, A, w(θ, x, α)) ≤ 0, ∀(q, p, A) ∈ cD−(1,2)w(θ, x, α),

with

H(θ, x, α, p, A, ψ(θ, x, α)) = inf
u∈U

{θc(x, α, u)ψ + bp +
1
2

tr(σσ′)A +
m

∑
j=1

qαj(x, u)ψ(θ, x, j)}.

Now we can give the comparison result in the local case.

Lemma A1. Let w ∈ C(Qν
R) be a viscosity subsolution of the HJB Equation (14) in QR, and

v ∈ C(Qν
R) be a viscosity supsolution of the HJB Equation (14) in QR, with Qν

R as given in
Theorem 3. Then

sup
Qν

R

(w − v) = sup
∂∗Qν

R

(w − v),

with ∂∗Qν
R := ([ν, 1]× ∂BR) ∪ ({1} × BR).

Proof A1. Suppose the contrary of the conclusion holds, i.e.,

sup
Qν

R

(w − v)− sup
∂∗Qν

R

(w − v) > 0.

And for β1, β2 > 0, consider the auxiliary function

Φ(θ, x, y, α) = w(θ, x, α)− v(θ, y, α)− β1|x − y|2 − β2(θ − 1),

for θ ∈ [ν, 1], x, y ∈ B̄R. Note that w, v are continuous on Qν
R, We can verify that for fixed α

and any (θ, x) ∈ [ν, 1]× BR, if (q, p, A) ∈ cD+(1,2)w(θ, x, α) and ∥(θ, x, p, A, w(θ, x, α))∥ ≤ M,
for every M > 0, there exists a constant C = C(M) such that q ≤ C(M). Also, if (q, p, A) ∈
cD−(1,2)w(θ, x, α) and ∥(θ, x, p, A, w(θ, x, α))∥ ≤ M for every M > 0, there exists a con-
stant C = C(M) such that q ≥ −C(M). Moreover, since we suppose that supQν

R
(w − v)−

sup∂∗Qν
R
(w − v) > 0, we can derive that for each given α,

sup
[ν,1]×B̄R×B̄R

Φ(θ, x, y, α) > sup
∂([ν,1]×B̄R×B̄R)

Φ(θ, x, y, α),

when choosing suitable constants β1 and β2. For fixed α, let (θ̄, x̄, ȳ) be a local maximum of
Φ. Then, by the Crandall–Ishii maximum principle (see [28] (p. 216, Theorem 6.1) and [33]
(Theorem 8.3)), we can derive that there exist symmetric matrices A and B such that

(q, p, A) ∈ cD+(1,2)w(θ̄, x̄, α),

and
(q̂, p, A) ∈ cD−(1,2)v(θ̄, ȳ, α),

where p = 2β1(x̄ − ȳ) and q− q̂ = φt(θ̄, x̄, ȳ) = β2, with φ(θ, x, y) = β1|x − y|2 + β2(θ − 1),
and

−6β1

[
I 0
0 I

]
≤
[

A 0
0 −B

]
≤ 6β1

[
I 0
0 I

]
. (A1)

Furthermore, the viscosity properties of w and v imply that

−θ̄ρq + H(θ̄, x̄, α, p, A) ≥ 0,
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and
−θ̄ρq̂ + H(θ̄, ȳ, α, p, B) ≤ 0.

Recall that q − q̂ = β2, and A, B satisfy (A1). Hence

β2 = q − q̂ ≤ 1
θ̄ρ

(
H(θ̄, x̄, α, p, A)− H(θ̄, ȳ, α, p, B)

)
.

If we claim that H(θ̄, ·, α, p, ·) is continuous with respect to x, then we have

H(θ̄, x̄, α, p, A)− H(θ̄, ȳ, α, p, B) ≤ ϵ,

for |x̄ − ȳ| ≤ δ. Since ϵ can be arbitrary small, it contradicts with the fact that β2 > 0. Now
it remains to verify that H(θ̄, ·, α, p, ·) is continuous with respect to x. Note that

H(θ̄, x̄, α, p, A)− H(θ̄, ȳ, α, p, B)
≤ sup

u∈U
{θc(x̄, α, u)ψ(θ, x̄, α)− θc(ȳ, α, u)ψ(θ, ȳ, α)}

+ sup
u∈U

{(b(x̄, α, u)− b(ȳ, α, u))2β1(x̄ − ȳ)}

+
1
2

sup
u∈U

{tr(σ(x̄, α)σT(x̄, α)A)− tr(σ(ȳ, α)σT(ȳ, α)B)}

+ sup
u∈U

{
m

∑
j=1

(qαj(x̄, u)ψ(θ, x̄, j)− qαj(ȳ, u)ψ(θ, ȳ, j))}.

Note that c, b, ψ, qαj are all continuous with respect to x. Therefore, we only need to
verify that

tr(σ(x̄, α)σT(x̄, α)A)− tr(σ(ȳ, α)σT(ȳ, α)B)

is also continuous with respect to x. In fact, set D(x̄) := σ(x̄, α) and D(ȳ) := σ(ȳ, α),
by (A1), we have

tr(σ(x̄, α)σT(x̄, α)A)− tr(σ(ȳ, α)σT(ȳ, α)B)
= tr(D(x̄)DT(x̄)A)− tr(D(ȳ)DT(ȳ)B)

= tr
([

D(x̄)DT(x̄) D(x̄)DT(ȳ)
D(ȳ)DT(x̄) D(ȳ)DT(ȳ)

][
A 0
0 −B

])
≤ 6β2tr

([
D(x̄)DT(x̄) D(x̄)DT(ȳ)
D(ȳ)DT(x̄) D(ȳ)DT(ȳ)

][
I −I
−I I

])
= 6β2∥D(x̄)− D(ȳ)∥2

= 6β2∥σ(x̄, α)− σ(ȳ, α)∥2

≤ C|x̄ − ȳ|2.

Thus, the result follows.
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