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1. Fisher–Rao Geometry of Dirichlet Distributions

In the electronic arXiv preprints [1,2] and their formally published version [3], the au-
thors investigated the geometry induced by the Fisher–Rao metric on the parameter space
of the Dirichlet distributions in statistics theory, showed that the parameter space is a
Hadamard manifold (that is, the manifold is geodesically complete and has negative sec-
tional curvature everywhere), and demonstrated that the Fréchet mean of a set of the
Dirichlet distributions is uniquely defined in the geometry. The papers [1–3] have been
cited in [4–16]. This means that the papers [1–3] have attracted great interest from more
and more mathematicians in a short time. The research has been related, or connected,
or applied to several areas or subjects in mathematics and applied sciences such as dif-
ferential geometry, machine learning, mathematical software, methodology, probability,
and statistics theory.

In the two-dimensional case of beta distributions, let M = {(u, v) : u, v > 0} denote
the first quadrant on R2 and let

d s2 = ψ′(u)d u2 + ψ′(v)d v2 − ψ′(u + v)(d u + d v)2

be the Fisher–Rao metric defined on M. The sectional curvature K(u, v) of the Hadamard
manifold M was given in [3] (Proposition 14) by

K(u, v) = −1
4

f (u + v) f ′(u) f ′(v)− f (u) f ′(u + v) f ′(v)− f (v) f ′(u + v) f ′(u)
[ f (u + v)− f (u)− f (v)]2

=
1
4

ψ′′(u)ψ′′(v)ψ′′(u + v)
[

ψ′(u)
ψ′′(u) +

ψ′(v)
ψ′′(v) −

ψ′(u+v)
ψ′′(u+v)

]
[ψ′(u)ψ′(u + v) + ψ′(v)ψ′(u + v)− ψ′(u)ψ′(v)]2

,
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where f = 1
ψ′ and ψ = Γ′

Γ is the logarithmic derivative of the classical Euler gamma function

Γ(x) =
∫ ∞

0 tx−1 e−t d t for ℜ(x) > 0 (see [17] (Section 6.4)). The asymptotic behavior of the
sectional curvature K(u, v) was given in [3] (Proposition 15) by

lim
v→0+

K(u, v) = lim
v→0+

K(v, u) =
1
2

(
3
2
− ψ′(u)ψ′′′(u)

[ψ′′(u)]2

)
, (1)

lim
v→∞

K(u, v) = lim
v→∞

K(v, u) =
ψ′(u) + uψ′′(u)
4[uψ′(u)− 1]2

, (2)

lim
(u,v)→(0+ ,0+)

K(u, v) = 0, lim
(u,v)→(∞,∞)

K(u, v) = −1
2

, (3)

lim
(u,v)→(0+ ,∞)

K(u, v) = lim
(u,v)→(∞,0+)

K(u, v) = −1
4

. (4)

Based on these limits and strong numerical evidence, the authors conjectured that the
negative sectional curvature K(u, v) is bounded from below by − 1

2 .

2. Complete Monotonicity

A real function f (u) defined on an interval I ⊂ R is said to be of complete monotonicity
if and only if (−1)m f (m)(u) ≥ 0 for all m ≥ 0 and u ∈ I. (See [18] (Chapter XIII), [19]
(Chapter 1), and [20] (Chapter IV)).

In the paper [13], the author showed the analyticity of the sectional curvature K(u, v) as
a two-variable function on M, alternatively recovered the above limits in (1)–(4), separately
considered the functions at the very right ends in (1) and (2), showed that the function

H(u) =
1
2

(
3
2
− ψ′(u)ψ′′′(u)

[ψ′′(u)]2

)
(5)

appearing in (1) is decreasing from (0, ∞) onto
(
− 1

4 , 0
)
, found sufficient and necessary

conditions on α for the function

Hα(u) = ψ′(u) + uψ′′(u) + α
[
uψ′(u)− 1

]2 (6)

and its additive inverse −Hα(u) to be of complete monotonicity on (0, ∞), and derived a
sharp two-sided inequality

−2 <
ψ′(u) + uψ′′(u)
[uψ′(u)− 1]2

< −1 (7)

in the sense that the scalars −2 and −1 cannot be replaced by any larger and smaller ones,
respectively.

The two-sided inequality (7) bounds the function at the very right end of Equation (2).
In order to prove the analyticity mentioned above, the author utilized the following

known results:

1. For ℜ(u) > 0 and n ≥ 1, the polygamma function ψ(n)(u) has the integral representation

ψ(n)(u) = (−1)n+1
∫ ∞

0

vn

1 − e−v e−uv d v. (8)

See [17] (p. 260, 6.4.1).
2. For n ≥ 2 and u > 0, the two-sided inequality

n − 1
n

<

[
ψ(n)(u)

]2
ψ(n−1)(u)ψ(n+1)(u)

<
n

n + 1

is valid. See [21] (Corollary 2.3), [22] (Section 3.5), or [23] (Equation (1.4)).
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3. A real function φ(u) is called to be sub-additive on an interval I if φ(u + v) <
φ(u) + φ(v) is valid for all u, v ∈ I with u + v ∈ I. If φ(u + v) > φ(u) + φ(v), then
the real function φ(u) is said to be super-additive on the interval I. A real-variable
function φ : [0, ∞) → R is called star-shaped if φ(νt) < νφ(t) for ν ∈ [0, 1] and
t ≥ 0. Among star-shaped, convex, and super-additive functions, the following
relations hold:

(a) If the function φ is convex on [0, ∞) with φ(0) ≤ 0, then it is star-shaped.
(b) If the function φ : [0, ∞) → R is star-shaped, then it is super-additive.

See [24] (Chapter 16) and [25] (Section 3.4). By these connections, we conclusively
obtain that the reciprocal 1

ψ′(u) is super-additive.

4. The polygamma function ψ(n)(u) for n ≥ 0 is a single-valued analytic function over
the entire complex plane, except at the points u = −m where it possesses poles of
order n + 1. See [17] (p. 260, 6.4.1).

In order to alternatively recover the limits in (1)–(4), the first author of this article
wrote the sectional curvature K(u, v) as

K(u, v) =

[
u2ψ′′(u)

]
ψ′′(v)

[
(u + v)2ψ′′(u + v)

][ ψ′(u)
ψ′′(u) −

ψ′(u+v)
ψ′′(u+v)

]
+
[
u2ψ′′(u)

]
ψ′(v)

[
(u + v)2ψ′′(u + v)

]
4
(
ψ′(v)u(u + v)[ψ′(u + v)− ψ′(u)] + [uψ′(u)][(u + v)ψ′(u + v)])2

,

made use of the limits

lim
u→∞

[
ukψ(k)(u)

]
= (−1)k−1(k − 1)!, k ≥ 1 (9)

and
lim

u→0+

[
ukψ(k−1)(u)

]
= (−1)k(k − 1)!, k ≥ 1 (10)

in [23] (p. 769) and several other articles authored by the first author and his coauthors in
recent decades, employed the relation

ψ(k−1)(u + 1) = ψ(k−1)(u) + (−1)k−1 (k − 1)!
uk , ℜ(u) > 0, k ≥ 1 (11)

in [17] (p. 260, 6.4.6), and utilized the asymptotic expansion

ψ(n)(u) ∼ (−1)n−1
[
(n − 1)!

un +
n!

2un+1 +
∞

∑
k=1

B2k
(2k + n − 1)!
(2k)!u2k+n

]
, | arg u| < π, u → ∞ (12)

in [17] (p. 260, 6.4.11), where B2k is generated by

u
eu −1

= 1 − u
2
+

∞

∑
k=1

B2k
u2k

(2k)!
, |u| < 2π. (13)

The decreasing property of the function H(u) in (5), the sufficient and necessary
conditions for the functions ±Hα(u) in (6) to be of complete monotonicity on (0, ∞), and the
two-sided inequality (7) are new, important, and ultimate results of the paper [13].

Theorem 1 ([13] (Theorem 4)). The function H(u) in (5) is decreasing from (0, ∞) onto
(
− 1

4 , 0
)
.

The function Hα(u) in (6) is of complete monotonicity on (0, ∞) if and only if α ≥ 2, while the
function −Hα(u) is of complete monotonicity on (0, ∞) if and only if α ≤ 1. The two-sided
inequality (7) is valid and sharp in the sense that the numbers −2 and −1 cannot be replaced by
any larger and smaller ones, respectively.

Proof. This is a sketch of the original proof of [13] (Theorem 4). The decreasing property
of the function H(u) in (5) follows from [23] (Theorem 2), which reads that the function

[ψ(n+1)(u)]2

ψ(n)(u)ψ(n+2)(u)
for n ≥ 1 decreases from (0, ∞) onto

( n
n+1 , n+1

n+2
)
.
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Making use of the integral representation (8) and integrating by parts yield

uψ′(u) > 1, (14)

u
[
uψ′(u)− 1

]
→ 1

2
, u → ∞, (15)

and

uψ′′(u) = −
∫ ∞

0

ev(2 ev −v − 2)v
(ev −1)2 e−uv d v. (16)

Adding (8) for n = 1 to (16) gives

ψ′(u) + uψ′′(u) = −
∫ ∞

0

v(ev −1 − v) ev

(ev −1)2 e−uv d v < 0, u ∈ (0, ∞). (17)

If the function Hα(u) is of complete monotonicity on (0, ∞), then its first derivative

H′
α(u) = 2α

[
uψ′(u)− 1

][
ψ′(u) + uψ′′(u)

]
+ 2ψ′′(u) + uψ′′′(u) ≤ 0

which is equivalent to α ≥ 2, where we used (14), (15), (17), and the asymptotic expan-
sion (12). Similarly, if the function −Hα(u) is of complete monotonicity on (0, ∞), then
α ≤ 1, where we used (14), (17), and the limit (10). In short, the necessary condition for
Hα(u) to be of complete monotonicity on (0, ∞) is α ≥ 2, while the necessary condition for
−Hα(u) to be of complete monotonicity on (0, ∞) is α ≤ 1.

Using Formula (11) and direct computing result in

H1(u) = H2(u)−H2(u + 1)

= 4
(

1
u2 +

2
u
+ 2
)

ψ′(u)− 4u3 + 7u2 + 6u + 2
u4 − ψ′′(u)− 2(2u + 1)[ψ′(u)]2,

H2(u) = H1(u)− H1(u + 1)

= 4[ψ′(u)]2 +

[
4u6 + 20u5 + 41u4 + 48u3 + 37u2 + 16u + 4
−4(u + 1)2(2u3 + 5u2 + 4u + 2

)
u2ψ′(u)

]
u4(u + 1)4 ,

and

H3(u) =
(u + 1)2(u + 2)2

4
[H2(u)− H2(u + 1)] = ψ′(u)− 2u4 + 13u3 + 29u2 + 27u + 8

2u(u + 1)2(u + 2)2 .

Then, by virtue of the integral representation (8) for n = 1 and

1
ur =

1
Γ(r)

∫ ∞

0
tr−1 e−ut d t

in [17] (p. 255, 6.1.1), we obtain

H3(u) =
1
2

∫ ∞

0

[
∞

∑
k=3

2
(
3 × 2k−2 − 1

)
+ (k − 3)

(
2 × 3k−1 − 2k−1)

k!
vk

]
e−(u+2)v

ev −1
d v.

Consequently, the function H3(u), and then the difference H2(u)− H2(u + 1), is a com-
pletely monotonic function on (0, ∞). Hence, we have

(−1)n[H2(u)− H2(u + 1)](n) = (−1)n[H2(u)](n) − (−1)n[H2(u + 1)](n) ≥ 0
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for n ≥ 0. By induction, it follows that

(−1)n[H2(u)](n) ≥ (−1)n[H2(u + 1)](n) ≥ (−1)n[H2(u + 2)](n) ≥ · · ·

≥ (−1)n[H2(u + m)](n) ≥ · · · ≥ lim
m→∞

(−1)n[H2(u + m)](n).

It is not difficult to see that [H2(u)](n) → 0 as u → ∞ for all n ≥ 0. Accordingly, we
obtain (−1)n[H2(u)](n) ≥ 0 on (0, ∞) for all n ≥ 0; that is, the function H2(u) is of complete
monotonicity on (0, ∞). Hence, we have

(−1)n[H1(u)− H1(u + 1)](n) = (−1)n[H1(u)]− (−1)n[H1(u + 1)](n) ≥ 0

for n ≥ 0. By induction, it follows that

(−1)n[H1(u)](n) ≥ (−1)n[H1(u + 1)](n) ≥ (−1)n[H1(u + 2)](n) ≥ · · ·

≥ (−1)n[H1(u + m)](n) ≥ · · · ≥ lim
m→∞

(−1)n[H1(u + m)](n).

It is not difficult to see that [H1(u)](n) → 0 as u → ∞. This means that (−1)n[H1(u)](n) ≥ 0
on (0, ∞) for all n ≥ 0. In other words,

(−1)n[H2(u)−H2(u + 1)](n) = (−1)n[H2(u)](n) − (−1)n[H2(u + 1)](n) ≥ 0

which inductively reduces to

(−1)n[H2(u)](n) ≥ (−1)n[H2(u + 1)](n) ≥ (−1)n[H2(u + 2)](n) ≥ · · ·

≥ (−1)n[H2(u + m)](n) ≥ · · · ≥ lim
m→∞

(−1)n[H2(u + m)](n)

for all n ≥ 0. From the integral representation (8) and Formulas (14) and (16), it is clear that
[H2(u)](n) → 0 as u → ∞ for all n ≥ 0. This means that (−1)n[H2(u)](n) ≥ 0 on (0, ∞) for
all n ≥ 0. In other words, the function H2(u) is of complete monotonicity on (0, ∞).

