Option Pricing under a Generalized Black–Scholes Model with Stochastic Interest Rates, Stochastic Strings, and Lévy Jumps
Abstract
:1. Introduction
2. Preliminaries
2.1. Stochastic String Processes
- (a)
- The stochastic processes and are continuous for each and for each , respectively.
- (b)
- The process is a martingale for each .
- (c)
- The process is differentiable for each .
- (d)
- For each , it is the case that
2.2. The Generalized Black–Scholes Model
2.3. Lévy Processes
- ;
- For and , the random variables , , are independent (independent increments);
- For any , for all (stochastic continuity);
- Sample paths are right-continuous with left-limits (RCLL).
3. Combining Stochastic Strings and Jump Processes
4. Option Pricing with the Generalized Black and Scholes Model with Jumps
5. Jump Processes
5.1. Compound Poisson Process with Lognormal Jumps
5.2. Compound Poisson Process with Double-Exponential Jumps
5.3. Generalized Hyperbolic Lévy Motion
5.4. CGMY
6. Alternative Models
6.1. Merton Jump-Diffusion Model
6.2. Heston Model with Jumps
- is the instantaneous variance of returns (conditional of no jumps occurring);
- and are standard -Brownian motions with ;
- is the percentage jump size (conditional on jump occurring), with ;
- is a Poisson jump counter with intensity ;
- , and are, respectively, the mean-reversion speed, the long-run mean, and the volatility coefficient of the variance process;
- , and are, respectively, the mean-reversion speed, the long-run mean, and the volatility coefficient of the risk-free interest rate process;
- is a -Brownian motion uncorrelated with any other process.
7. Empirical Tests
7.1. The Carr and Madan Methods for Fourier Transform Pricing
7.2. Calibrating Models to Option Market Data
- symbolizes the vector of model parameters, with representing the permissible parameter space;
- , for , is the price of a call option as determined by the model for given parameters , underlying asset price , strike price , and time to expiration ;
- , for , is the corresponding market price of the option.
- Underlying models without jumps:
- Only jumps:
- Underlying models plus jumps:
- –
- Brownian motion plus CGMY (BM+CGMY) (five parameters);
- –
- Brownian motion plus GHLM (BM+GHLM) (six parameters);
- –
- BS plus lognormal compound Poisson (BS+LN) ([8]) (four parameters);
- –
- BS plus double-exponential compound Poisson (BS+DE) ([9] ) (five parameters);
- –
- HSV plus lognormal compound Poisson (HSV+LN) ([14]) (eight parameters);
- –
- GBS plus lognormal compound Poisson (GBS+LN) (five and six parameters);
- –
- GBS plus double-exponential compound Poisson (GBS+DE) (six and seven parameters);
- –
- GBS plus CGMY (GBS+CGMY) (six and seven parameters);
- –
- GBS plus GHLM (GBS+GHLM) (seven and eight parameters).
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Black, F.; Scholes, M. The pricing of options and corporate liabilities. J. Political Econ. 1973, 81, 637–654. [Google Scholar] [CrossRef]
- Merton, R.C. Theory of rational option pricing. Bell J. Econ. Manag. Sci. 1973, 4, 141–183. [Google Scholar] [CrossRef]
