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Abstract: Hybrid approaches combining machine learning with traditional inverse problem solution
methods represent a promising direction for the further development of inverse modeling algorithms.
The paper proposes an approach to emission source identification from measurement data for
advection–diffusion–reaction models. The approach combines general-type source identification
and post-processing refinement: first, emission source identification by measurement data is carried
out by a sensitivity operator-based algorithm, and then refinement is done by incorporating a priori
information about unknown sources. A general-type distributed emission source identified at the first
stage is transformed into a localized source consisting of multiple point-wise sources. The second,
refinement stage consists of two steps: point-wise source localization and emission rate estimation.
Emission source localization is carried out using deep learning with convolutional neural networks.
Training samples are generated using a sensitivity operator obtained at the source identification stage.
The algorithm was tested in regional remote sensing emission source identification scenarios for
the Lake Baikal region and was able to refine the emission source reconstruction results. Hence, the
aggregates used in traditional inverse problem solution algorithms can be successfully applied within
machine learning frameworks to produce hybrid algorithms.

Keywords: inverse modeling; emission sources; air quality; source identification; sensitivity operator;
deep learning; neural network; post-processing; remote sensing; localized sources

MSC: 68T10

1. Introduction

Hybrid inverse modeling algorithms combining traditional approaches with machine
learning techniques are promising to improve inverse modeling results. A review of the
applications of machine learning methods to inverse problems can be found in [1–5].

Source identification problems are important in air quality applications since the
available information about the distributions of emission sources (“right-hand side” of
transport and transformation model equations) [6,7] is a key factor in air quality modeling
and assessment. Emission sources can be localized or distributed over some area. Typical
localized source classes are point-wise, linear, and piece-wise-linear sources. Examples of
regional point-wise sources may be factories, power plants, accidental emission sources,
forest fires, etc. Examples of linear sources are transportation routes. In the present paper,
we consider multiple point-wise emission sources emitting specific substances.

The problem of using sparsity assumptions in general algorithms is well known in
inverse problem theory and practice [1,8–10]. It can be approached, for example, by adding
some special stabilizers to the Tikhonov functional. In this case, a solution is sought as a
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general distributed function, but the stabilizers make sparser solutions (or solutions with
smaller supports) more preferable.

Another option is to explicitly include a detailed description of unknown sources (for
example, the sources are assumed to be point-wise) into the inverse problem statement.
In this case, we have the task of finding several coordinates in space and time and the
emission rate [11–16]. A drawback of this approach is that the resulting algorithms, as a
rule, are more specialized and their application to other types of sources may be impossible
or require a redesign.

In this paper, we present a post-processing algorithm with deep learning that aims to
improve the quality of emission source identification by applying a priori information about
the sources. A review of machine learning approaches to air quality forecasting can be found
in [17,18]. Machine learning approaches to source identification are analyzed in [17,19–25].
According to [19], deep learning can be used in source identification (data-driven source
term estimation) to construct surrogate models for operators mapping unknown functions
to measurement data to be used in inversion algorithms [20] or to construct surrogates of
inverse operators [25,26] mapping measurements to source parameters. Hybrid schemes
including physical models to obtain the simulation–observation difference and long short-
term memory (LSTM) and visual geometry group (VGG) artificial neural networks (ANN)
are developed in [21]. In [22], a U-net-based model is trained to predict NOx emissions
using satellite and in situ data. In [23,27], a multi-layer perceptron (MLP) is trained using
solutions of a direct problem to localize a single point-wise emission source by measurement
data. In [24], an ANN-based inversion operator for concentration measurement data
is trained using a number of independent scenarios describing possible hazardous gas
leakages in the chemical industry. In [19], a federated learning framework is proposed to
conduct data-driven source term estimation.

In our previous works, we developed a method of general-type source identification
for advection–diffusion–reaction models based on sensitivity operators and adjoint ensem-
bles [28,29], implemented in a software package called the Inverse Modeling and Data
Assimilation Framework (IMDAF). The approach stems from works by G.I. Marchuk [30]
and others [13,31–33]. In this approach, an inverse problem is transformed into a quasi-
linear operator equation with a sensitivity operator constructed from an ensemble of adjoint
equation solutions. An explicitly evaluated sensitivity operator can be used to both solve
the inverse problem and predict the results of reconstruction provided by a “true” solu-
tion [29]. The latter feature is useful in monitoring network design and analysis and will be
further used in the present work. The idea of the work is to refine the reconstruction results
by cleaning it of the artifacts introduced into the “true” solution via the reconstruction
procedure, and a sensitivity operator is used to describe these artifacts.

The objective of the present work is to test a deep learning approach in extracting
point-wise emission sources from the results of a general sensitivity operator-based source
identification algorithm. The paper is organized as follows. Section 2.1 defines direct,
inverse, and refinement problems. Section 2.2 describes briefly a sensitivity operator-based
source identification algorithm. In Section 2.3, an estimate of the reconstruction results
is given as a function of a “true” solution. Section 2.4 describes a validation scenario
for a regional emission source identification problem. A deep-learning-based refinement
algorithm is presented in Section 2.5. Section 2.6 describes the neural networks used in
the refinement algorithm. Section 3 demonstrates the numerical results obtained with the
refinement algorithm. Section 4 contains a discussion of the algorithm and its numerical
results. Section 5 summarizes the results of the paper.

