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Abstract: We introduce a novel option pricing model that features stochastic interest rates along
with an underlying price process driven by stochastic string shocks combined with pure jump Lévy
processes. Substituting the Brownian motion in the Black–Scholes model with a stochastic string
leads to a class of option pricing models with expiration-dependent volatility. Further extending this
Generalized Black–Scholes (GBS) model by adding Lévy jumps to the returns generating processes
results in a new framework generalizing all exponential Lévy models. We derive four distinct versions
of the model, with each case featuring a different jump process: the finite activity lognormal and
double–exponential jump diffusions, as well as the infinite activity CGMY process and generalized
hyperbolic Lévy motion. In each case, we obtain closed or semi-closed form expressions for European
call option prices which generalize the results obtained for the original models. Empirically, we
evaluate the performance of our model against the skews of S&P 500 call options, considering three
distinct volatility regimes. Our findings indicate that: (a) model performance is enhanced with the
inclusion of jumps; (b) the GBS plus jumps model outperform the alternative models with the same
jumps; (c) the GBS-CGMY jump model offers the best fit across volatility regimes.
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MSC: 60G48; 60G51; 60G60; 91G15; 91G20

1. Introduction

It is well documented that the Black–Scholes option pricing formula ([1]) is founded
on several assumptions which, while simplifying, are frequently misaligned with empirical
evidence. For instance, the constant risk-free interest rate assumption is not supported
by the observed dynamics of market interest rates (enhancements to include stochastic
interest rates in option pricing models are developed in [2,3]). Similarly, the assumption
that underlying security prices follow geometric Brownian motions with constant volatility
is challenged by the time- and strike-dependent volatilities implied by the Black–Scholes
formula using market option prices.

However, financial practice has devised an accommodation in the form of the volatility
surface that allows the Black–Scholes formula to maintain a central role as a real-world
modeling tool. The volatility surface for options on a given underlying security is a
three-dimensional graph of the values of implied volatility, varying in the dimensions of
moneyness and the expiration of the options ([4]). Given a volatility surface, if we consider
a specific expiration, we obtain a graph of implied volatility as a function of moneyness,
which turns out to be a convex curve called volatility smile or skew.

Subsequent studies have produced option pricing models that avoid certain simplify-
ing assumptions of the Black–Scholes model in order to explain the behavior of volatility
skews. Some of them introduce stochastic volatility ([5–7]), others include jumps ([8–12]),
and a few models present both features ([13,14]).
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Several studies in the financial econometrics literature have refined methodologies to
disentangle jumps from continuous volatility in price trajectories, yielding robust evidence
of jump discontinuities in equity prices ([15,16]). Indeed, one explanation for a non-
constant volatility surface is that the Black–Scholes-implied volatilities include not only
continuous volatility but also the effects of omitted risk factors such as jumps in the prices of
underlying securities.

In [14], Bakshi, Cao, and Chen (BCC) derived an option pricing formula for a model
that features stochastic volatility, stochastic interest rates, and random jumps in the stock
price process. The BCC model nests many of the closed-form option pricing formulas in
the literature and thus serves well as a benchmark for the comparative evaluation of option
pricing models. Their findings suggest that the configuration featuring both stochastic
volatility and jumps (the so-called SVJ) outperforms all other specifications nested in the
BCC framework, with the traditional Black–Scholes model ranking least favorably.

In a recent paper, Ref. [17] introduces a novel generalization of the Black–Scholes
model incorporating stochastic interest rates and stochastic string shocks ([18,19]). Termed
the generalized Black and Scholes (GBS) model, this new framework yields a Black–Scholes-
like formula for European call option prices in which volatility is a function of the expiration
times of underlying options. Such a specification offers an explanation for the variability
of implied volatilities in the dimension of option expiry, the so-called term structure of
implied volatilities.

The effect of option expiration times on underlying price dynamics is motivated in [17]
by the “pin risk” phenomenon, in which underlying volatility is accentuated in proximity
to the strike price as expiration looms. Recent empirical research on the nascent zero-day-
to-expiry options market sheds additional light on this mechanism. In [20], evidence is
presented that an increment in the trading volume of zero-day-to-expiry options results in
an increase in the volatility of the underlying. This finding lends support to the existence
of a feedback mechanism whereby trading in options affects the underlying volatility. The
introduction of stochastic string shocks in the GBS model allows for the expiration times of
options to be explicitly incorporated in the underlying dynamics.

Given this backdrop, our paper contributes to the debate on the necessity of stochastic
volatility in option pricing models to account for observed option skews. Could a model
combining expiration-dependent volatility with random jumps in the underlying price
outperform a model with stochastic volatility and random jumps? To investigate this
question, we extend the GBS model by incorporating pure jump Lévy processes into
the stochastic string-driven price dynamics, thereby relaxing the three most contentious
assumptions of the Black–Scholes model: constant volatility, static interest rates, and
continuous sample paths.

Note that our model cannot be embedded into the framework of [14], since they use
the Brownian motion as the source of continuous risk in the price processes, whereas our
model is based on stochastic string processes, which are more general and, in fact, subsume
Brownian motion as a particular case. Moreover, our model is not limited to compound
Poisson jumps with lognormal distributions; instead, it is versatile enough to accommodate
any pure jump Lévy process.

In order to determine which type of jump best captures observed discontinuities in
observed security prices, we study four different examples of pure-jump Lévy processes
used in the option pricing literature: compound Poisson processes with lognormally (LN)
distributed jumps ([8]) and with a double-exponential (DE) distribution of jumps ([9]),
generalized hyperbolic Lévy motion (GHLM) ([11]), and CGMY ([10]). First, we obtain
closed or semi-closed form expressions for European call option prices under each type of
jump, and verify the coherence with their established Brownian and no-jump benchmarks.
Subsequently, we conduct the in-sample empirical comparisons of our extended GBS
model against a suite of alternative models, both with and without jump components. The
competing models are Black–Scholes and Heston, and their respective extensions include
LN jumps, which correspond, respectively, to [8] and to the SVJ model in [14]. We also
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include in the comparison the pure jump models used. To check the robustness of our
approach, we perform the comparison under three distinct historical volatility regimes.

Our results show that the GBS model augmented with CGMY jumps outperforms the
alternative models (with or without jumps), except in the high volatility scenario in which
the Heston model with jumps (SVJ) performs better, albeit at the cost of estimating one
additional parameter. Nevertheless, when we compare the SVJ model with a GBS plus
CGMY model with the same number of parameters, we find that the latter provides the
best fit.

The remainder of the paper is structured as follows. Section 2 presents the mathemati-
cal prerequisites for the rest of this paper: stochastic string and Lévy processes, and the GBS
model. Section 3 explores the mathematical characteristics of the processes we are working
with, which are special semi-martingales, but not Lévy processes in general. Section 4 leads
to the general expression for the underlying dynamics under the GBS model with jumps.
Section 5 contains the results related to option pricing with the GBS model with the four
different types of jumps. Section 6 develops the main characteristics and results of the
models alternative to GBS in the empirical tests. Section 7 includes the calibration results of
all competing models. Section 8 summarizes and concludes.

2. Preliminaries

In this section, we recall definitions and briefly summarize relevant facts about the
GBS model, stochastic strings, and Lévy processes that we will use in this paper. For
stochastic string processes, the main references are [18,19]. The GBS model was introduced
in [17]. For Lévy processes, there are many excellent references, including [21] (Chapter 1).

Let (Ω,F ,F,P) be a filtered probability space. The specific form of the filtration
F = (Ft)0≤t≤Y will be determined later, and we consider that F = FY , where Y is the
finite time horizon. We will assume the existence of risk-free security, B(t), whose evolution
satisfies dB(t) = rtB(t)dt, B(0) = 1, where rt is the stochastic risk-free rate. In order to
preclude arbitrage opportunities, we will also assume the existence of a probability measure
Q, equivalent to P, such that asset prices discounted with B(t) are Q-martingales. We will
call this measure Q the equivalent martingale measure.

2.1. Stochastic String Processes

A stochastic string process is an infinite-dimensional stochastic process (or random
field) consisting of a continuum of adapted stochastic processes Z(·, x, ω) indexed by a
(second) time parameter, x. Specifically,

Z : ∆2 × Ω → R
(t, x, ω) 7→ Z(t, x, ω)

where ∆2 =
{
(t, x) ∈ R2 : 0 ≤ t ≤ Y , x ≥ 0

}
. Henceforth, we will drop the explicit men-

tion of the dependence on ω.
The stochastic string process Z is assumed to satisfy the following properties:

(a) The stochastic processes Z(·, x) and Z(t, ·) are continuous for each x ≥ 0 and for each
t ∈ [0,Y ], respectively.

(b) The process Z(·, x) is a martingale for each x ≥ 0.
(c) The process Z(t, ·) is differentiable for each t ∈ [0,Y ].
(d) For each x, y ≥ 0, it is the case that

d[Z(·, x), Z(·, y)]t = c(t, x, y)dt (1)

where c(t, x, y) is an admissible, continuous, and differentiable correlation function for each
t. Here, admissibility means that for each t, c(t, ·, ·) is symmetric, positive semidefinite, and
satisfies |c(t, x, y)| ≤ 1 and c(t, x, x) = 1, ∀x, y ≥ 0 ([18]).

Properties (a), (b), and (d), jointly with Lévy’s Theorem guarantee that, for each x ≥ 0,
the process Z(·, x) is a Brownian motion.
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2.2. The Generalized Black–Scholes Model

Stochastic string processes are used in [17] to obtain a generalization of the Black–
Scholes model that accounts for volatilities dependent on option expirations and stochas-
tic interest rates. Concretely, the no-arbitrage dynamics for the discounted underlying,
St = B−1(t)St is given by

dSt

St
=
∫ ∞

0
σ(t, u)dZ̃(t, u)du (2)

where σ(t, u) is the stochastic string volatility and Z̃(t, u) is a stochastic string process
under Q. The parameter u should be interpreted as representing times until the expiration
of options written on the underlying stock. In the case in which there are no options written
on the stock, we have σ(t, u) = σ(t)δ(u), where δ(·) is the Dirac delta, recovering Merton’s
model [2]. If we go further and make rt = r and σ(t) = σ, Equation (2) reduces to the
Black–Scholes dynamics [1].

From Equation (2), the explicit expression for the discounted stock price at time T > t
is obtained as

ST = St exp
{∫ T

s=t

∫ ∞

u=0
σ(s, u)dZ̃(s, u)du − 1

2

∫ T

s=t

∫ ∞

y=0

∫ ∞

u=0
Rs(u, y)dudyds

}
where we have defined Rs(u, y) ≡ σ(s, u)σ(s, y)c(s, u, y).

Taking into account the definitions

ZQ
t,T ≡

∫ T
s=t

∫ ∞
u=0 σ(s, u)dZ̃(s, u)du

Rt,T ≡
∫ T

s=t

∫ ∞
y=0

∫ ∞
u=0 Rs(u, y)dudyds

Yt,T ≡ ZQ
t,T − 1

2 Rt,T

(3)

the previous expression for ST can be rewritten in a more compact form as

ST = St exp{Yt,T} (4)

In order to obtain a closed-form expression for a call option price, [17] introduces
the additional assumptions of Gaussian interest rates, the deterministic term-structure of
volatilities and correlations, and the independence of interest rates and discounted stock
prices. Under these assumptions, we have that Rt,T is deterministic, and that

ZQ
t,T ∼ N(0, Rt,T) (5)

and

Yt,T ∼ N
(
−1

2
Rt,T , Rt,T

)
under Q on Ft.

With these assumptions, the time t price of a European call option with maturity T
and strike K on the underlying S, CGBS(t, T, K) is obtained as

CGBS(t, T, K) = StΦ(d1)− KP(t, T)Φ(d2) (6)

where P(t, T) is the price, at time t, of a zero-coupon bond maturing at T, and

d1 =
1√

σ2
t,T + Rt,T

[
ln

(
St

K

)
+

1
2

Rt,T + µt,T

]

d2 = d1 −
√

σ2
t,T + Rt,T
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with

µt,T = EQ
{∫ T

0
rsds|Ft

}
σ2

t,T = VarQ
{∫ T

0
rsds|Ft

}
Under constant interest rates, rt = r, we have the same Equation (6), but with d1 and d2
replaced by d1 and d2 given by

d1 =
1√
Rt,T

[
ln
(

St

K

)
+ r(T − t) +

1
2

Rt,T

]
d2 = d1 −

√
Rt,T

Moreover, assuming that Rt,T can be written as a power series of T − t, the call option
price can be obtained by modifying the Black–Scholes option pricing formula so that the
constant volatility parameter is replaced by the following deterministic function for the
term-structure of volatility

σTS(T − t) =
√

σ2 + a2(T − t) + a3(T − t)2 + · · · (7)

where T − t is the time until option expiration, and σ > 0 and the aj are constants.

2.3. Lévy Processes

A real-valued stochastic process, Lt, that is adapted to the filtration of the probability
space is a Lévy process if

1. P{L0 = 0} = 1;
2. For n ≥ 1 and 0 ≤ t0 < t1 < · · · < tn, the random variables Lt0 , Lt1 − Lt0 ,. . . ,

Ltn − Ltn−1 are independent (independent increments);
3. For any ε > 0, limt→0 P{|Ls+t − Ls| > ε} = 0 for all s ≥ 0 (stochastic continuity);
4. Sample paths are right-continuous with left-limits (RCLL).

A number of interesting facts about the sample path behavior can be deduced from
the definition of a Lévy process. For instance, the stochastic continuity implies that the
probability of a jump at any fixed time in the future is 0. On any interval of finite length
[0, t], the property that paths are RCLL implies that (1) the number of jumps is at most
countably infinite, and (2) for fixed ε > 0, there can be only finitely many jumps on [0, t]
with magnitudes greater than ε.

A Lévy process can be decomposed as the sum of a linear drift, a Brownian motion,
and a jump process. The Lévy triple (γ, σ, ν) corresponding to these three parts, with γ
being the drift rate, σ being the diffusion coefficient, and ν being a measure with support on
R \ {0} such that

∫
R(|x|

2 ∧ 1)ν(dx) < ∞, called a Lévy measure. Given a Lévy measure ν,
it follows that for all ε > 0, ν(R \ (−ε, ε)) < ∞. Thus, a probability measure can be defined
by restricting ν and normalizing so that total mass is 1, that is,

Pε(dx) =
ν(dx)

ν(R \ (−ε, ε))
1{|x|≥ε}.

If limε→0 ν(R \ (−ε, ε)) = λ < ∞, then ν(R) < ∞ (since ν has no mass at 0), and the Lévy
process is said to have finite activity since sample paths of Lt have only finitely many jumps
on any closed interval [0, T]. In this case, the jump part of Lt is necessarily a compound
Poisson process and ν(dx) = λF(dx), where λ is the arrival rate and F is the distribution
function of the jump size. