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Abstract: Orthogonal frequency division multiplexing (OFDM) in 5G has many advantages; however,
one of the disadvantages is that the superposition of a large number of subcarriers leads to a high
peak-to-average power ratio (PAPR) of the transmit signal. A high PAPR results in high-power
amplifier distortion and performance degradation. The partial transmit sequence (PTS) algorithm
is commonly used for PAPR reduction. It enumerates all combinations of phase factors, weighs
the signal using each phase factor combination, and finds the set of phase factors that minimizes
the PAPR value of the OFDM signal. The advantage of the PTS is that it determines the optimal
solution through enumeration; however, its major drawback is the higher complexity caused by the
use of enumeration. Some studies have introduced the discrete particle swarm optimization (DPSO)
algorithm instead of enumeration to determine the optimal solution of the PTS algorithm. As an
excellent optimization method, the DPSO algorithm represents each individual as a solution during
the optimization. Through iterative updates of the initial population, individuals in the population
continuously move closer to the optimal solution. This approach significantly reduces complexity
compared with the exhaustive enumeration used in the traditional PTS algorithm. However, the
disadvantage of the general DPSO algorithm is that it can result in premature and early convergence,
which leads to degradation of the PAPR reduction performance. In this study, we propose an
improved method based on the general DPSO-based PTS algorithm, and the improved algorithm
MDPSO-PTS adopts dynamic time-varying learning factors, which can find the optimal combination
of phase factors more efficiently. The MDPSO-PTS algorithm expands the search space when seeking
the optimal combination of phase factors. This avoids the drawback of premature convergence
commonly observed in general DPSO-PTS algorithms, preventing early consideration of local optima
as global optima. A comparative simulation of the improved MDPSO-PTS algorithm with the
general DPSO-PTS algorithm shows that the improved algorithm has stronger PAPR reduction,
whereas the complexity remains basically unchanged. A comparative simulation with the traditional
PTS algorithm shows a significant reduction in complexity, with only a slight, acceptable loss of
reduction performance.

Keywords: orthogonal frequency division multiplexing (OFDM); peak-to-average power ratio
suppression (PAPR); partial transmit sequence (PTS); discrete particle swarm optimization (DPSO)

MSC: 94A05

1. Introduction

Orthogonal frequency division multiplexing (OFDM) is one of the core technologies
of the physical layer in 5G New Radio (5GNR). OFDM possesses the advantages of a high
transmission rate and strong resistance to multipath interference and can be combined with
large-scale MIMO [1,2]. OFDM, as a multicarrier modulation technique, has been chosen as
the downlink waveform for 5G communication systems [3], and it is widely used. OFDM
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technology possesses many advantages, but its disadvantage is that a high peak-to-average
power ratio (PAPR) seriously affects the system performance, leading to the distortion
of OFDM signals in the nonlinear region of the high-power amplifier (HPA). Conversely,
the probability of the occurrence of a high PAPR in OFDM signals is low, and expanding
the linear operating range of the HPA in a single step reduces its efficiency [4]. However,
owing to the limited range of device standards, the linear region range of the HPA is also
limited. Therefore, it is significant to investigate the reduction of the PAPR of signals in
OFDM systems.

PAPR reduction techniques have been extensively studied in the following three main
categories:

(1) Signal-predistortion class techniques

Clipping and compression expansion techniques are the main signal predistortion
techniques [5–7]. The clipping technique reduces the PAPR of an OFDM signal by cutting
off the signal amplitudes above a threshold value, thereby reducing the amplitude of
the peak signals. The principle of the compression-expansion technique is to compress
the amplitudes of large signals while expanding the amplitudes of small signals, thereby
ensuring a constant average power to reduce the PAPR. The biggest advantage of this type
of PAPR reduction method is that it is simple to implement, and the PAPR reduction effect
is significant. The disadvantage is that this technique is a nonlinear transformation, and
the nonlinear operation of the signal produces a nonlinear distortion. This can affect the bit
error rate (BER) and performance of the entire communication system;

(2) Coding class technique

The coding-class technique selects a specific code word to encode a bit stream. Com-
monly used code words include group codes [8] and Gray’s complementary codes [9,10].
The codewords used for coding have lower-amplitude peaks, and the coded bit stream has
lower PAPR values. The coding class technique, as a linear transformation class method,
has the advantage of not increasing signal distortion. One disadvantage is that redundant
information must be transmitted during coding, which reduces the transmission efficiency
of the system;

(3) Probabilistic class techniques

Probabilistic class techniques are linear transformations that not only do not result
in an increase in the BER but also have good PAPR reduction performance. This class of
technology is widely applied with a focus on reducing the probability of peak occurrences.
The most commonly used probabilistic class techniques are the Partial Transmit Sequence
(PTS) method [7–13] and Selective Mapping (SLM) algorithm [14–18]. The disadvantage
of the probabilistic class technique is that its computational complexity is high, requiring
multiple inverse fast Fourier transform (IFFT) operations and calculation of the PAPR.
Researchers have introduced optimization algorithms into the PTS to reduce its complexity.
For a PTS-OFDM system, the authors in [19–21] proposed an artificial bee colony algorithm,
differential evolution search, and genetic algorithms, respectively. These algorithms have
limitations in terms of the convergence speed and PAPR reduction capability.

The algorithm used in this study is based on the PTS algorithm, which is an effective
and distortion-free PAPR reduction method. The traditional PTS algorithm is based on
exhausting all phase factor combinations and finding the phase factor that minimizes the
PAPR of the OFDM symbols. The high complexity of the PTS algorithm lies in determining
the optimal phase factor. To address the limitations of the PTS algorithm, researchers
in [9] introduced the discrete particle swarm optimization (DPSO) algorithm into the PTS
algorithm, resulting in improved PAPR reduction effectiveness. The DPSO algorithm is
a group intelligence algorithm that is simple to implement and highly efficient. In the
DPSO algorithm used to determine the optimal phase factor, each individual represents
a combination of phase factors. By continuously updating each individual in the popu-
lation, individuals move towards the optimal solution, ultimately converging the entire
population near the optimal solution. This optimization process replaces the exhaustive
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enumeration procedure in the traditional PTS, which can be a suitable solution to the prob-
lem of high computational complexity owing to searching for the phase factor in the PTS
algorithm [14,15]. However, conventional DPSO algorithms often experience premature
convergence, becoming trapped in local optima, and mistakenly considering them as global
optima. This premature convergence leads to a false optimal solution and results in the
degradation of the PAPR reduction performance. Therefore, in this paper, an improved PTS
algorithm based on DPSO is proposed. The improved MDPSO-PTS algorithm incorporates
dynamic and time-varying learning factors, which help avoid premature convergence and
prevent the algorithm from becoming trapped in local optima. By enlarging the search
space, the algorithm aims to determine the phase factor combination that results in a lower
PAPR value. The conclusions drawn from the simulation experiments indicate that the
proposed MDPSO-PTS algorithm exhibits superior PAPR reduction performance compared
with the conventional DPSO-PTS algorithm without dynamic learning factors. Moreover,
compared with the traditional PTS algorithm, the proposed algorithm achieves a signif-
icant reduction of computational complexity while incurring minimal performance loss.
A reduction of complexity can reduce the transmission latency of OFDM communication
systems, lower hardware requirements, reduce costs, and enhance communication quality.

The remainder of this paper is organized as follows. Section 2 describes the basic
principles of OFDM and the PAPR problem. Section 3 describes the concept of the PTS
algorithm based on the DPSO and the MDPSO-PTS improvement method. Section 4
compares and analyzes the traditional and improved algorithms using MATLAB simulation
experiments. Section 5 summarizes the advantages of the MDPSO-PTS algorithm, explains
the importance of the PAPR-reduction algorithm in OFDM technology, and highlights
future research directions.

2. OFDM Fundamentals and the Peak-to-Average Ratio Problem

OFDM is an efficient digital communication technique widely used in modern wireless
communication systems. It modulates the bit stream on multiple noninterfering subcarriers to
increase the data transmission rate and system capacity, and strict orthogonality is required
between the subcarriers. Figure 1 shows a basic modulation block diagram of OFDM.
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Figure 1. Basic modulation block diagram of OFDM.

On the transmitter side, the source first transmits serial bit data, which are converted
into a parallel stream after constellation mapping and serial-to-parallel conversion. Each
symbol is placed on an orthogonal subcarrier and superimposed to obtain the time domain
signal to be transmitted. The process of modulating each frequency domain signal onto
orthogonal subcarriers and superimposing them is equivalent to the inverse fast Fourier
transform (IFFT), which is generally referred to as the IFFT. After the channel transmission,
the original data can be recovered by performing an inverse operation on the received
signal at the receiving end.
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For OFDM systems, due to the use of multiple carriers to transmit data in parallel,
a higher PAPR can lead to the distortion of nonlinear components in the system, such
as power amplifiers, thus degrading the performance of the system [7]. Assuming that
the frequency domain data after constellation mapping is X(k), X(k) passes through the
IFFT block and generates the baseband signal. The nth sample of the OFDM signal can be
expressed by Equation (1):

xn =
1√
N

N−1

∑
k=0

Xk · exp
(

j
2π

N
kn

)
, 0 ≤ n ≤ N − 1, (1)

The PAPR of an OFDM signal is the ratio of the maximum power to the average
power [22], which can be expressed by Equation (2):

PAPR =
max

{
|xn|2

}
E
{
|xn|2

} , (2)

where x(n) denotes the time domain symbols that have been transformed by the IFFT, and
the OFDM signal has a high PAPR. The complementary cumulative distribution function
(CCDF) is used to measure the magnitude of the PAPR, which indicates the probability that
the signal was greater than a certain threshold value. This is expressed in Equation (3).

CCDF = P(PAPR > PAPR0) = 1 −
(

1 − e−PAPR0
)N

, (3)

In this study, the PTS algorithm, a probabilistic class technique, is used. The PTS
algorithm has been widely used and researched because of its excellent PAPR reduction
performance [23]. The PTS algorithm is less complex and easier to implement than other
probabilistic class SLM algorithms. As shown in Figure 2, in OFDM modulation, the core
idea of the PTS algorithm is to divide the OFDM frequency domain sequence into multiple
sub-blocks. Each sub-block is then weighted with different combinations of phase factors,
and the optimal combination of phase factors is selected to reduce the PAPR of the entire
OFDM time domain signal [13]. In the specific realization process, a signal X of length N is
first divided into V subblocks, and the grouped data are expressed as X = [X1, X2, · · · , Xv].
Assume a phase space p containing M phase factors, p =

{
ej2πw/M | w ∈ [0, M − 1]

}
.

Each sub-block of the grouped signal selects a phase factor to be multiplied by, and the
combination of phase factors selected for the V sub-block data is pv(v = 1, 2, . . . , V). Finally,
the data are transformed to the time domain using the IFFT to obtain the transmitter signal,
as shown in Equation (4):

x = IFFT

{
v

∑
v=1

pvXv

}
=

v

∑
v=1

pv · IFFT{Xv} =
v

∑
v=1

pvxv, (4)

The derivation of the above equation utilizes the linear nature of IFFT. The grouped
sub-block frequency domain signals are first subjected to an IFFT operation to obtain the
time domain signal xv. Subsequently, the transmitted signal x is constructed. Through this
transformation, each iteration no longer performs the IFFT operation when searching for
the optimal phase factor combination. This can greatly reduce computational complexity.
The essence of the PTS algorithm is to enumerate all combinations of phase factors and
calculate the PAPR for each combination of phase factors. By selecting different phase
factors, different time domain signals x can be obtained, and the signal with the minimum
PAPR for transmission can be selected. In this case, the PAPR of the output signal was
lower than the original PAPR.
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In the PTS algorithm, there are three main block partitioning methods for the original
signal: adjacent, interleaved, and random. All three methods must satisfy the follow-
ing conditions: subcarriers can only appear once and each block has the same number
of subcarriers.

3. PTS Algorithm Based on DPSO and Improved Algorithm
3.1. Principle of DPSO

The idea behind the PSO algorithm originates from the group behavior of animals,
such as bird flocks. The essence of the algorithm is that individuals in the group evolve by
comparing their historical information while simultaneously comparing the information
of the optimal individuals in the group. Individuals continuously coordinate and share
information among themselves such that the movement of the entire group evolves itera-
tively in the problem-solving space and finally finds the optimal solution [24]. The most
significant advantages of the PSO algorithm are its simplicity and rapid convergence.

Problems solved by the PSO algorithm are categorized as continuous and discrete
problems. The problem to be solved in this study is discrete; therefore, the PSO proposed
in this study is discrete, denoted as DPSO. The DPSO algorithm treats the individuals in
a population as particles with only two physical quantities: position and velocity. The
position of each particle represents a candidate solution in the solution space of the problem.
A flowchart of the DPSO algorithm is presented in Figure 3.

The initial particle population is generated by randomization. In the iterative optimiza-
tion process, it is assumed that the ith particle position is Wi = (bi1, bi2, . . . , biV), and the
particle velocity is Vi = (vi1, vi2, . . . , viV). Each particle’s historical optimal position is denoted
as Wp

i =
(

bp
i1, bp

i2, . . . , bp
iv

)
, and the historical optimal position in the population is denoted as

WG =
(
bG

1 , bG
2 , . . . , bG

v
)
. The particle’s historical optimal position Wp

i and the historical opti-
mal position in the population WG affect the direction and speed of each particle’s movement.
By comparing the fitness values, each particle continuously corrects its movement direction
and moves towards the optimal position after many iterations. Finally, the particles in the
entire population move to the neighborhood of the optimal solution.

The velocity and position update equations for the DPSO are as follows [25]:

vid(t + 1) = ω ∗ vid(t) + c1 ∗ rand ∗ (wid pbest(t)− wid(t))+
c2 ∗ rand ∗ (wdgbest(t)− wid(t))

, (5)

S(vid(t + 1)) =
1

1 + exp(−vid(t + 1))
, (6)
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wid(t + 1) =

{
1, rand < S(vid(t + 1))
0, othercase

, (7)

where Equation (5) is the velocity update formula, and vid(t + 1) denotes the velocity of
the ith particle in the dth dimension in the (t + 1)th iteration. Equation (6) is the sigmoid
mapping, which maps the particle’s velocity to the interval [0, 1], and represents the
probability that the particle’s position will take 1 in the next iteration. Equation (7) is the
position update formula and wid(t + 1) denotes the position of the ith particle in the dth

dimension at the (t + 1)th iteration. The velocity update equation comprises three parts:

(1) ω ∗ vid(t) is the inertial component that represents the retention of a particle’s speed
of motion from the previous generation and ω is the inertial factor;

(2) c1 ∗ rand ∗ (wid pbest(t)− wid(t)) is the self-awareness component that denotes the
self-learning component of a particle and c1 is the self-learning factor. For the best
individual particle, wid pbest(t) denotes the optimal position of the ith particle in the
dth dimension in the tth iteration;

(3) c2 ∗ rand ∗ (wdgbest(t)− wid(t)) is the social cognitive component that represents the
learning component of a particle for the population, and c2 is the social learning
factor. As the global best, wdgbest(t) denotes the optimal population position in the
dth dimension at the tth iteration and rand denotes a random number in [0, 1].
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3.2. Fundamentals of DPSO-PTS Algorithm

According to the principle of the PTS algorithm, the dimensions of the position
and velocity vectors of the particulate units are the number of partitions V in the PTS
algorithm. The phase factors in the PTS method are considered finite, and in general, the
number of phase factors is M = (2, 4, 8). Each position of a particle represents a phase
factor combination; for example, if the set of phase factors is {−1, 1}(M = 2), then biv is
considered to be either 0 or 1. Let 0 represent −1 for the Vth dimension of the ith particle
(i.e., the phase factor chosen for multiplication in the Vth sub-block), and let 1 represent 1
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for the Vth dimension of the ith particle. For M = 4, the set of phase factors is {−1, j, 1,−j}.
Each dimension of biv in the particle’s position is represented by a two-bit binary number,
that is, (0,0), (0,1), (1,0), and (1,1) represents the choice of a different phase factor, and the
number of binary digits representing the position of the particle is log2 M.

From the principles of DPSO and PTS, the PTS algorithm based on DPSO, denoted as
DPSO-PTS, can be obtained as follows. The pseudo-code of the DPSO-PTS algorithm is
shown in Algorithm 1.

Algorithm 1. The pseudo-code of DPSO-PTS algorithm.

Input: number of subcarriers N, particle swarm population size NUM,
inertia factor ω, maximum speed Vmax, learning factor c1, c2
maximum number of iterations Gn

Output: the global best WG and corresponding PAPR value
Initialize: initialize the particle position Wi, particle velocity Vi,

fitness = f (Wi), the initial individual particle best Wp
i = Wi,

the global best WG = max(Wp
i ).

for t = 1:Gn do
according to Equations (5)–(7), update the vid(t + 1) and wid(t + 1) of each particle in each

dimension.
calculate the new fitness = f (wid(t + 1)).
if new fitness > fitness then

update Wp
i , WG = max(Wp

i ), fitness = new fitness.
else

remain the Wp
i , WG, fitness.

end
end
get the PAPR value = f (WG)

Step 1: System parameters and population initialization: Set the particle population
size NUM; initialize the inertia factor ω, learning factors c1 and c2, and the maximum
velocity limit Vmax; randomly generate NUM particles with position and velocity as the
original population.

Step 2: Fitness calculation: First, calculate the PAPR value of the phase factor repre-
sented by the position of each particle, and calculate the reciprocal of the PAPR value as
the fitness value. Initialize it to the optimal position of the particle and the corresponding
optimal fitness value. Subsequently, select the optimal particle in the group, that is, the
particle with the largest fitness value, as the initial optimal position and fitness value of
the group.

Step 3: Update the velocity and position: Iteratively update the velocity and position
of each particle. When the velocity exceeds the boundary range, it is equal to the maximum
value set by the system parameters.

Step 4: Update the optimal position and its fitness: Recalculate the fitness value
according to the latest positions of the particles; compare the individual particles with their
historical information. If the new fitness value is greater, update the optimal position and
fitness value. Otherwise, keep them unchanged. Simultaneously, we determine the optimal
position in the group as the updated optimal position and fitness value of the group.

Step 5: Algorithm end judgment: The end condition of the algorithm can be set as
the number of iterations or performance requirements. If the iteration satisfies the end
condition, stop, and output; otherwise, return to Step 3.

3.3. Improved Algorithm MDPSO-PTS

Further analysis of the velocity updating formula proposed in the previous subsection
comprises three parts, with the second and third terms representing the self-learning term
and the social learning term, respectively. According to the different values of parameters
c1 and c2, the DPSO-PTS optimization model can be divided into three cases:
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(1) c1 ̸= 0, c2 = 0, the velocity update formula contains only the inertia part and the
self-awareness part, and can be referred to as the “self-awareness model”. In this
case, only the particle’s information is considered, and it is only compared with its
historical optimal position, but is not influenced by social information; that is, it lacks
learning from the optimal particles in the population. This model is not prone to
precociousness, but has a slow convergence rate;

(2) c1 = 0, c2 ̸= 0, the velocity update formula contains only the inertial part and the
socio-cognitive part, which can be referred to as the “socio-cognitive model”. There is
no self-learning process, no comparison with its historical optimal position, and only
group learning exists. The model converges faster but is prone to precociousness and
treats the local optimum as the global optimum;

(3) c1 ̸= 0, c2 ̸= 0, the velocity updating formula contains the inertia part, self-cognition
part, and social cognition part, which can be referred to as the “full model”. This
model combines the advantages of the “self-cognitive model” and the “social cognitive
model”. This model employs a regional search centered on wid pbest(t) and wdgbest(t),
which includes an individual’s best historical position and the best historical position
within the group. This balances the influences of both group and individual factors.

The “full model”, c1 is used to control the tendency of the particles to learn from
their historical optimal positions, and c2 is used to control the tendency of the particles to
learn from the historical optimal positions in the population. The magnitudes of c1 and
c2 represent whether the particles tend to move to their historical optimal positions or the
global historical optimal positions. It is suggested that c1 and c2 satisfy c1 + c2 ≤ 4. Existing
studies consider c1 = c2 = 2 [26].

In this study, dynamic time-varying linearly decreasing and linearly increasing learn-
ing factors are proposed, and the improved algorithm focuses on the assignment of c1 and
c2. The learning factors are represented as follows:

c1(t) = 2.5 − 2t
Gn

, (8)

c2(t) = 0.5 +
2t
Gn

, (9)

In the learning factor expression, Gn represents the maximum number of iterations,
t = 1, 2, 3 · · · Gn. c1(t) decreases linearly from 2.5 to 0.5, and c2(t) increases linearly from
0.5 to 2.5. In the early iterations of the proposed model, the particle focuses on learning
its optimal position. The strength of the reference self-information is greater than that of
social information, and the step size of a particle moving toward its historical optimal
position decreases linearly with the number of iterations. In subsequent iterations, the
particle focuses on learning the global optimal position. The strength of the reference social
information is greater than that of its own, and the step size of the particle moving toward
the global historical optimal position increases linearly with the number of iterations. In the
early stages of the algorithm, the step length of the particle moving towards its historical
optimal position is longer than that of the particle moving towards the global historical
optimal position. This can prevent the particles from entering a precocious state. If an
individual in a population is close to a better solution, then it becomes the current best
solution. When individuals in the population move towards the population’s best solution
with high speed and a strong tendency, the entire population quickly converges to that
individual, mistakenly considering the current local optimum as the global optimum. The
limited exploration of feasible solutions by the population and the small search space
can result in a potential false optimal solution, leading to a degradation in the PAPR
suppression performance. Therefore, in early iterations, it is crucial to expand the search
space of the particles as much as possible. Each individual in the population should explore
the surrounding areas for better solutions, move towards them, and search for more feasible
solutions. This approach is necessary to find globally superior solutions. In the later stages
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of the algorithm, the particles move with a larger step size towards the global best historical
position than to their best historical position. This larger step size results in a stronger trend
as the particles converge towards the global optimal solution. Consequently, the entire
population converges near the optimal solution, thereby ensuring the convergence speed
of the algorithm.

4. Simulation and Analysis
4.1. Simulation Experiments Settings

According to the PTS principle, the number of subcarrier partition blocks and phase
factors are the main parameters affecting the PAPR reduction performance. MATLAB
simulation experiments were conducted to analyze the effects of these two parameters on
PAPR reduction performance.

The improved MDPSO-PTS algorithm employs the dynamic and time-varying learning
factors proposed in Section 3.3. The DPSO-PTS algorithm adopts the conventional learning
factor c1 = c2 = 2. Comparative simulation experiments were conducted using the
two algorithms.

Simulation Experiment 1 was conducted to analyze the PAPR reduction performance
of the MDPSO-PTS and DPSO-PTS algorithms for different numbers of partitions. Set the
numbers of partitions V = 8, V = 16. The parameters for Simulation Experiment 1 are
listed in Table 1.

Table 1. Simulation experiment parameters.

Parameters Value

Number of subcarriers N 256
Mapping QPSK

Partition method adjacent partition
Phase factor PV = {1,−1}(M = 2)

Number of partitions V = 8, V = 16
Particle swarm population size NUM 5

Inertia factor ω 0.85
Maximum speed limit Vmax 2

Maximum number of iterations Gn 10
Number of OFDM symbols 1000

Simulation Experiment 2 was conducted to analyze the PAPR reduction performance
of the MDPSO-PTS and DPSO-PTS algorithms for different phase factor numbers. Set
phase factor PV = {1,−1}(M = 2), PV = {1, j,−1,−j}(M = 4). Set the fixed number of
partitions as V = 8. The other parameters for Simulation Experiment 2 are listed in Table 1.

Simulation Experiment 3 was conducted to analyze the PAPR reduction performance
of the MDPSO-PTS algorithm for different numbers of iterations Gn. We also compared
the PAPR reduction performances of the improved and conventional PTS algorithms. Set
the number of iterations Gn = [2, 4, 8, 10, 15, 20] for the MDPSO-PTS algorithm, the fixed
number of partitions V = 8 and fixed phase factor PV = {1,−1}(M = 2). The other
parameters for Simulation Experiment 3 are listed in Table 1.

Simulation Experiment 4 focuses on the average PAPR curve variation for different
numbers of iterations using the MDPSO-PTS algorithm. Set the number of iterations
Gn = [0 : 2 : 20] and maintain the number of partitions V = 8 and phase factor PV =
{1,−1}(M = 2). The iteration Gn = 0 represents the average PAPR value of the original
OFDM signal without the MDPSO-PTS algorithm. The other parameters for Simulation
Experiment 4 are listed in Table 1.

4.2. Analysis of Simulation Experiment Results

Figure 4 shows the results of Simulation Experiment 1, comparing the DPSO-PTS and
MDPSO-PTS algorithms with different numbers of partitions, V.
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Both the MDPSO-PTS and DPSO-PTS algorithms effectively reduced the PAPR of
the OFDM system. With an increase in the number of subcarrier partition blocks, the
performance in reducing the PAPR increased significantly. For different numbers of par-
tition blocks V = 8, V = 16, the proposed MDPSO-PTS algorithm exhibited an overall
superior performance in terms of PAPR reduction compared with the DPSO-PTS algorithm.
During Pr(PAPR > PAPR0) = 10−3, the PAPR value of the original OFDM signal without
PAPR reduction using the MDPSO-PTS or DPSO-PTS algorithm was 10.98 dB. The PAPR
value with the MDPSO-PTS algorithm decreased to 8.36 dB, and 7.91 dB, respectively, and
the PAPR with the DPSO-PTS algorithm decreased to 8.60, and 8.14 dB, respectively. For
partition blocks V = 8, the performance of the proposed improved MDPSO-PTS algorithm
increased by 0.24 dB over the unimproved DPSO-PTS algorithm. For the partition blocks
V = 16, the performance of the improved algorithm increased by 0.23 dB.

Figure 5 shows a comparison of the DPSO-PTS and MDPSO-PTS algorithms with
different numbers of phase factors M in Simulation Experiment 2. It can be observed
that the PAPR reduction performance increased with an increase in the number of phase
factors. During Pr(PAPR > PAPR0) = 10−3, the PAPR value of the original OFDM signal
without PAPR reduction using the MDPSO-PTS or DPSO-PTS algorithm was 11.00 dB.
For PV = {1,−1}(M = 2) and PV = {1, j,−1,−j}(M = 4), the proposed MDPSO-PTS
algorithm outperformed the DPSO-PTS algorithm for PAPR reduction in both cases. The
PAPR values using the MDPSO-PTS algorithm were reduced to 8.38 dB and 8.09 dB,
respectively, and the PAPR values using the DPSO-PTS algorithm were reduced to 8.57 dB,
and 8.29 dB, respectively. For PV = {1,−1}(M = 2), the performance of the proposed
improved MDPSO-PTS algorithm increased by 0.19 dB compared with the DPSO-PTS
algorithm. For PV = {1, j,−1,−j}(M = 4), the performance of the improved algorithm
increased by 0.20 dB.

Simulations 1 and 2 demonstrate the superiority of the improved algorithm. The
MDPSO-PTS algorithm adopts a time-varying dynamic learning factor and focuses on
moving to the particle’s historical optimal position in the early iteration. This can prevent
the particle from entering precocious maturity too early, treating the local optimal solution
as a global optimal solution, and prevent convergence in advance. In the later iteration, it
focuses on moving to the global optimal position, which ensures convergence speed. The
complexity of the MDPSO-PTS algorithm was similar to that of the DPSO-PTS algorithm,
remaining almost unchanged.
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The results of Simulation Experiment 3, comparing the MDPSO-PTS algorithm with
different numbers of iterations of Gn and the traditional PTS algorithm, are shown in
Figure 6. The curve-labeled PTS in the figure is the traditional PTS algorithm, which
enumerates all the sets of phase factors by sacrificing a large amount of computational
complexity. Different phase factors resulted in different PAPR values. The selection of
an optimal combination of phase factors can yield the best PAPR reduction performance.
According to Figure 6, the PAPR reduction performance of the MDPSO-PTS algorithm grad-
ually increased as the number of iterations increased. During Pr(PAPR > PAPR0) = 10−3,
the PAPR value of the original OFDM signal without PAPR reduction by the MDPSO-PTS
or PTS algorithm was 10.80 dB. When the MDPSO-PTS algorithm was used, for different
numbers of iterations Gn = [2, 4, 8, 10, 15, 20], the PAPR value decreased to 8.71 dB, 8.54 dB,
8.30 dB, 8.20 dB, 8.02 dB, and 7.97 dB. The reduction in the PAPR value of the original
OFDM signal was enhanced by 2.09 dB, 2.26 dB, 2.50 dB, 2.60 dB, 2.78 dB, and 2.83 dB. The
PAPR value using the traditional PTS algorithm decreased to 7.87 dB, which enhanced the
reduction performance by 2.93 dB with respect to the PAPR value of the original OFDM
signal. When the numbers of iterations Gn = 15 and Gn = 20 were increased by 5 and
10 iterations, respectively, over the number of iterations Gn = 10, the increment in the
PAPR reduction effect was 0.18 dB and 0.05 dB. The increment in the reduction effect
decreased significantly when the number of iterations increased to Gn = 10.