When α > 2, since

Hα(u) = H2(u) + (α − 2)
[
uψ′(u)− 1

]2
and, by virtue of (14),

uψ′(u)− 1 =
∫ ∞

0

ev(ev −1 − v)
(ev −1)2 e−uv d v (18)

is of complete monotonicity on (0, ∞), from the fact that the product of any finitely many
completely monotonic functions is still of complete monotonicity, it follows that, when
α > 2, the function Hα(u) is of complete monotonicity on (0, ∞). As a result, the condition
α ≥ 2 is sufficient for the function Hα(u) to be of complete monotonicity on (0, ∞).

The complete monotonicity of H2(u) implies H2(u) > 0, which is equivalent to the
left-hand side of the two-sided inequality (7), on (0, ∞).

Similarly, we can prove that the function −H1(u) is of complete monotonicity on (0, ∞),
and then the function Hα is of complete monotonicity on (0, ∞) for all α < 1. Consequently,
the condition α ≤ 1 is sufficient for the function −Hα to be of complete monotonicity
on (0, ∞).

The completely monotonic property of −H1(u) means H1(u) < 0, which is equivalent
to the right-hand side of the two-sided inequality (7), on (0, ∞).

The sharpness of the two-sided inequality (7) on (0, ∞) is concluded from the second
limit in (3) and the limits in (4). The proof of Theorem 1 is complete.
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In [26] (Section 4), alternative proofs of sufficient and necessary conditions in Theorem 1
were given.

3. A Generalization of a Two-Sided Inequality

In [26], the two-sided inequality (7) was generalized as follows.

Theorem 2 ([26] (Theorem 1.1)). For β ∈ R, let

Hβ(u) =
ψ′(u) + uψ′′(u)
[uψ′(u)− 1]β

(19)

on (0, ∞). Then the following conclusions are valid:

1. The function Hβ(u) is decreasing on (0, ∞) if and only if β ≥ 2, with the limits

lim
u→0+

Hβ(u) =

{
−1, β = 2;
0, β > 2

and lim
u→∞

Hβ(u) =

{
−2, β = 2;
−∞, β > 2.

2. If β ≤ 1, the function Hβ(u) is increasing on (0, ∞), with the limits

Hβ(u) →
{
−∞, u → 0+;
0, u → ∞.

3. The two-sided inequality (7) is true and sharp in the sense that the numbers −2 and −1
cannot be replaced by any larger and smaller ones, respectively.

The proof of Theorem 2 depends on the convolution theorem for the Laplace trans-
forms in [20] (pp. 91–92), Bernstein’s theorem [20] (p. 161, Theorem 12b), [27] (Theorem 6.1),
and the following newly-established lemma.

Lemma 1 ([26] (Lemma 2.3)). Let

h(v) =


ev(ev −1 − v)

(ev −1)2 , v ̸= 0;

1
2

, v = 0.
(20)

Then the following conclusions are valid:

1. The function h(v)

(a) satisfies the identity h(v) + h(−v) = 1 on (−∞, ∞).
(b) is infinitely differentiable on (−∞, ∞), increasing from (−∞, ∞) onto (0, 1), convex on

(−∞, 0), concave on (0, ∞), and logarithmically concave on (−∞, ∞).

2. The function h(2v)
h2(v) is increasing from (−∞, 0) onto (0, 2) and decreasing from (0, ∞) onto (1, 2).

3. The two-sided inequality 1 < h(2v)
h2(v) < 2 is valid on (0, ∞) and sharp in the sense that the

lower bound 1 and the upper bound 2 cannot be replaced by any larger scalar and any smaller
scalar, respectively.

4. For any fixed v > 0, the function h(uv)h((1 − u)v) is increasing in u ∈
(
0, 1

2
)
.

The starting point of the proof of Theorem 2 is the integral representation (18), that is,

uψ′(u)− 1 =
∫ ∞

0
h(v)e−uv d v > 0, (21)

whose first derivative is equal to the integral representation (17). Moreover, the limit (10)
was also used in the proof of Theorem 2.
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4. A Generalization of Two Theorems

In [28], the author introduced a new function:

Φ(u) = uψ′(u)− 1, u ∈ (0, ∞). (22)

By this notation, the functions Hα(u) and Hβ(u) in (6) and (19) and the two-sided inequal-
ity (7) can be reformulated in terms of Φ(u) and its first derivative as

Hα(u) = Φ′(u) + αΦ2(u), Hβ(u) =
Φ′(u)
Φβ(u)

, −2 <
Φ′(u)
Φ2(u)

< −1.

In [28], the author generalized the functions Hα(u) and Hβ(u) as

Jk,λk
(u) = Φ(2k+1)(u) + λk

[
Φ(k)(u)

]2 (23)

and

Jk,µk
(u) =

Φ(2k+1)(u)[
(−1)kΦ(k)(u)

]µk
(24)

for k ∈ {0} ∪N and λk, µk ∈ R on (0, ∞). These functions are analogues of some functions
surveyed in the expository article [22].

The main results obtained in [28] are the following two theorems.

Theorem 3 ([28] (Theorem 2)). Let k ∈ {0} ∪N and λk ∈ R.

1. The function Jk,λk
(u) is of complete monotonicity on (0, ∞) if and only if λk ≥

(2k+2)!
k!(k+1)! .

2. The function −Jk,λk
(u) is of complete monotonicity on (0, ∞) if and only if λk ≤ 1

2
(2k+2)!
k!(k+1)! .

Theorem 4 ([28] (Theorem 3)). Let k ∈ {0} ∪N and µk ∈ R.

1. The function Jk,µk
(u) is decreasing on (0, ∞) if and only if µk ≥ 2, with the limits

lim
u→0+

Jk,µk
(u) =

−1
2
(2k + 2)!
k!(k + 1)!

, µk = 2;

0, µk > 2

and

lim
u→∞

Jk,µk
(u) =

− (2k + 2)!
k!(k + 1)!

, µk = 2;

−∞, µk > 2.

2. If µk ≤ 1, the function Jk,µk
(u) is increasing on (0, ∞), with the limits

Jk,µk
(u) →

{
−∞, u → 0+;
0, u → ∞.

3. The two-sided inequality

− (2k + 2)!
k!(k + 1)!

<
Φ(2k+1)(u)[
Φ(k)(u)

]2 < −1
2
(2k + 2)!
k!(k + 1)!

is valid on (0, ∞) and sharp in the sense that the lower and upper bounds cannot be replaced
by any larger and smaller numbers, respectively.
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There were two proofs of Theorem 3. The proofs of these two theorems relied on
Lemma 1, the convolution theorem for the Laplace transforms in [20] (pp. 91–92), Bernstein’s
theorem [20] (p. 161, Theorem 12b), [27] (Theorem 6.1), the limits

(−1)kuk+1Φ(k)(u) →


k!, u → 0+

k!
2

, u → ∞
(25)

for k ≥ 0 in [28] (Lemma 2), and the following lemma.

Lemma 2 ([28] (Lemma 6)). For k, m ∈ N, the function

Uk,m(u) =
1

(u + 1)m
uk+m + (u + 2)k+m

uk + (u + 2)k

is decreasing on [0, ∞), with Uk,m(0) = 2m and limu→∞ Uk,m(u) = 1. Equivalently, the function

Vk,m(u) =
(1 − u)k+m + (1 + u)k+m

(1 − u)k + (1 + u)k

is increasing in u ∈ [0, 1], with Vk,m(0) = 1 and Vk,m(1) = 2m.

The proof of Lemma 2 is included in the proofs of [29] (Lemma 2.5) and [30] (Lemma 2.6).
The proofs of Theorems 3 and 4 and the limits in (25) used the integral representation
in (21).

By the way, the preprint [30] has been accepted by Demonstratio Mathematica on 21
December 2023 when the authors are proofreading this article.

5. Further Generalizations

For m, n ∈ {0} ∪N and ωm,n ∈ R, let

Ym,n(u) =
Φ(m+n+1)(u)

Φ(m)(u)Φ(n)(u)
(26)

and
Ym,n;ωm,n(u) = Φ(m+n+1)(u) + ωm,nΦ(m)(u)Φ(n)(u).

It is clear that Y0,0;ω0,0(u) = Hω0,0(u), Yk,k;ωk,k
(u) = Jk,ωk,k

(u), and Jk,2(u) = Yk,k(u), which
are defined in (6), (23), and (24), respectively.

In the paper [30], the convolution theorem for the Laplace transforms in [20] (pp. 91–92),
Bernstein’s theorem in [20] (p. 161, Theorem 12b), the limits in (25), and a monotonicity
rule for the ratio of two Laplace transforms in [31] (Lemma 4) were utilized. Moreover, the
following two lemmas were newly established.

Lemma 3 ([30] (Lemma 3)). Let u, v ∈ R such that 0 < 2u < v.

1. When v > 2u > 2
(
2 + 1

ln 2

)
= 6.885390 . . . , the function

F(u, v) = 2
(

1
u
− 1

v − u

)
+

1
2

(
2v−u

v − u
− 2u

u

)
− 2v−u − 2u

(v − u)u

is positive.
2. For k, m ∈ N such that 6 ≤ 2m < k, the sequence F(m, k) is positive.

Lemma 4 ([30] (Lemma 4)). For fixed u ∈ (0, 1), the ratio h(uv)
hu(v) is increasing in v and maps from

(0, ∞) onto
( 1

21−u , 1
)
, where h(v) is defined by (20).
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The main results of the paper [30] are the following decreasing property, complete
monotonicity, and sufficient and necessary conditions.

Theorem 5 ([30] (Theorem 1)). For m, n ∈ {0} ∪ N, the function Ym,n(u) defined in (26) is
decreasing in u from (0, ∞) onto the interval

(
− 2(m+n+1)!

m!n! ,− (m+n+1)!
m!n!

)
. Consequently, for m, n ∈

{0} ∪N, the two-sided inequality

−2(m + n + 1)!
m!n!

< Ym,n(u) < − (m + n + 1)!
m!n!

(27)

is valid on (0, ∞) and sharp in the sense that the lower and upper bounds cannot be replaced by any
larger and smaller numbers, respectively.

Theorem 6 ([30] (Theorem 2)). Let m, n ∈ {0} ∪N and ωm,n ∈ R.

1. The function (−1)m+n+1Ym,n;ωm,n(u) is of complete monotonicity on (0, ∞) if and only if

ωm,n ≤ (m+n+1)!
m!n! .

2. The function (−1)m+nYm,n;ωm,n(u) is of complete monotonicity on (0, ∞) if and only if

ωm,n ≥ 2(m+n+1)!
m!n! .

3. The two-sided inequality (27) is valid on (0, ∞) and sharp in the sense that the lower and
upper bounds cannot be replaced by any larger and smaller numbers, respectively.

The proofs of these two theorems are also based on the proof of [13] (Theorem 4) (that
is, Theorem 1 above). In other words, the starting point of the proofs of Theorems 5 and 6
is the integral representation (21) for Φ(u).

6. Three New Functions Involving Polygamma Functions

In [29], with the help of the function Φ(u) in (22), the author introduced three new functions

G(u) = uΦ(u)− 1
2

, (28)

Gk,θk
(u) = G(2k+1)(u) + θk

[
G(k)(u)

]2, (29)

and

Gk,τk
(u) =

G(2k+1)(u)[
(−1)kG(k)(u)

]τk
(30)

on (0, ∞), where k ∈ {0} ∪N and θk, τk ∈ R.
The main results of the paper [29] were stated in the following theorems.

Theorem 7 ([29] (Theorem 3.1)). For k ∈ {0} ∪N and θk ∈ R,

1. the function Gk,θk
(u) is of complete monotonicity on (0, ∞) if and only if θk ≥

3(2k+2)!
k!(k+1)! ;

2. the function −Gk,θk
(u) is of complete monotonicity on (0, ∞) if and only if θk ≤ 0.

Theorem 8 ([29] (Theorem 4.1)). Let k ∈ {0} ∪N and τk ∈ R.

1. The function Gk,τk
(u) is decreasing on (0, ∞) if and only if τk ≥ 2.

2. The function Gk,τk
(u) is increasing on (0, ∞) if τk ≤ 1.

3. The function Gk,τk
(u) is increasing on (0, ∞) only if

τk ≤



ψ′(1), k = 0;

− ψ′′′(1)
ψ′(1)ψ′′(1)

, k = 1;

k − 1
k

ψ(k−1)(1)ψ(2k+1)(1)
ψ(k)(1)ψ(2k)(1)

, k ≥ 2.
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4. The limits

lim
u→0+

Gk,τk
(u) =


−2τ0 , k = 0

6ψ′′(1), k = 1

2(2k + 1)
(k − 1)τk kτk−1

ψ(2k)(1)∣∣ψ(k−1)(1)
∣∣ , k ≥ 2

and

lim
u→∞

Gk,τk
(u) =


−∞, τk > 2

−3(2k + 2)!
k!(k + 1)!

, τk = 2

0, τk < 2

are valid.
5. The two-sided inequality

−3(2k + 2)!
k!(k + 1)!

< Gk,2(u) <


−4, k = 0

6ψ′′(1), k = 1

2(2k + 1)
(k − 1)2k

ψ(2k)(1)∣∣ψ(k−1)(1)
∣∣ , k ≥ 2

is valid on (0, ∞) and sharp in the sense that the lower and upper bounds cannot be replaced
by any greater and smaller numbers, respectively.

The proofs of these two theorems employed the recursive relation (11), the asymptotic
expansion (12), the convolution theorem for the Laplace transforms in [20] (pp. 91–92), [27]
(Theorem 6.1), Lemma 2 recited above, the limits

lim
u→0+

[
(−1)kG(k)(u)

]
=


1
2

, k = 0

1, k = 1

(−1)kk(k − 1)ψ(k−1)(1), k ≥ 2

(31)

and
lim

u→∞

[
(−1)kuk+1G(k)(u)

]
=

k!
6

, k ≥ 0 (32)

in [29] (Lemma 2.2), and the following lemma.

Lemma 5 ([29] (Lemma 2.1)). Let

w(v) =


ev[(v − 2) ev +v + 2]

(ev −1)3 , v ̸= 0;

1
6

, v = 0.
(33)

Then the following conclusions are valid:

1. The function w(v) is decreasing from (0, ∞) onto
(
0, 1

6
)
.

2. The function w(v) is logarithmically concave on (−∞, ∞).

3. The function w(2v)
w2(v) is even on (−∞, ∞), decreasing from (0, ∞) onto (0, 6), and increasing

from (−∞, 0) onto (0, 6).
4. For any fixed v > 0, the function w(uv)w((1 − u)v) is increasing in u ∈

(
0, 1

2
)
.

Lemmas 1, 4, and 5 are connected via the relation h′(v) = w(v).
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The proofs of the limits (31) and (32) and Theorems 7 and 8 employed the integral
representation

G(u) =
∫ ∞

0
w(v) e−uv d v, (34)

which can be derived from the proof of [13] (Theorem 4).

7. Further Consideration of a Function

In the paper [32,33], the author noticed that the completely monotonic function G(t)
defined in (28) and expressed by (34) had been studied in [34] (Theorem 1), which reads
that the function uαG(u) is of complete monotonicity on (0, ∞) if and only if α ≤ 0. In other
words, the completely monotonic degree of the function ψ′(u)− 1

u − 1
2u2 with respect to u

on (0, ∞) is 2. For more information on the notion of completely monotonic degrees, please
refer to [27] and the closely related references therein.

In the paper [32], the author introduced two functions

Gm,n(u) =
G(m+n+1)(u)

G(m)(u)G(n)(u)
(35)

and
Gm,n;λm,n(u) = G(m+n+1)(u) + λm,nG(m)(u)G(n)(u)

on (0, ∞), where m, n ∈ {0} ∪ N and λm,n is a scalar dependent of m, n. It is clear that
Gk,k(u) = Gk,τk

(u) and Gk,k;λk,k
(u) = Gk,θk

(u) with τk = 2 and λk,k = θk, where Gk,θk
(u) and

Gk,τk
(u) are defined in (29) and (30).
The convolution theorem for the Laplace transforms in [20] (pp. 91–92), Bernstein’s

theorem in [20] (p. 161, Theorem 12b), the limits in (31) and (32), and the monotonicity
rule for the ratio of two Laplace transforms in [31] (Lemma 4) were employed once again.
Meanwhile, Lemma 5 was generalized as the following theorem.

Lemma 6 ([32] (Lemma 2.3)). The function w(v) defined in (33) has the following properties:

1. The function w(v) is infinitely differentiable, positive, and even on (−∞, ∞), is increasing on
(−∞, 0), and is decreasing on (0, ∞).

2. For fixed u ∈ (0, 1), the ratio wu(v)
w(uv) is even in v ∈ (−∞, ∞) and decreasing in v from (0, ∞)

onto
(
0, 61−u).

Lemmas 1, 4, 5, and 6 are linked to each other via h′(v) = w(v).
The main results of [32] are the two theorems below.

Theorem 9 ([32] (Theorem 3.1)). For m, n ∈ {0} ∪N, the function Gm,n(u) in (35) is decreasing
in u ∈ (0, ∞) and maps from (0, ∞):

1. if (m, n) = (0, 0), onto the interval (−6,−4);
2. if (m, n) ∈ {(1, 0), (0, 1)}, onto the interval

(
−12,−4ψ′(1)

)
;

3. if (m, n) ∈ {(2, 0), (0, 2)}, onto the interval
(
−18, 6ψ′′(1)

ψ′(1)

)
;

4. if (m, n) = (1, 1), onto the interval
(
−36, 6ψ′′(1)

)
;

5. if (m, n) ∈ {(2, 1), (1, 2)}, onto the interval
(
−72,− 6ψ′′′(1)

ψ′(1)

)
;

6. if m, n ≥ 2, onto the interval(
−6(m + n + 1)!

m!n!
,
(m + n + 1)(m + n)
mn(m − 1)(n − 1)

ψ(m+n)(1)
ψ(m−1)(1)ψ(n−1)(1)

)
.

Consequently, for m, n ∈ {0} ∪N, the two-sided inequality
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−6(m + n + 1)!
m!n!

< Gm,n(u) <



−4, (m, n) = (0, 0)

−4ψ′(1), (m, n) ∈ {(1, 0), (0, 1)}
6ψ′′(1)
ψ′(1)

, (m, n) ∈ {(2, 0), (0, 2)}

6ψ′′(1), (m, n) = (1, 1)

−6ψ′′′(1)
ψ′(1)

, (m, n) ∈ {(2, 1), (1, 2)}

(m + n + 1)(m + n)
mn(m − 1)(n − 1)

ψ(m+n)(1)
ψ(m−1)(1)ψ(n−1)(1)

, m, n ≥ 2

is valid on (0, ∞) and sharp in the sense that the lower and upper bounds cannot be replaced by any
larger and smaller numbers, respectively.

Theorem 10 ([32] (Theorem 4.1)). Let m, n ∈ {0} ∪N.

1. The function (−1)m+n+1Gm,n;λm,n(u) is of complete monotonicity on (0, ∞) if and only if
λm,n ≤ 0;

2. The function (−1)m+nGm,n;λm,n(u) is of complete monotonicity on (0, ∞) if and only if

λm,n ≥ 6(m+n+1)!
m!n! .

The proofs of Theorems 9 and 10 start out from the integral representation (34).

8. Lower Bound of Sectional Curvature

In [1] (Proposition 5) and [3] (Theorem 6), the sectional curvature K(u, v) was proved
to be negative and bounded from below.

Conjecture 1 ([2] (pp. 12–13) and [3] (p. 14)). For u, v > 0, the sectional curvature K(u, v):

1. has a lower bound − 1
2 , namely, K(u, v) > − 1

2 ;
2. is decreasing in both u and v.

In the papers [12,35], the author considered the function

K(u) = K(u, u) =
1
4

ψ′′(u)
[ψ′(u)]2

2ψ′(u)ψ′′(2u)− ψ′(2u)ψ′′(u)
[ψ′(u)− 2ψ′(2u)]2

(36)

on (0, ∞) and proved the sharp two-sided inequality

0 > K(u) > −1
2

(37)

which confirms the first conjecture in Conjecture 1 along the ray line u = v > 0 on M.
For proving the two-sided inequality (37), the author used the duplication formula

ψ(2u) =
1
2

ψ(u) +
1
2

ψ

(
u +

1
2

)
+ ln 2

in [17] (p. 259, 6.3.8). Moreover, the author used the integral representation (8), the convolu-
tion theorem for the Laplace transforms in [20] (pp. 91–92), the limits (9), (10), and (25), [27]
(Theorem 6.1), Lemma 2 mentioned above, and the author also established the following
three lemmas.
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Lemma 7 ([12] (Lemma 2.3)). For v > u > 0, the function

Wv(u) =

[
e−(v−u)/2 − e−u/2](v − u)(
1 − e−u/2

)[
1 − e−(v−u)/2

]
is increasing in u ∈ (0, v), with limits

lim
u→v−

Wv(u) = 2 and lim
u→0+

Wv(u) = −∞.

Lemma 8 ([12] (Lemma 2.4)). For k ∈ N0 = {0} ∪N and a ≥ 0, we have

lim
u→∞

(
uk+1[ψ(k)(u + a)− ψ(k)(u)

])
= (−1)kk!a.

For k, ℓ ∈ N and a ≥ 0, we have

lim
u→∞

(
uk+ℓ+1[ψ(k)(u)ψ(ℓ+1)(u)− ψ(k+1)(u)ψ(ℓ)(u)

])
= (−1)k+ℓ(k − 1)!(ℓ− 1)!(k − ℓ)

and

lim
u→∞

(
uk+ℓ+1[ψ(k)(u)ψ(ℓ)(u + a)− ψ(ℓ)(u)ψ(k)(u + a)

])
= (−1)k+ℓ(k − 1)!(ℓ− 1)!(k − ℓ)a.

Lemma 9 ([35] (Lemma 2.3)). Let

g(v) =


v

1 − e−v , v ̸= 0;

1, v = 0.
(38)

Then the following conclusions are valid:

1. The function g(v):

(a) satisfies the identity g(v)− g(−v) = v on (−∞, ∞);
(b) is infinitely differentiable on (−∞, ∞), increasing from (−∞, ∞) onto (0, ∞), convex on

(−∞, ∞), and logarithmically concave on (−∞, ∞).

2. The function g(2v)
g2(v) is increasing from (−∞, 0) onto (0, 1) and decreasing from (0, ∞) onto (0, 1).

3. The two-sided inequality 0 < g(2v)
g2(v) < 1 is valid on (0, ∞) and sharp in the sense that the

lower bound 0 and the upper bound 1 cannot be replaced by any larger scalar and any smaller
scalar, respectively.

4. For any fixed v > 0, the function g(uv)g((1 − u)v) is increasing in u ∈
(
0, 1

2
)
.

Lemmas 1, 4–6, and 9 are connected to each other via the differential relations
g′(v) = h(v) and g′′(v) = w(v).

It is easy to see that g(−v) = v
ev −1 is the generating function of the classical Bernoulli

numbers Bj for j ≥ 0; see the series expansion (13). A more general function v
βv−αv for

β > α > 0 and its reciprocal have been being systematically investigated and extensively
applied by the first author and his coauthors from the late 1990s to present. The first
two papers about this topic are available at https://doi.org/10.1006/jmaa.1997.5318 (ac-
cessed 19 September 2023) and https://doi.org/10.1090/S0002-9939-98-04442-6 (accessed
19 September 2023), published while the first author was a PhD student at the University
of Science and Technology of China. The latest two papers are published in Applied and
Computational Mathematics at https://doi.org/10.30546/1683-6154.22.4.2023.443 (accessed
on 19 September 2023) and in the Electronic Research Archive with the title "Three identities
and a determinantal formula for differences between Bernoulli polynomials and numbers"
with the doi code https://doi.org/10.3934/era.2024011 (accessed 19 September 2023) by
Cao, López-Bonilla and the first author of this article.

https://doi.org/10.1006/jmaa.1997.5318
https://doi.org/10.1090/S0002-9939-98-04442-6
https://doi.org/10.30546/1683-6154.22.4.2023.443
https://doi.org/10.3934/era.2024011
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The two-sided inequality (37) is a consequence of the following conclusions in [12,35].

Theorem 11 ([12] (Theorem 3.1)). Let p > m ≥ n > q ≥ 0 be integers such that m + n = p + q
and let

Fp,m,n,q;c(u) =

{∣∣ψ(m)(u)
∣∣∣∣ψ(n)(u)

∣∣− c
∣∣ψ(p)(u)

∣∣, q = 0∣∣ψ(m)(u)
∣∣∣∣ψ(n)(u)

∣∣− c
∣∣ψ(p)(u)

∣∣∣∣ψ(q)(u)
∣∣, q ≥ 1

for c ∈ R and u ∈ (0, ∞).

1. For q ≥ 0, the function Fp,m,n,q;c(u) is of complete monotonicity in u ∈ (0, ∞) if and only if

c ≤


(m − 1)!(n − 1)!

(p − 1)!
, q = 0;

(m − 1)!(n − 1)!
(p − 1)!(q − 1)!

, q ≥ 1.

2. For q ≥ 1, the function −Fp,m,n,q;c(u) is of complete monotonicity in u ∈ (0, ∞) if and only
if c ≥ m!n!

p!q! .
3. The two-sided inequality

− (m + n − 1)!
(m − 1)!(n − 1)!

<
ψ(m+n)(u)

ψ(m)(u)ψ(n)(u)
< 0 (39)

for m, n ∈ N and the two-sided inequality

(m − 1)!(n − 1)!
(p − 1)!(q − 1)!

<
ψ(m)(u)ψ(n)(u)
ψ(p)(u)ψ(q)(u)

<
m!n!
p!q!

(40)

for m, n, p, q ∈ N with p > m ≥ n > q ≥ 1 and m + n = p + q are valid on (0, ∞) and
sharp in the sense that the lower and upper bounds cannot be replaced by any larger and
smaller scalars, respectively.

Theorem 12 ([12] (Theorem 3.2) and [35] (Theorem 1.1)). For k ∈ N and u ∈ (0, ∞), let

Fk,ηk
(u) = ψ(2k)(u) + ηk

[
ψ(k)(u)

]2 and Fk,ϑk
(u) =

ψ(2k)(u)
[(−1)k+1ψ(k)(u)]ϑk

.

Then the following conclusions are true:

1. The function Fk,ηk
(u) is of complete monotonicity on (0, ∞) if and only if ηk ≥ 1

2
(2k)!

(k−1)!k! .

2. The function −Fk,ηk
(u) is of complete monotonicity on (0, ∞) if and only if ηk ≤ 0.

3. The function Fk,ϑk
(u) is decreasing on (0, ∞) if and only if ϑk ≥ 2.

4. The function Fk,ϑk
(u) is increasing on (0, ∞) if and only if ϑk ≤ 2k+1

k+1 .
5. The following limits are valid:

lim
u→0+

Fk,ϑk
(u) =



− (2k)!

[(k)!]
2k+1
k+1

, ϑk =
2k + 1
k + 1

0, ϑk >
2k + 1
k + 1

−∞, ϑk <
2k + 1
k + 1
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and

lim
u→∞

Fk,ϑk
(u) =


− (2k − 1)!
[(k − 1)!]2

, ϑk = 2

−∞, ϑk > 2

0, ϑk < 2.

6. The two-sided inequality

−1
2

(2k)!
(k − 1)!k!

<
ψ(2k)(u)

[(−1)k+1ψ(k)(u)]2
< 0

is valid on (0, ∞) and sharp in the sense that the lower and upper bounds cannot be replaced
by any greater and smaller numbers, respectively.

Theorem 13 ([12] (Theorem 4.1) and [35] (Theorem 1.2)). If and only if ν ≥ 2, the function

Iν(u) = ν
[
ψ′(u)− 2ψ′(2u)

]2 − 2ψ′(u)ψ′′(2u) + ψ′(2u)ψ′′(u)

is of complete monotonicity on (0, ∞). Consequently, the two-sided inequality

0 <
2ψ′(u)ψ′′(2u)− ψ′(2u)ψ′′(u)

[ψ′(u)− 2ψ′(2u)]2
< 2

is valid on (0, ∞) and sharp in the sense that the lower bound 0 and the upper bound 2 cannot be
replaced by any greater number and any smaller number.

Finally, the author concluded the following theorem.

Theorem 14 ([12] (Theorem 5.1) and [35] (Theorem 1.3)). Let K(u) be defined by (36). For
u > 0, the two-sided inequality (37) is valid on (0, ∞) and sharp in the sense that the lower bound − 1

2
and the upper bound 0 cannot be replaced by any larger scalar and any smaller scalar, respectively.

In [11] (Sections 1 and 5), via the notion of majorization, the author reformulated and
alternatively proved Theorem 11 above (that is, [12] (Theorem 3.1)) once again.

9. First Results by Majorization

Let
ϑ = (ϑ1, ϑ2, . . . , ϑn) and θ = (θ1, θ2, . . . , θn) ∈ Rn.

An n-tuple ϑ is said to strictly majorize θ (denoted by ϑ ≻ θ) if

(
ϑ[1], ϑ[2], . . . , ϑ[n]

)
̸=
(
θ[1], θ[2], . . . , θ[n]

)
,

k

∑
i=1

ϑ[i] ≥
k

∑
i=1

θ[i],
n

∑
i=1

ϑi =
n

∑
i=1

θi

for 1 ≤ k ≤ n − 1, where ϑ[1] ≥ ϑ[2] ≥ · · · ≥ ϑ[n] and θ[1] ≥ θ[2] ≥ · · · ≥ θ[n] are
rearrangements of ϑ and θ in descending order. See [24] (p. 8 and p. 80, Definition A.1) or
the papers [36–38].

In [11], the author introduced the following two functions

Qm,n(u) =
ψ(m+n)(u)

ψ(m)(u)ψ(n)(u)
and Qm,n;p,q(u) =

ψ(m)(u)ψ(n)(u)
ψ(p)(u)ψ(q)(u)

(41)

for m, n, p, q ∈ N such that (p, q) ≻ (m, n) on (0, ∞). It is clear that Qk,k(u) = Fk,2(u) for
k ∈ N.

In order to study properties of the functions Qm,n(u) and Qm,n;p,q(u), the author
employed the integral representation (8), the convolution theorem for the Laplace trans-
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forms [20] (pp. 91–92), Bernstein’s theorem [20] (p. 161, Theorem 12b), the limits in (9)
and (10), the monotonicity rule for the ratio of two functions [39] (pp. 10–11, Theorem 1.25),
and the monotonicity rule for the ratio of two Laplace transforms (see [31] (Lemma 4)
and [40] (Section 3)). The author generalized Lemma 9 as follows.

Lemma 10 ([11] (Lemma 6)). Let g(v) be defined in (38). Then the following conclusions are valid:

1. For fixed u ∈ (0, 1), the ratio gu(v)
g(uv) is decreasing in v from (0, ∞) onto (0, 1).

2. For u ∈
(
0, 1

2
)

and v ∈ (0, ∞), the mixed second-order partial derivative

∂2 ln[g(uv)g((1 − u)v)]
∂u∂v

> 0.

Lemmas 1, 4–6, 9, and 10 are connected to each other via the differential relations
g′(v) = h(v) and g′′(v) = w(v).

In order to study properties of the functions Qm,n(u) and Qm,n;p,q(u), the author
showed the following lemma.

Lemma 11 ([11] (Lemma 8)). For m, n, p, q ∈ N such that (p, q) ≻ (m, n), the function

um−1(1 − u)n−1 + (1 − u)m−1un−1

up−1(1 − u)q−1 + (1 − u)p−1uq−1

is increasing in u ∈
(
0, 1

2
)
.

More importantly, the author created a new monotonicity rule for the ratio of two
parametric integrals.

Lemma 12 ([11] (Lemma 9 and Remark 15) and [41] (Remark 7.2)). Let the functions U(u),
V(u) > 0, and W(u, v) > 0 be integrable in u ∈ (a, b). If the ratios ∂W(u,v)/∂v

W(u,v) and U(u)
V(u) are both

increasing or both decreasing in u ∈ (a, b), then the ratio

R(v) =

∫ b
a U(u)W(u, v)d u∫ b
a V(u)W(u, v)d u

is increasing in v; if one of the ratios ∂W(u,v)/∂v
W(u,v) and U(u)

V(u) is increasing and the other is decreasing
in u ∈ (a, b), then the ratio R(v) is decreasing in v.

Lemma 12 has been applied in [33,42–44] and generalized in [45–47]. There have
been a number of papers, plenty of studies in the literature, and many mathematicians
contributing to various monotonicity rules, and we just take two examples [48,49] here.

Aside from the alternative proof of Theorem 11 above (that is, [12] (Theorem 3.1)),
the remaining main results in [11] are included in the following theorems.

Theorem 15 ([11] (Theorem 11)). For m, n ∈ N, the function Qm,n(u) defined in (41) is decreas-
ing from (0, ∞) onto

(
− (m+n−1)!

(m−1)!(n−1)! , 0
)
. Consequently, the two-sided inequality (39), that is,

− (m + n − 1)!
(m − 1)!(n − 1)!

< Qm,n < 0, m, n ∈ N,

is valid on (0, ∞) and sharp in the sense that the lower and upper bounds cannot be replaced by any
larger and smaller numbers, respectively.

Theorem 16 ([11] (Theorem 12)). For m, n, p, q ∈ N with the majorizing relation (p, q) ≻ (m, n),
the ratio Qm,n;p,q(u) defined in (41) is decreasing from (0, ∞) onto the interval
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( (m−1)!(n−1)!
(p−1)!(q−1)! , m!n!

p!q!
)
. Consequently, for m, n, p, q ∈ N with (p, q) ≻ (m, n), the two-sided in-

equality (40), that is,
(m − 1)!(n − 1)!
(p − 1)!(q − 1)!

< Qm,n;p,q(u) <
m!n!
p!q!

,

is valid on (0, ∞) and sharp in the sense that the lower and upper bounds cannot be replaced by any
larger and smaller scalars, respectively.

10. Second Results by Majorization

In [42], the author considered the function

Yi,j;ℓ,m;Ωi,j;ℓ,m
(u) = (−1)i+jΦ(i)(u)Φ(j)(u)− (−1)ℓ+mΩi,j;ℓ,mΦ(ℓ)(u)Φ(m)(u) (42)

on (0, ∞), where i, j, ℓ, m ≥ 0 are integers such that (i, j) ≻ (ℓ, m), the scalar Ωi,j;ℓ,m is
dependent of i, j; ℓ, m, and Φ(u) is defined by (22).

For discovering the sufficient and necessary conditions for the function in (42) to
be of complete monotonicity on (0, ∞), the author made use of Lemma 11, the convolu-
tion theorem for Laplace’s transforms [20] (pp. 91–92), Bernstein’s theorem [20] (p. 161,
Theorem 12b), and the last property in Lemma 1. Meanwhile, the author proved a new
lemma below.

Lemma 13 ([42] (Lemma 4)). For i, j, ℓ, m ∈ N0 = {0} ∪N with (i, j) ≻ (ℓ, m), the inequality
i!j! > ℓ!m! is valid.

The main results of the paper [42] were stated in the following theorem.

Theorem 17 ([42] (Theorem 1)). Let i, j, ℓ, m ≥ 0 be integers such that (i, j) ≻ (ℓ, m).

1. If Ωi,j;ℓ,m ≤ 1, the function Yi,j;ℓ,m;Ωi,j;ℓ,m
(u) defined in (42) is of complete monotonicity on

the interval (0, ∞);
2. The function −Yi,j;ℓ,m;Ωi,j;ℓ,m

(u) is of complete monotonicity on (0, ∞) if and only if

Ωi,j;ℓ,m ≥ i!j!
ℓ!m! ;

3. The two-sided inequality

1 <
Φ(i)(u)Φ(j)(u)
Φ(ℓ)(u)Φ(m)(u)

<
i!j!
ℓ!m!

is valid on (0, ∞) and the right-hand-side inequality is sharp in the sense that the number i!j!
ℓ!m!

cannot be replaced by any smaller one.

The proof of Theorem 17 starts off from the integral representation (21) for Φ(u).

11. Third Results by Majorization

In the paper [33], the author introduced

Gi,j;p,q;Λi,j;p,q(u) = (−1)i+jG(i)(u)G(j)(u)− (−1)ℓ+mΛi,j;p,qG(p)(u)G(q)(u) (43)

on (0, ∞), where i, j, p, q ∈ N0 = {0} ∪N such that (i, j) ≻ (p, q), the quantity Λi,j;p,q is a
scalar dependent of i, j; p, q, and G(u) is defined in (28).

Making use of the convolution theorem of Laplace transforms in [20] (pp. 91–92),
Bernstein’s theorem in [20] (p. 161, Theorem 12b), Lemmas 11 and 13, [27] (Theorem 6.1),
and the logarithmic concavity of w(t) in Lemma 5, the author discovered the following
sufficient and necessary conditions.

Theorem 18 ([33] (Theorem 3.1)). Let i, j, p, q ∈ N0 = {0} ∪N such that (i, j) ≻ (p, q).
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1. If Λi,j;p,q ≤ 1, the function Gi,j;p,q;Λi,j;p,q(u) defined by (43) is of complete monotonicity
on (0, ∞).

2. The function −Gi,j;p,q;Λi,j;p,q(u) is of complete monotonicity on (0, ∞) if and only if

Λi,j;p,q ≥ i!j!
p!q! .

3. The two-sided inequality

1 <
G(i)(u)G(j)(u)
G(p)(u)G(q)(u)

<
i!j!
p!q!

is valid on (0, ∞) and the right-hand-side inequality is sharp in the sense that the number i!j!
p!q!

cannot be replaced by any smaller one.

The integral representation (34) is the starting point of the proof of Theorem 18 above.

12. Yang–Tian’s Investigations on Qi’s Guesses and Problems

There are a number of guesses and problems proposed in the eleven papers
in [11–13,26,28–30,32,33,35,42].

For n ≥ 2 and two non-negative integer tuples ϑ = (ϑ1, ϑ2, . . . , ϑn) ∈ Nn
0 and

θ = (θ1, θ2, . . . , θn) ∈ Nn, let

Pϑ,θ;Cϑ,θ (u) =
n

∏
r=1

ψ(ϑr)(u)− Cϑ,θ

n

∏
r=1

ψ(θr)(u) and Qϑ,θ(u) =
∏n

r=1 ψ(ϑr)(u)
∏n

r=1 ψ(θr)(u)

on (0, ∞), where we denote ψ(0)(u) = −1 for our own convenience. It is clear that

P(2k,0),(k,k);C(2k,0),(k,k)
(u) = Fk,−C(2k,0),(k,k)

(u), Q(2k,0),(k,k)(u) = Fk,2(u),

Q(m+n,0),(m,n)(u) = Qm,n(u), Q(m,n),(p,q)(u) = Qm,n;p,q(u).

The author proposed in [11] (Remark 19) a problem as follows.

Problem 1 ([11] (Remark 19)). For ϑ ≻ θ, discuss sufficient and necessary conditions on Cϑ,θ ∈ R
such that the function Pϑ,θ;Cϑ,θ (u) and its additive inverse −Pϑ,θ;Cϑ,θ (u) are completely monotonic
on (0, ∞), respectively.

Meanwhile, the author also proposed in [11] (Remark 19) a guess as follows.

Guess 1 ([11] (Remark 19)). If ϑ ≻ θ, the function Qϑ,θ(u) is increasing from (0, ∞) onto
the interval (

n

∏
r=1

ϑr!
θr!

,
n

∏
r=1

(ϑr − 1)!
(θr − 1)!

)
.

In [50] (Corollaries 6 and 8), Yang and Tian solved Problem 1. See also [50] (Remark 9).
In [51] (Theorem 3 and Corollary 1), Yang and Tian gave an answer to Guess 1.

In [51] (Theorem 1), they generalized the above Theorem 15 (that is, [11] (Theorem 11)).
In [51] (Theorem 2), they provided an equivalence of the above Theorem 16 (that is, [11]
(Theorem 12)). In [51] (Theorem 4), Yang and Tian generalized a part of [12] (Theorem 3.2).

13. An Open Problem Related to the Lower Bound of Sectional Curvature

We now propose an open problem related to the conjecture that the negative sectional
curvature K(u, v) is lower-bounded by − 1

2 .

Problem 2. For fixed α > 0 and n ∈ N, the function 1
1−ψ(n)(u+α)/ψ(n)(u)

is convex on (0, ∞).
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This problem looks simple. However, factually, it is not easy or trivial in practice. This
problem was even posted at the sites https://mathoverflow.net/q/396837 (accessed on
18 September 2023) and https://www.researchgate.net/post/How_to_prove_convexity_
of_a_simple_function_involving_a_ratio_of_two_polygamma_functions (accessed on 18
September 2023).

If Problem 2 were solved for the special case α = 1
2 , then the sectional curvature K(u)

defined in (36) would be decreasing in u > 0, and then the second claim in Conjecture 1
would be confirmed along the half-line u = v > 0 on M.

14. Conclusions

Several of the articles [11–13,26,28–30,32,33,35,42] have been cited by the
papers [4,16,46,50–58], in which the first author is not an author. The articles [4,59] are siblings.

Except for the guess and problem proposed in [11] (Remark 19), which have been
answered and solved in [50,51], many other guesses and problems proposed in the arti-
cles [11–13,26,28–30,32,33,35,42] still remain open and unsolved.
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