- Amin, K.; Jarrow, R. Pricin options on risky assets in a stochastic interest rate economy. Math. Financ. 1992, 2, 217–237. [Google Scholar] [CrossRef]
- Gatheral, J. The Volatility Surface: A Practitioner’s Guide; Wiley Finance Series: Hoboken, NJ, USA, 2006. [Google Scholar]
- Hull, J.; White, A. The pricing of options with stochastic volatilities. J. Financ. 1987, 42, 281–300. [Google Scholar] [CrossRef]
- Stein, E.; Stein, J. Stock price distributions with stochastic volatility. Rev. Financ. Stud. 1991, 4, 727–752. [Google Scholar] [CrossRef]
- Heston, S.L. A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 1993, 6, 327–343. [Google Scholar] [CrossRef]
- Merton, R.C. Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 1976, 3, 125–144. [Google Scholar] [CrossRef]
- Kou, S.G. A jump-diffusion model for option pricing. Manag. Sci. 2002, 48, 1086–1101. [Google Scholar] [CrossRef]
- Carr, P.; Geman, H.; Madan, D.B.; Yor, M. The fine structure of asset returns: An empirical investigation. J. Bus. 2002, 75, 305–332. [Google Scholar] [CrossRef]
- Eberlein, E. Applications of Generalized Hyperbolic Lévy Motions to finance. In Lévy Processes: Theory and Applications; Barndorff-Nielsen, O.E., Resnick, S.I., Mikosch, T., Eds.; Birkhäuser: Boston, MA, USA, 2001; pp. 319–336. [Google Scholar]
- Bates, D. The crash of 87: Was it expected? The evidence from options markets. J. Financ. 1991, 46, 1009–1044. [Google Scholar] [CrossRef]
- Bates, D. Jumps and stochastic volatility: Exchange rate processes implicit in Deutschemark options. Rev. Financ. Stud. 1996, 9, 69–108. [Google Scholar] [CrossRef]
- Bakshi, G.; Cao, C.; Chen, Z. Empirical performance of alternative option pricing models. J. Financ. 1997, 52, 2003–2049. [Google Scholar] [CrossRef]
- Aït-Sahalia, Y.; Jacod, J. Testing for jumps in a discretely observed process. Ann. Stat. 2009, 37, 184–222. [Google Scholar] [CrossRef]
- Bollerslev, T.; Law, T.H.; Tauchen, G. Risk, jumps, and diversification. J. Econom. 2008, 144, 234–256. [Google Scholar] [CrossRef]
- Bueno-Guerrero, A. Black–Scholes and Heston Models with Stochastic Interest Rates and Term Structure of Volatilities. J. Deriv. 2019, 27, 32–48. [Google Scholar] [CrossRef]
- Santa-Clara, P.; Sornette, D. The dynamics of the forward interest rate curve with stochastic string shocks. Rev. Financ. Stud. 2001, 14, 149–185. [Google Scholar] [CrossRef]
- Bueno-Guerrero, A.; Moreno, M.; Navas, J.F. Stochastic string models with continuous semimartingales. Phys. A Stat. Mech. Appl. 2015, 433, 229–246. [Google Scholar] [CrossRef]
- Brogaard, J.; Han, J.; Won, P.Y. How Does Zero-Day-To-Expiry Options Trading Affect the Volatility of Underlying Assets? SSRN 4426358; SSRN: Rochester, NY, USA, 2023. [Google Scholar]
- Aït-Sahalia, Y.; Jacod, J. High-frequency financial econometrics. In High-Frequency Financial Econometrics; Princeton University Press: Princeton, NJ, USA, 2014. [Google Scholar]
- Cont, R.; Tankov, P. Financial modelling with jump processes. In Financial Modelling with Jump Processes; Chapman & Hall/CRC: Boca Raton, FL, USA, 2004. [Google Scholar]
- Chen, W.; Du, M.; Xu, X. An explicit closed-form analytical solution for European options under the CGMY model. Commun. Nonlinear Sci. Numer. Simul. 2017, 42, 285–297. [Google Scholar] [CrossRef]
- Fox, C. The G and H functions as symmetrical Fourier kernels. Trans. Am. Math. Soc. 1961, 98, 395–429. [Google Scholar]
- Mathai, A.; Saxena, R. The H-Function with Applications in Statistics and Other Disciplines; Wiley Eastern: New Delhi, India; Halsted Press: Hoboken, NJ, USA, 1978. [Google Scholar]
- Prudnikov, A.; Brychkov, Y.; Brychkov, I.; Marichev, O. Integrals and Series: More Special functions; Gordon and Breach Science Publishers: Philadelphia, PA, USA, 1986; Volume 3. [Google Scholar]
- Kilbas, A.A.; Saigo, M. H-Transforms: Theory and Applications; Chapman & Hall/CRC: Boca Raton, FL, USA, 1986. [Google Scholar]
- Carr, P.; Madan, D. Option valuation using the fast Fourier transform. J. Comput. Financ. 1999, 2, 61–73. [Google Scholar] [CrossRef]
- Lewis, A.L. A Simple Option Formula for General Jump-Diffusion and other Exponential Lévy Processes; SSRN 282110; SSRN: Rochester, NY, USA, 2001. [Google Scholar]
- Hilpisch, Y. Derivatives Analytics with Python: Data Analysis, Models, Simulation, Calibration and Hedging; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Bakshi, G.; Kapadia, N. Delta-hedged gains and the negative market volatility risk premium. Rev. Financ. Stud. 2003, 16, 527–566. [Google Scholar] [CrossRef]
- Ribeiro, C.; Webber, N. Correcting for simulation bias in Monte Carlo methods to value exotic options in models driven by Lévy processes. Appl. Math. Financ. 2006, 13, 333–352. [Google Scholar] [CrossRef]
- Longstaff, F.A.; Schwartz, E.S. Valuing American options by simulation: A simple least-squares approach. Rev. Financ. Stud. 2001, 14, 113–147. [Google Scholar] [CrossRef]
- Wang, Y.; Caflisch, R. Pricing and hedging American-style options: A simple simulation-based approach. J. Comput. Financ. 2009, 13, 95–125. [Google Scholar] [CrossRef]
Underlying Models without Jumps | Parameters | Low Vol | Moderate Vol | High Vol |
---|---|---|---|---|
Black–Scholes (BS) | 1 | 36.040 | 12.619 | 10.388 |
Heston stochastic volatility (HSV) | 5 | 13.031 | 4.088 | 3.901 |
Generalized Black–Scholes (GBS(3)) | 3 | 35.794 | 11.879 | 8.117 |
Only Jumps | Parameters | Low Vol | Moderate Vol | High Vol |
CGMY | 4 | 9.563 | 1.284 | 8.339 |
Generalized hyperbolic Lévy motion (GHLM) | 5 | 11.815 | 3.521 | 9.437 |
Underlying Models Plus Jumps | Parameters | Low Vol | Moderate Vol | High Vol |
BS plus lognormal compound Poisson (BS+LN) | 4 | 10.530 | 4.858 | 8.204 |
BS plus double-exponential compound Poisson (BS+DE) | 5 | 8.491 | 1.138 | 8.606 |
Brownian motion plus CGMY (BM+CGMY) | 5 | 9.410 | 1.165 | 8.280 |
Brownian motion plus GHLM (BM+GHLM) | 6 | 10.268 | 2.907 | 8.867 |
GBS plus lognormal compound Poisson (GBS(3)+LN) | 6 | 4.632 | 1.465 | 2.175 |
GBS plus double-exponential compound Poisson (GBS+DE) | 7 | 3.700 | 1.083 | 3.577 |
GBS plus CGMY (GBS(3)+CGMY) | 7 | 3.630 | 1.050 | 3.403 |
HSV plus lognormal compound Poisson (HSV+LN) | 8 | 6.128 | 2.116 | 2.293 |
GBS plus GHLM (GBS(3)+GHLM) | 8 | 6.512 | 2.892 | 4.828 |
GBS plus CGMY (GBS(4)+CGMY) | 8 | 3.536 | 1.049 | 2.006 |
Underlying Models without Jumps | Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|
Black–Scholes | 1 | ||||||||
0.356 | |||||||||
Stochastic string model (GBS(3)) | 3 | ||||||||
0.459 | −0.222 | 0.117 | |||||||
Heston stochastic volatility (HSV) | 5 | ||||||||
1.216 | 0.073 | 0.420 | −0.938 | 0.176 | |||||
Only Jumps | Parameters | ||||||||
CGMY | 4 | C | G | M | Y | ||||
71.234 | 12.546 | 5624.007 | −0.574 | ||||||
GHLM | 5 | ||||||||
9.990 | −2.819 | 1.428 | −1.182 | 0.320 | |||||
Underlying Models Plus Jumps | Parameters | ||||||||
Brownian motion plus CGMY (BM+CGMY) | 5 | C | G | M | Y | ||||
0.01 | 71.234 | 12.546 | 5624.007 | −0.574 | |||||
Brownian motion plus GHLM (BM+GHLM) | 6 | ||||||||
0.216 | 10.829 | −3.785 | 0.169 | 4.258 | 0.272 | ||||
BS plus lognormal compound Poisson (BS+LN) | 4 | ||||||||
0.038 | 6.929 | −0.130 | 0.062 | ||||||
BS plus double-exponential compound Poisson (BS+DE) | 5 | p | |||||||
0.368 | 0.010 | 0.226 | 2.096 | 0.001 | |||||
HSV plus lognormal compound Poisson (HSV+LN) | 8 | ||||||||
6.487 | 0.009 | 0.116 | −1.000 | 0.189 | 0.522 | −0.444 | |||
GBS plus lognormal compound Poisson (GBS(3)+LN) | 6 | ||||||||
0.367 | −0.264 | 0.142 | 0.947 | -0.364 | 0.005 | ||||
GBS plus double-exponential compound Poisson (GBS+DE) | 7 | p | |||||||
0.486 | 0.001 | −0.261 | 0.013 | 0.001 | 2.100 | 0.121 | |||
GBS plus CGMY (GBS(3)+CGMY) | 7 | C | G | M | Y | ||||
0.301 | −0.112 | 0.023 | 477.300 | 11.023 | 78.750 | −2.324 | |||
GBS plus GHLM (GBS(3)+GHLM) | 8 | ||||||||
−0.178 | 0.075 | 0.320 | 9.998 | −4.818 | 0.028 | 3.352 | 0.357 | ||
GBS plus CGMY (GBS(4)+CGMY) | 8 | C | G | M | Y | ||||
0.362 | −0.330 | 0.274 | −0.076 | 1589.635 | 12.836 | 6343.843 | −2.756 |
Underlying Models without Jumps | Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|
Black–Scholes | 1 | ||||||||
0.120 | |||||||||
Stochastic string model (GBS(3)) | 3 | ||||||||
0.086 | 0.020 | −0.01 | |||||||
Heston stochastic volatility (HSV) | 5 | ||||||||
1.840 | 0.028 | 0.323 | −1.000 | 0.013 | |||||
Only Jumps | Parameters | ||||||||
CGMY | 4 | C | G | M | Y | ||||
0.092 | 2.909 | 53.105 | 0.841 | ||||||
GHLM | 5 | ||||||||
8.571 | 4.610 | 0.064 | 0.072 | 0.069 | |||||
Underlying Models Plus Jumps | Parameters | ||||||||
Brownian motion plus CGMY (BM+CGMY) | 5 | C | G | M | Y | ||||
0.046 | 0.470 | 5.282 | 1008.237 | 0.207 | |||||
Brownian motion plus GHLM (BM+GHLM) | 6 | ||||||||
0.046 | 12.714 | −7.301 | 0.002 | 0.639 | 0.076 | ||||
BS plus lognormal compound Poisson (BS+LN) | 4 | ||||||||
0.085 | 0.089 | −0.498 | 0.001 | ||||||
BS plus double-exponential compound Poisson (BS+DE) | 5 | p | |||||||
0.057 | 0.091 | 0.000 | 33.941 | 9.963 | |||||
HSV plus lognormal compound Poisson (HSV+LN) | 8 | ||||||||
32.743 | 0.005 | 0.000 | 0.089 | 0.004 | 0.261 | −0.252 | 0.001 | ||
GBS plus lognormal compound Poisson (GBS(3)+LN) | 6 | ||||||||
0.060 | 0.001 | −0.001 | 0.533 | −0.153 | 0.106 | ||||
GBS plus double-exponential compound Poisson (GBS+DE) | 7 | p | |||||||
0.055 | 0.001 | −0.001 | 0.091 | 0.000 | 26.920 | 9.938 | |||
GBS plus CGMY (GBS(3)+CGMY) | 7 | C | G | M | Y | ||||
0.048 | −0.001 | 0.719 | 5.900 | 6199.174 | 0.044 | ||||
GBS plus GHLM (GBS(3)+GHLM) | 8 | ||||||||
0.051 | 0.000 | 0.001 | 10.168 | −5.410 | −0.000 | 0.504 | 0.062 | ||
GBS plus CGMY (GBS(4)+CGMY) | 8 | C | G | M | Y | ||||
0.049 | −0.001 | 0.813 | 6.089 | 639.277 | −0.004 |
Underlying Models without Jumps | Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|
Black–Scholes | 1 | ||||||||
0.222 | |||||||||
Stochastic string model (GBS(3)) | 3 | ||||||||
0.086 | 0.020 | −0.01 | |||||||
Heston stochastic volatility (HSV) | 5 | ||||||||
0.701 | 0.160 | 0.473 | −1.000 | 0.042 | |||||
Only Jumps | Parameters | ||||||||
CGMY | 4 | C | G | M | Y | ||||
0.052 | 0.238 | 122.079 | 1.277 | ||||||
GHLM | 5 | ||||||||
8.571 | 4.610 | 0.064 | 0.072 | 0.069 | |||||
Underlying Models Plus Jumps | Parameters | ||||||||
Brownian motion plus CGMY (BM+CGMY) | 5 | C | G | M | Y | ||||
0.050 | 0.043 | 0.083 | 201.355 | 1.291 | |||||
Brownian motion plus GHLM (BM+GHLM) | 6 | ||||||||
0.086 | 4.653 | −4.286 | 0.187 | −0.987 | 0.151 | ||||
BS plus lognormal compound Poisson (BS+LN) | 4 | ||||||||
0.127 | 0.384 | −0.380 | 0.202 | ||||||
BS plus double-exponential compound Poisson (BS+DE) | 5 | p | |||||||
0.134 | 0.279 | 0.347 | 71.226 | 3.885 | |||||
HSV plus lognormal compound Poisson (HSV+LN) | 8 | ||||||||
3.122 | 0.005 | 0.016 | 0.145 | 0.028 | 0.280 | −0.494 | 0.006 | ||
GBS plus lognormal compound Poisson (GBS(3)+LN) | 6 | ||||||||
0.150 | −0.020 | 0.005 | 0.521 | −0.302 | 0.240 | ||||
GBS plus double-exponential compound Poisson (GBS+DE) | 7 | p | |||||||
0.147 | −0.016 | 0.003 | 0.234 | 0.221 | 789.440 | 4.195 | |||
GBS plus CGMY (GBS(3)+CGMY) | 7 | C | G | M | Y | ||||
0.122 | −0.015 | 0.000 | 0.227 | 1.537 | 74.000 | 0.550 | |||
GBS plus GHLM (GBS(3)+GHLM) | 8 | ||||||||
0.136 | −0.016 | 0.004 | 7.491 | −5.848 | 0.043 | 0.162 | 0.149 | ||
GBS plus CGMY (GBS(4)+CGMY) | 8 | C | G | M | Y | ||||
0.123 | 0.017 | 0.002 | 0.273 | 1.653 | 15.638 | 0.383 |
Underlying Model | Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
HSV plus lognormal compound Poisson (HSV+LN) | 8 | |||||||||
2.293 | 6.487 | 0.009 | 0.116 | −1.000 | 0.189 | 0.522 | −0.444 | |||
GBS plus CGMY (GBS(4)+CGMY) | 8 | C | G | M | Y | |||||
2.006 | 0.366 | −0.338 | 0.287 | −0.082 | 1648.945 | 12.840 | 5503.566 | −2.787 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bueno-Guerrero, A.; Clark, S.P. Option Pricing under a Generalized Black–Scholes Model with Stochastic Interest Rates, Stochastic Strings, and Lévy Jumps. Mathematics 2024, 12, 82. https://doi.org/10.3390/math12010082
Bueno-Guerrero A, Clark SP. Option Pricing under a Generalized Black–Scholes Model with Stochastic Interest Rates, Stochastic Strings, and Lévy Jumps. Mathematics. 2024; 12(1):82. https://doi.org/10.3390/math12010082
Chicago/Turabian StyleBueno-Guerrero, Alberto, and Steven P. Clark. 2024. "Option Pricing under a Generalized Black–Scholes Model with Stochastic Interest Rates, Stochastic Strings, and Lévy Jumps" Mathematics 12, no. 1: 82. https://doi.org/10.3390/math12010082
APA StyleBueno-Guerrero, A., & Clark, S. P. (2024). Option Pricing under a Generalized Black–Scholes Model with Stochastic Interest Rates, Stochastic Strings, and Lévy Jumps. Mathematics, 12(1), 82. https://doi.org/10.3390/math12010082