The variation of the average value of PAPR for different numbers of iterations in
Simulation Experiment 4 is analyzed in Figure 7, and the curve is a gradually flattening
one. When the number of iterations was greater than 10, the decrease was smaller and the
increment of performance improvement was smaller. Therefore, for different scale scenarios
of PAPR reduction, experiments were needed to derive the optimal number of iterations to
avoid adding too much iteration complexity with only a minimal increase in performance.

The performance of the MDPSO-PTS algorithm is compared with that of the conven-
tional PTS algorithm in Figure 6. When the number of iterations was Gn = 10, Gn = 15,
and Gn = 20, the performance of the MDPSO-PTS algorithm was only reduced by 0.33 dB,
0.15 dB, and 0.10 dB, respectively. The MDPSO-PTS algorithm sacrificed a small amount
of PAPR for PAPR reduction performance, but reduced computational complexity. For the
number of partition blocks V = 8 and phase factors PV = {1,−1}(M = 2) in this simulation
experiment, the traditional PTS algorithm needed to calculate 128 times the PAPR value.
The number of times the PAPR value needed to be calculated was MV−1. In contrast, the
MDPSO-PTS algorithm with an iteration number of Gn = 10, Gn = 15, and Gn = 20 needed
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to calculate 50 times, 75 times, and 100 times, respectively. The number of PAPR value
calculations was the product of the population size and the number of iterations. The PAPR
reduction performance of the improved algorithm with an iteration number of Gn = 15 was
reduced by 0.15 dB compared with the traditional PTS algorithm, and its complexity was
reduced to only 58.6% of the traditional PTS algorithm. By choosing the appropriate number
of iterations, computational complexity can be reduced while only losing a smaller PAPR
reduction performance. For more partition blocks and phase factors, the computational
complexity of the traditional PTS increased exponentially. However, the computational
complexity of the MDPSO-PTS algorithm was related to the population size and the number
of iterations, and the computational complexity was unchanged. Therefore, the proposed
MDPSO-PTS algorithm had excellent PAPR reduction performance, and its effect was more
obvious for the scenarios with a large number of partitions and phase factors.
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5. Conclusions

In this paper, an improved MDPSO-PTS algorithm that introduces dynamic time-
varying learning factors is proposed. This enhances the accuracy and efficiency of the
DPSO-PTS algorithm in searching for phase factors. By incorporating the dynamic and
time-varying nature of learning factors, the MDPSO-PTS algorithm avoids the premature
convergence drawback of the DPSO-PTS algorithm. This expands the search space and
prevents early convergence and becoming trapped in local optima. The simulation results
show that the proposed improved MDPSO-PTS algorithm has a better PAPR reduction
capability than the unimproved DPSO-PTS algorithm. Compared with the traditional
globally optimal search PTS algorithm, the improved MDPSO-PTS algorithm exhibited
slightly reduced performance but significantly lower computational complexity. The
complexity reduction was more evident when the number of partition blocks and phase
factors increased.

PAPR reduction is especially important for OFDM communication systems, and
superior PAPR reduction algorithms can significantly improve the communication system
performance. Low-complexity PAPR reduction algorithms can reduce signal processing
latency, enhance communication speed, reduce hardware requirements, and reduce costs.
The proposed improved algorithm demonstrated excellent capabilities in reducing the
complexity and enhancing the reduction performance, thereby significantly improving the
performance of communication systems.

The main advantage of the proposed MDPSO-PTS algorithm is its distortion-free
nature, which prevents signal loss. Its drawback lies in its weaker PAPR reduction capability
compared with methods such as clipping or companding, which are simple but result in
signal distortion and an increase in the BER of the system. Future research can explore
the combination of clipping or companding with the MDPSO-PTS method to develop a
joint algorithm that meets the system requirements in terms of BER, complexity, and PAPR
reduction capability. Moreover, the proposed algorithm is applicable to MIMO-OFDM
systems, allowing the integration of this PAPR algorithm with MIMO-OFDM systems to
satisfy the requirements of high-rate communications.
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