2. Methods
2.1. Problem Statements

The chemical transport model for Nc reacting substances is defined in a domain
ΩT = Ω × (0, T), where Ω is a sufficiently smooth approximation of a bounded rectangular
domain [0, X]× [0, Y] in R2, T > 0. ΩT is bounded by ∂ΩT = ∂Ω × [0, T].
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∂φl
∂t

−∇ · (diag(µl)∇φl − uφl) + Pl(t,φ)φl = Πl(t,φ) + fl + rl , (x, t) ∈ ΩT , (1)

n · (diag(µl)∇φl) + βl φl = αl , (x, t) ∈ Γ(out) ⊂ ∂Ω × [0, T], (2)

φl = αl , (x, t) ∈ Γ(in) ⊂ ∂Ω × [0, T], (3)

φl = φ0
l , x ∈ Ω, t = 0, (4)

l = 1, . . . , Nc, (5)

where t is time and x is a space coordinate, φl = φl(x, t) denotes the concentration of the
lth substance at a point (x, t) ∈ ΩT , φ is the vector of φl(x, t) for l = 1, . . . , Nc, which is
called the state function, L = {1, . . . , Nc}. The functions µl(x, t) ∈ R2 correspond to the
diffusion coefficients, diag(a) is the diagonal matrix with the vector a on the diagonal,
u(x, t) ∈ R2 is the wind speed vector at the surface level. Γ(in) and Γ(out) are the parts of
domain boundary ∂ΩT in which the vector u(x, t) points inwards to the domain ΩT , and it
is zero or points outwards to the domain ΩT , correspondingly, and n is the outer normal.
The functions αl(x, t), φ0

l (x) describe the boundary and initial conditions, correspondingly;
βl is the boundary condition parameter, fl(x, t) is the a priori known source function, and
rl(x, t) is the unknown source function. Pl , Πl : [0, T]×RNc

+ → R+ are loss and production
operator elements defined by the transformation model (see Section 2.4).

The set of admissible emission sources is denoted by Q. As the direct problem operator
φ[q], we consider the operator that maps the emission source distribution function q ∈ Q (q
is the vector of rl(x, t) for l = 1, . . . , Nc) to the solution φ of (1)–(5). In our case, the emission
sources Q are constant in time, and only a specific set of substances Lsrc ⊂ L is emitted. Let
there be an “exact” source function q(∗) ∈ Q(∗) ⊂ Q to be found, and let φ(∗) = φ

[
q(∗)

]
be

the corresponding solution of the direct problem with the source function q(∗). The subset
Q(∗) is defined by additional a priori information about the unknown sources. In our case,
Q(∗) is a set of multiple point-wise sources:

Q(∗) =

{
S

∑
s=1

∑
l∈Lsrc

q(s)l elδ(x − x(s))δ(y − y(s)) |S ∈ N+, q(s)l > 0, (x(s), y(s)) ∈ Ω

}
,

where δ is the delta function and el is the l-th element of the canonical basis in RNc .
In the inverse problem, the source function q(∗) has to be identified from the “Snapshot”
measurements of φ(∗) at the final time moment T:{

φ
(∗)
l (x, T) |x ∈ Ω, l ∈ Lmeas ⊂ L

}
.

The details can be found in [29]. Let q(∞) ∈ Q be the reconstruction result of the source
identification algorithm.

Let Λ : Q(∗) → Q be the mapping from a “true” solution q̄(∗) to the result of its
reconstruction q̄(∞) by the source identification algorithm. To refine the reconstruction
result q(∞), we need to invert Λ on q(∞) = Λ

(
q(∗)

)
provided that the result of inversion is

from Q(∗). Since we consider the refinement operation as post-processing, we are able to
use both q(∞) and the corresponding sensitivity operator.

2.2. Source Identification Algorithm

The general source identification algorithm is based on a quasi-linear representation
of the source identification problem. If q(∗) is the exact solution of the source identification
problem, I is the measurement data aggregated in the state-function form (i.e., it is equal to
φ(∗) in the parts of ΩT where there are measurements and zero everywhere else), and δI
is its perturbation (i.e., measurement noise), then, for any U and q, the following relation
holds [28]:
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MU

[
q(∗), q

](
q(∗) − q

)
= HUI + HUδI − HUφ[q], (6)

where

MU

[
q(2), q(1)

]
z =

Ξ

∑
ξ=1

e(ξ)
〈

S[q(2), q(1); h(ξ)], z
〉

Q
, (7)

HUφ =
Ξ

∑
ξ=1

e(ξ)
〈

h(ξ),φ
〉

H
. (8)

Here, e(ξ) is the ξ-th element of the canonical basis in RΞ, and the scalar products are

⟨a, b⟩H =
Nc

∑
l=1

∫ T

0

∫
Ω

al(x, t)bl(x, t)dxdt, (9)

⟨a, b⟩Q =
Nc

∑
l=1

∫
Ω

al(x)bl(x)dx, (10)

U =
{

h(ξ)
}Ξ

ξ=1
is a set of projection functions, and S[q(2), q(1); h] is a sensitivity function

such that for any q(2), q(1) ∈ Q〈
S[q(2), q(1); h], q(2) − q(1)

〉
Q
=

〈
h,φ[q(2)]−φ[q(1)]

〉
H

(11)

holds. The sensitivity function is calculated by solving the adjoint problem determined by
its source function h [28]. The quasi-linear operator Equation (6) can be used to solve and
analyze the inverse problem by analyzing the properties of the sensitivity operator.

To process the Snapshot data, we use the following projection system:

h(ξ) = C(X, θ
(ξ)
x , x)C(Y, θ

(ξ)
y , y)δ(t − t(ξ))δ(l − l(ξ)),

ξ = 1, . . . , ΞSnapshot,

where δ are appropriate delta functions over time and chemical substances, C(X, θ, x) are
elements of the cosine basis on the interval [0, X]:

C(X, θ, x) =
1√
X

{√2 cos
(

πθx
X

)
, θ > 0

1, θ = 0
.

The projection system has two parameters, Θ(x)
Snapshot and Θ(y)

Snapshot, which define
the spatial resolution of the considered data. For any image, θx and θy range within

0, . . . , Θ(x)
Snapshot − 1 and 0, . . . , Θ(y)

Snapshot − 1, correspondingly. Hence, ΞSnapshot = NSnapshot ×

Θ(x)
Snapshot × Θ(y)

Snapshot. The computational cost of solving (6) is proportional to the number
of projection functions in U (see Section 2.4); therefore, it makes sense to minimize U.

The source identification algorithm in [29] solves (6) using a Newton–Kantorovich-type
iterative algorithm with a sensitivity operator matrix inversion regularized by truncated
singular value decomposition. The details can be found in [29] and in Section 2.3, where
we try to use the explicit form of the iterations to estimate the reconstruction result.

For the numerical implementation, the grid domain ωT is introduced in ΩT . The grid
domain has Nx × Ny × Nt grid points, and the spatial grid domain ω has Nx × Ny grid
points. The differential and integral aggregates involved in the source identification algo-
rithm are substituted by their finite-dimensional analogues. To solve a multi-dimensional
advection–diffusion–reaction problem, a splitting scheme as in [34] is implemented. We
use consistent numerical schemes for direct and adjoint problem solution in the sense that
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a discrete analogue of the sensitivity relation (11) also holds for the numerical schemes.
In the rest of the paper, we assume all the aggregates to be finite-dimensional.

2.3. Estimating Reconstruction Results

Given an exact source function q(∗) or its relevant approximation, we can estimate
its reconstruction result by using the kernel of the sensitivity operator [35] or a “model
resolution matrix” [33,36]. The kernel of a linear operator is the subspace that is mapped
to the zero vector. Hence, it is impossible to reconstruct information on q(∗) − q that is in
the kernel of MU

[
q(∗), q

]
by solving (6). On the contrary, information preserved in the

right-hand side of (6) on the way from a source to its reconstruction via measurements can
be represented by the orthogonal projector on the orthogonal complement to the sensitivity
operator kernel and can be evaluated as

Υ[q(2), q(1)] := M∗(MM∗)† M,

where M = MU [q(2), q(1)], M∗ is the adjoint of M, and (MM∗)† is the generalized Moore–
Penrose inverse of MM∗. In [29], we used the aggregates

q(p) = q(0) + Υ[q(0), q(0)]
(

q(∗) − q(0)
)

,

q(e) = q(0) + Υ[q(∗), q(0)]
(

q(∗) − q(0)
)

,

to estimate the reconstruction error
∥∥∥q(∗) − q(∞)

∥∥∥ for different types of measurement data

without explicitly solving the inverse problem. Here, q(0) is an initial guess, (which is
zero). In [29], we studied the quality of these estimates experimentally and they showed
similar performance.

To invert Λ on q(∞) = Λ
(

q(∗)
)

, we need an estimate at least in the vicinity of unknown

q(∗) (as a function of q(∗)). A direct method of evaluating Λ is to apply the reconstruction
algorithm, which is time-consuming (see Section 2.4); therefore we need to construct a
computationally cheaper estimate. To do this, let us look at the final iterations of the
source reconstruction algorithm. According to [29], at the n-th iteration q[n] of the IMDAF
algorithm, we have

q[n+1] − q[n] = γΘ
(

M[n] , Σ
)

MU

[
q(∗), q[n]

](
q(∗) − q[n]

)
,

Θ(m, Σ) := mT
[
mmT

]†

Σ
,

M[n] = MU

[
q[n] , q[n]

]
.

Here,
[
mmT]†

Σ denotes a regularized matrix inversion procedure based on a truncated SVD.
We use the following notation for the r-pseudoinverse matrix [37] for a matrix mmT ∈ RK×K:

[
mmT

]†

Σ
=

p

∑
l=1

Ul

s2
l
⟨., Ul⟩RK , s2

1/s2
p ≤ Σ < s2

1/s2
p+1, (12)

where ⟨., .⟩RK is the Euclidean scalar product in RK, {Ul}
rank(m)
l=1 is the orthonormal system

of left singular vectors of m, and sl are the singular values. Hence,

q[n+1] = q[n] + γ[n] Θ
(

M[n] , Σ
)

M[n]
(

q(∗) − q[n]
)
+ w[n] ,

w[n] = γ[n] Θ
(

M[n] , Σ
)(

MU

[
q(∗), q[n]

]
− M[n]

)(
q(∗) − q[n]

)
.
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At the final steps of the algorithm, the whole nonzero singular spectrum is involved in
inversion: Θ(m, Σ) ≈ mT[mmT]†. Moreover, let us skip the quadratic w[n] and let γ[n] ≈ 1.
With these assumptions, we can obtain an estimate of q[n+1] as a function of q(∗):

q[n+1] ≈ P(n)(q(∗)),

where
P(n)(q) = q[n] + Υ[q[n] , q[n] ]

(
q − q[n]

)
.

Following this logic, we consider P(∞)(q) as an estimate of Λ(q):

P(q) = P(∞)(q) = q(∞) + Υ[q(∞), q(∞)]
(

q − q(∞)
)

.

In Section 2.4, we present a numerical evaluation of the estimation quality.

2.4. Validation Basis

We use the same “realistic” inverse modeling scenario as in [29], where the domain of
study comprises the Baikal Natural Territory (Figure 1). In the experiments, we compare
three scenarios with different locations of the emission sources: Figure 1a shows sources
located in all the cities in the region (marked as “All”), Figure 1b shows relatively weak
sources in the northern part of the domain (marked as “Invis”), and Figure 1c shows
relatively strong sources in the southern part (marked as “Vis”). For the sake of simplicity,
we eliminate the geographical background layer from the figures in the rest of the paper.

(a) (b)

(c)

Figure 1. “True” emission sources q(∗): “All” (a), “Invis” (b), “Vis” (c) configurations. Source locations
are marked with red triangles.

In the reaction model, we consider Nc = 5 chemical species including O3 and NO. We
suppose that only NO is emitted (Lsrc = {NO}) with different constant emission rates in
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the sites presented in Figure 1. Ozone (O3) concentrations are measured (Lmeas = {O3})
as a snapshot of the concentration field at the final time moment. Measurement noise
δI = 0. The calculations are carried out on a grid of Nx = 57 by Ny = 60 points in space,
corresponding to the geographical domain presented in Figure 1, with Nt = 4401 points in
a time period starting at 2019-07-23 T12:00:00 with a time step of 54 s.

As a target for refinement by means of deep learning, we consider the reconstruction
results for NSnapshot = 1 and

Θ(x)
Snapshot × Θ(y)

Snapshot ∈ {15 × 15, 25 × 25, 35 × 35, 45 × 45} (13)

projection functions.
Figure 2 demonstrates q(∞) (the result of reconstruction) and its estimate P(q(∗)) for

the “Invis” source configuration with different numbers of projection functions. Analyzing
Figure 2a,c, we can see that some of the “true” emission sources are located inside of
the reconstructed distributed sources, (producing “excessively smeared point-wise source
errors”). We can also see that some of the “true” sources have no explicit corresponding
objects in the reconstruction (“false negative errors”) and some of the reconstruction artifacts
do not correspond to any “true” sources (“false positive errors”). The ideal refinement
algorithm must fix all three types of errors. Another quantitative observation that we have
in Figure 2b,d is that the reconstruction estimates have a similar structure in space to the
corresponding reconstructions (Figure 2a,c), but the values are different (see the scales).

(a) (b)

(c) (d)

Figure 2. Reconstruction result q(∞) (a,c) and its estimate P(q(∗)) (b,d) for Θ(x)
Snapshot × Θ(y)

Snapshot =

15 × 15 (a,b) and Θ(x)
Snapshot × Θ(y)

Snapshot = 45 × 45 (c,d) in “Invis” configuration. “True” emission
sources are marked with blue triangles.
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In Figure 3, we present the estimate P(q(∗)) error εde f ect with respect to the “true”
solution q(∗) for all the considered numerical experiments:

εde f ect =

∥∥∥P(q(∗))− q(∞)
∥∥∥

Q∥∥q(∗)
∥∥

Q
. (14)

A significant error is expected since we estimate the nonlinear mapping Λ(q) by affine-
type estimation P(q). For example, the differences between Figure 2a,b and Figure 2c,d
correspond to the minimal and maximum relative errors, correspondingly.

Figure 3. Reconstruction q(∞) estimate P(q(∗)) error with respect to the “true” solution q(∗).

In Figure 4, we present the computation times of the inverse problem solutions for the
three source configurations and consider the number of the projection functions Θ(x)

Snapshot =

Θ(y)
Snapshot (13). We carried out the calculations at the Siberian Supercomputer Center on

the NKS-1P hybrid cluster by RSC Group, Moscow, Russia using three Intel Xeon Gold
6248R nodes (each has 2 CPU × 24 cores × 2 threads, 3.00 GHz, 384 GB RAM). The total
number of cores used is 144. The nodes are connected with Cluster Interconnect Omni-Path
100 Gbps.

Figure 4. Emission source reconstruction time in hours by IMDAF.

Analyzing Figure 4, we can see that the computation time is proportional to the
number of projection functions; therefore, it makes sense to use deep learning to obtain a
solution corresponding to more projection functions from a solution with less functions.
This problem resembles a computer tomography inversion problem with incomplete data
(limited-angle computer tomography). This problem can be approached using deep learn-
ing [38–41]. For example, in [38], the authors used a U-net-type convolutional neural
network and a filtered back-projection computer tomography algorithm to work with
incomplete data.
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2.5. Deep Learning-Based Refinement of Inverse Modeling Results

The problem of refining the inverse modeling result q(∞) can be approximated by the
problem of inversion of P(q) on Q(∗)

q(•) = arg min
q∈Q(∗)⊂Q

∥∥∥P(q)− q(∞)
∥∥∥

Q
. (15)

To measure the quality of the refinement results, we use two metrics: the interpretation
quality

ε(q) =

∥∥∥P(q)− q(∞)
∥∥∥

Q∥∥q(∞)
∥∥

Q
, (16)

and the complexity of the results #(q). We measure the complexity on Q(∗) as the number
of point-wise sources (or positive elements in the discrete setting).

First, let us look at the action of the operator P on point-wise sources. In Figure 5,
we present samples of pairs {P(q), q}, q ∈ Q(∗) for Θ(x)

Snapshot × Θ(y)
Snapshot = 15 × 15 and

Θ(x)
Snapshot × Θ(y)

Snapshot = 45 × 45, correspondingly. We note that the approximate recon-

struction result corresponding to a smaller number of projection functions Θ(x)
Snapshot ×

Θ(y)
Snapshot = 15 × 15 contains coarser artifacts compared to the Θ(x)

Snapshot × Θ(y)
Snapshot =

45 × 45 case. Analyzing Figure 5, we note that the problem resembles a deconvolution
problem, i.e., the restoration of the original image after the distortion represented by a local
convolution operation [42].

A need for deconvolution arises in various areas—for example, in the compensation
of blur caused by the movement of a camera or object at shooting [43], or the correction of
optical artifacts in microscopy [44] and astronomy [45]. The case in which the distorting
function (convolution operator) is known in advance is “non-blind” deconvolution. In the
absence of noise in a distorted image, non-blind deconvolution is achieved by inverting the
convolution operator analytically (inverse filtering [42]). For noisy images, this approach
leads to unsatisfactory results due to the appearance of significant artifacts caused by the
added “deconvolution of noise” [42]. In such cases, the original image is restored using
optimization algorithms such as Wiener filtering [46] or Tikhonov regularization [47] (in
the frequency domain) or the Luce–Richardson method [48] (in the spatial domain).

Deconvolution for an unknown distorting function (“blind”) is performed by an
iterative process, at each step of which the evaluation of the distorting function is refined,
and, on its basis, the original image is evaluated using the methods described above [49].
For the evaluation of the distorting functions that one can use, such as machine learning
methods, see [50]. In this context, if we consider the linear part of P solely that is the
operator Υ(∞) = Υ[q(∞), q(∞)] (which makes sense as it acts between “increments”), our
problem will be close to the problem of non-blind deconvolution in the absence of noise,
but with the following reservations:

• the distortion function is spatially variant (i.e., not a local convolution);
• the distortion operator has a non-empty kernel (i.e., inverse filtering is impossible);
• the high-quality restoration of images of the special “several point-wise source” class

is of critical importance.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Training samples q(500), q(2000) ∈ Q̄(∗) (a,b), P(q(500)), P(q(2000)) ∈ Q for Θ(x)
Snapshot ×

Θ(y)
Snapshot = 15 × 15 (c,d), and P(q(500)), P(q(2000)) ∈ Q for Θ(x)

Snapshot × Θ(y)
Snapshot = 45 × 45 (e,f).

We look for a solution q̃(•) ∈ Q(∗) that provides “adequate” interpretation quality and
complexity defined by constants ε(•) and Nmax:

ε(q̃(•)) < ε(•), (17)

#(q̃(•)) ≤ Nmax. (18)

In [51], we used deep learning only to obtain a solution of (15). In the present work, we
split the problem into two steps: localizing the sources and recovering the emission rates.
The reason for this modification is that, provided with the source locations, the estimation
of the emission rates is a more straightforward problem. Hence, in the modified algorithm,
the first step is performed with the help of deep learning; the second involves solving a
quadratic programming problem using the source locations obtained at the first step.

For the localization of sources, we use a neural network operator

Tθ : Q → Q(∗),
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where θ are trainable parameters that have to be estimated with training samples
Q̄(∗) ⊂ Q(∗):

θ(×) = arg min
θ∈Θ

∑
q∈Q̄(∗)

ρQ(∗)(Tθ(P(q)), q),

where ρQ(∗) is the training loss function. Due to the complexity of the cost (error) func-
tion, we can obtain different optimization results by setting different (random) initial and
optimization algorithm parameters in the training procedure.

At this step, we control the complexity of the resulting solution q(×) = Tθ(×)

(
q(∞)

)
.

If #(q(×)) ≤ Nmax is satisfied, q(×) is returned as the result of the step; otherwise, we repeat
the learning procedure with different initial and optimization algorithm parameters. The
localization step can be summarized as an operator L : Q → Q(∗) that maps q(∞) ∈ Q to
q(×) ∈ Q(∗) such that #(q(×)) ≤ Nmax.

To recover the emission rates, we solve a quadratic programming problem and describe
this step as an operator G : Q(∗) → Q(∗). Let an element q of Q(∗) be

q =
S

∑
s=1

∑
l∈Lsrc

q(s)l elδ(x − x(s))δ(y − y(s)).

Then, we consider q = q(q̄) as functions of rates q̄ =
{

q(s)l

}
s=1,S, l∈Lsrc

with fixed locations

(x(s), y(s)) and solve the constrained quadratic optimization problem

q̄(+) = arg min
q̄≥0

∥∥∥P(q(q̄))− q(∞)
∥∥∥2

Q
. (19)

In our case, Lsrc = {NO} and the cost function in (19) is equivalent to a quadratic
polynomial of

{
q(s)

}
s=1,S,∥∥∥P(q(q̄))− q(∞)

∥∥∥2
=

S

∑
m=1

S

∑
l=1

q(m)q(l)
〈

Υ(∞)δl , Υ(∞)δm

〉
−2

S

∑
l=1

q(l)
〈

Υ(∞)q(∞), Υ(∞)δl

〉
+

〈
Υ(∞)q(∞), Υ(∞)q(∞)

〉
,

where Υ(∞) = Υ[q(∞), q(∞)], δl = δ(x − x(l))δ(y − y(l)). Finally,

G : q 7→ q(q̄(+)).

Considering these two steps sequentially, we obtain an approximation of q(•):

q̃(•) = G
(

L
(

q(∞)
))

.

Finally, we check the first requirement (17) on q̃(•). If ε(q̃(•)) < ε(•), then q̃(•) is considered
as an acceptable solution; otherwise, the procedure is repeated from the first step with
different parameters in the learning procedure until both requirements (17) and (18) are
satisfied. The algorithm is summarized in Figure 6.
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Figure 6. Refinement algorithm.

2.6. Convolutional Neural Networks

To specify the operator Tθ at the localization step of the refinement algorithm, we
need to construct a neural network that processes the image, transforming “spots” into
“points” and filtering specific artifacts. Convolutional neural networks (CNN) have been
reported to successfully solve various image reconstruction [3,52] and image processing
tasks, including segmentation [53,54], deblurring [55–57], and denoising [58,59]. CNNs can
be used in image [60,61] and multivariate time-series (1D image) classification tasks [62,63].

Keeping in mind these works, we tried several CNNs of increasing complexity: CNN3,
CNN4, and CNN9, presented in Figure 7 and Table 1. Layers with a larger filter size allow
us to identify areas with blurring and to “shrink” the areas to standalone points with a
smaller one. The largest network, CNN9, has an encoder–decoder architecture; CNN3 and
CNN4 consist of layers of CNN9’s encoder.

57x60x64
conv1

57x60x32
conv2

57x60x16
conv3

57x60x1
conv4

CNN3

CNN4

57x60x1
deconv1

57x60x16
deconv2

57x60x32
deconv3

57x60x64
deconv4

57x60x1
deconv5

Figure 7. CNN3, CNN4, and CNN9 architectures.
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Table 1. CNN3, CNN4, and CNN9 layers.

CNN3 CNN4 CNN9

# Layer Type Filters Kernel Size Number of Trainable Parameters

1 Conv2D 64 9 × 9 5248 5248

2 Conv2D 32 7 × 7 1600 100,384 100,384
3 Conv2D 16 5 × 5 12,816 12,816 12,816
4 Conv2D 1 3 × 3 145 145 145

5 Conv2DTranspose 1 3 × 3 10
6 Conv2DTranspose 16 5 × 5 416
7 Conv2DTranspose 32 7 × 7 25,120
8 Conv2DTranspose 64 9 × 9 165,952
9 Conv2DTranspose 1 3 × 3 577

Total number of trainable parameters 14,561 118,593 310,668

To construct and train the CNN operator Tθ , we used standard Tensorflow layers
and training (optimization) algorithms. The first layer is an Nx × Ny input layer and
the last one is an Nx × Ny output layer. The following parameters are the same for all
the layers: strides = 1, activation = ’relu’, padding = ’same’; ’Adamax’ is the opti-
mizer [64], ’mse’ is the loss and metric function. To reduce the learning rate, when the
metric has stopped improving, ReduceLROnPlateau is used with the following parameters:
factor = sqrt(0.1), cooldown = 0, patience = 5, min_lr = 0.5 × 10−6.

We used a number of training epochs of 10, interpretation quality parameter ε(•) = 0.65,
complexity threshold Nmax = 500. To construct a training set Q̄(∗), we use all single point-
wise sources localized in different points of the grid domain ω:

Q̄(∗) =

{
∑

l∈Lsrc

qlelδ(x − x(s))δ(y − y(s)) | ql > 0, (x(s), y(s)) ∈ ω

}
.

Some examples of Q̄(∗) elements are presented in Figure 5. We used training and vali-
dation samples of 0.8Nx Ny and 0.2Nx Ny elements, correspondingly, with a batch size of
0.8Nx Ny/8.

3. Results

Figure 8 shows the relative error and the relative complexity #(q̃(•))/#(q(∗)) of the
solutions provided by the above-proposed algorithms. Relative complexity equal to 1
implies that the numbers of point-wise sources in “true” and refined solutions are equal.
The error of the CNN-refined projection-based estimation allows us to evaluate the quality
of the pure inversion of P on P(q(∗)).

Figures 9 and 10 show the source identification results obtained with the general
algorithm q(∞) and the results of its refinement q̃(•) with CNN3, CNN4, and CNN9 for
different numbers of projection functions and source configurations.

Analyzing the results in Figure 8, we conclude that, from a quantitative point of view,
the best results with respect to relative errors and complexity are obtained with CNN4.
In all the cases, the refined solutions have smaller errors compared to the reconstruction
results (Figure 8c). CNN3 produced excessively complex solutions (Figure 8b) and, in some
cases (with “small” numbers of projection functions and larger artifacts), the error of the
refined solution is larger than the error of the rough reconstruction. The performance of
CNN9 can be assessed as intermediate between the two. From a qualitative point of view
(Figures 9 and 10), the results are similar up to some artifacts.
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(a) (b)

(c) (d)

(e) (f)
Figure 8. Relative errors with respect to q(∗) for CNN3 (a), CNN4 (c), and CNN9 (e); gen-
eral algorithm’s results q(∞) (Solve, red), projection-based estimate of result P(q(∗)) (Project,
green), CNN-refined solution q̃(•) (Solve+CNN, blue), and CNN-refined projection-based esti-
mate (Project+CNN, magenta). Relative complexity with respect to q(∗) for CNN3 (b), CNN4
(d), and CNN9 (f); CNN-refined solution q̃(•) (Solve+CNN, red) and CNN-refined projection-based
estimate (Project+CNN, blue).

Since “true” solutions are not known in advance, let us compare the results produced
by the above-considered ANN architectures with characteristics that do not take known
“true” solutions. Figure 11 demonstrates the interpretation quality ε(q̃(•)) (16) (the less,
the better) and complexity #(q̃(•)) (the less, the better). Analyzing Figure 11, we conclude
that CNN3 almost always provides better solutions with respect to interpretation quality,
but significantly concedes in providing simple (or compact) solutions. CNN4 and CNN9
provide similar solutions with respect to complexity, but CNN4 is almost always better
than CNN9 in terms of interpretation quality. These results are in accordance with the
results shown in Figure 8.
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(a) (b)

(c) (d)

Figure 9. Source identification result q(∞) (a) for Θ(y)
Snapshot = 15 × 15 and results of its refinement

q̃(•) by CNN3 (b), CNN4 (c), and CNN9 (d) in “Vis” configuration. “True” sources are marked with
blue triangles.

(a) (b)

(c) (d)

Figure 10. Source identification result q(∞) (a) for Θ(x)
Snapshot × Θ(y)

Snapshot = 45 × 45 and results of its

refinement q̃(•) by CNN3 (b), CNN4 (c), and CNN9 (d) in “All” configuration. “True” sources are
marked with blue triangles.
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(a) (b)
Figure 11. Interpretation quality ε(q̃(•)) (a) and complexity #(q̃(•)) (b) for CNN3 (red), CNN4 (green),
and CNN9 (blue).

4. Discussion

Analyzing Figure 8, we conclude that the algorithm provided a significant refinement
to the source reconstruction results. We can see that the relative reconstruction error
decreases with an increasing projection function number, which reflects the increasing
measurement data considered. On the contrary, the refinement results do not show similar
monotonicity with respect to the input data and the basic reconstruction quality. This means
that the performance of the refinement algorithm depends on the different characteristics
of the input data. It may be connected to the quality of the reconstruction estimates, which
shows the opposite dependence (Figure 3) on the number of projection functions. This
unclear dependence can be considered as a limitation of the algorithm.

The hybrid algorithm performance depends on the properties of the sensitivity op-
erators (e.g., the non-linearity of a sensitivity operator likely impacts the quality of Λ’s
approximations). The sensitivity operators and corresponding right-hand sides of quasi-
linear operator equations (6) are defined by the emission source identification problem
statement (Section 2.1), which is composed of atmospheric process models, a measurement
system, and an unknown function choice. The atmospheric model’s parameters depend
on the climatic and geographical conditions of the region under consideration. Therefore,
these conditions impact the sensitivity operators in various ways. In this paper, we present
an illustration of the approach in realistic conditions for the Baikal region. A further inves-
tigation is needed to identify which conditions have significant effects on the sensitivity
operator’s properties that are important for the hybrid algorithm’s performance and to
estimate its generalizability and reliability for other regions (e.g., in a city air quality inverse
modeling scenario, as in [35]).

The key point of the algorithm is the ability to construct a relevant and computationally
cheap reconstruction result approximation P(q). In this paper, we provide an example of
such an estimate and test its performance in the numerical experiments. Other estimates
can also be considered. To reduce the risk of using inaccurate estimates, a strategy including
both Λ(q) and its estimate P(q) can be developed.

The sensitivity operator that is evaluated in sensitivity operator-based algorithms
provides a natural way to generate training samples of any size for various classes of
solutions. In this work, we considered a complete set of single point-wise sources as a
training set for the localization stage of the refinement algorithm. In future work, we
plan to consider training sets containing multiple point-wise sources and piece-wise linear
sources. Since the number of such sources is substantially higher than the number of single
point-wise sources, which is Nx × Ny, some reproducible procedure of constructing an
affordable yet representative set of training samples should be developed, e.g., with some
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type of pseudo-random sequence. Another interesting question is whether it is possible to
distinguish the main types of sources (point-wise, linear, and distributed), thus solving a
source classification problem.

In contrast to many deep learning applications, where there is a given sample set and
ANNs have to correctly process different inputs, in the present paper, we have a direct
model that can potentially produce a sample set of any size and a trained ANN has to
process only one input q(∞). This setting, in some sense, corresponds to the task of con-
structing a surrogate of a complicated model. In these terms, we construct a surrogate of the
inverse Λ on Q(∗) using its approximation P, deep learning, and quadratic programming.

Using standard deep learning terminology, we can formally consider {q(∞), q(∗)} as
a testing set consisting of a single element. In real applications, q(∗) is unknown, but we
can potentially use multi-point sources in the vicinity of q(∗) to construct a larger testing
set. This may be the subject of future research. We can also consider the whole set of the
above-presented 12 numerical experiments as a testing set for a hybrid algorithm.

The risk of overfitting in the proposed framework is reduced by the following hybrid
algorithm’s features. In our setting, the training samples are significantly different from the
target input {q(∞), q(∗)}: each training sample corresponds to a single point-wise source,
while the target sample contains multiple point-wise sources. Furthermore, according to
the algorithm (Figure 6), in the case of unsatisfactory results (by criteria (17) and (18)) for a
target input, we can abandon the refinement result q̃(•) and look for another. Thanks to the
criteria, instead of an ANN, we can potentially use a random generator or any appropriate
metaheuristic algorithm, but the ANN is supposed to produce more targeted results, thus
decreasing the number of attempts. In our case, typical overfitting appears as a trained
ANN producing a zero output for a target input q(∞), which can be identified with (17).

Another important question is the choice of the training loss metric. We used the
standard mean squared error (mse) since it is fast enough and works with both Q (dis-
tributed) and Q(∗) (point-wise) functions in discrete settings. A limitation of mse for this
setting is that it does not measure the distance between point-wise sources. The distance
metrics of Hausdorff, Chamfer, or Wassershtein appear more suitable, but additional work
is needed to obtain their sufficiently fast implementation for the comparison of distributed
and point-wise sources.

To update the emission rates at the second step of the refinement algorithm, we use the
estimate P(q). To obtain a better estimate of the emission rates, it is possible to use (6) or
consider an emission rate identification problem with fixed source locations. Additionally,
in this paper, we consider an algorithm with only one iteration of the refinement procedure.
Refinement can be done iteratively, i.e., the procedure can be repeated for the residual:

q(∞,k+1) = q(∞,k) − P
(

G
(

L
(

q(∞,k)
)))

.

Interpretation quality ε(q) (the less, the better) is quantified by (16), involving the
operator P. A more rigorous evaluation of the interpretation quality can be carried out by
using the operator Λ instead of P in (16), which uses the solution of the inverse problem
and therefore is more time-consuming (Figure 4). Evaluating the direct problem operator
φ[q̃(•)] and comparing the corresponding values to measurement data I directly would be
less time-consuming and more appropriate in the context of a source identification problem.

The upper boundary ε(•) of admissible interpretation quality in (17) was experimen-
tally chosen to be small enough to avoid overfitted ANN results (e.g., q(×) = 0) and large
enough to reduce the number of iterations due to the violation of (17). The parameter
Nmax << Nx × Ny of the second criterion (18) was chosen to avoid “smeared” solutions
(e.g., if q(×) = q(∞), then P(q(∞)) = q(∞), ε(q(∞)) = 0 < ε(•) and q(∞) fits the first crite-
rion (17), but #(q(∞)) > Nmax). A more automated procedure for the selection of criteria
parameters can be considered as a direction of further research.

In this paper, we evaluated the refinement of a solution obtained by the basic source
identification algorithm. In order to evaluate the performance of the whole hybrid algo-
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rithm in the context of source identification, it should be compared to specialized point-
wise source identification algorithms (e.g., [11–16]). This can be considered as a future
research direction.

The question of choosing the correct ANN architecture is also an important one. We
present a comparison of the results produced by the above-considered CNN architec-
tures based on relative errors, interpretation quality, and solution complexity, but further
investigation is also needed in this direction.

In this paper, we consider image-type measurements, when a spatial domain is equiv-
alently visible by a measurement system. In the case of localized measurements, spatially
different illumination becomes an important issue [31–33]. In this case, a source recon-
struction algorithm tends to place maxima of the reconstructed sources in measurement
points. To fix this distortion, the authors of [31–33] introduced a re-normalization concept
to preserve the locations of the maxima. A refinement algorithm for localized measure-
ments will be the subject of future research. Another important question is measurement
noise. Machine learning denoising may be applied in this direction. In this case, it may be
implemented as a pre-possessing algorithm in the space of the measurement results.

5. Conclusions

In this paper, we numerically tested a source identification algorithm that combines a
general-type emission source identification stage and a post-processing refinement stage.
Emission source identification by measurement data is carried out with a sensitivity
operator-based algorithm. At the post-processing stage, the general-type emission source
identified at the first stage is transformed into a source consisting of multiple point-wise
sources. The second stage consists of two steps: point-wise source localization and emission
rate estimation. The first step is carried out using deep learning with convolutional neural
networks. Training samples are generated using the sensitivity operator obtained at the
first step. The algorithm was tested in regional remote sensing emission source identi-
fication scenarios for the Lake Baikal region and was able to refine the emission source
reconstruction results.

Hybrid approaches combining machine learning with traditional inverse problem
solution methods emerge as a promising direction for the further development of inverse
modeling algorithms. Moreover, aggregates used in traditional inverse problem solution
algorithms can be successfully applied within machine learning frameworks to produce
hybrid algorithms.
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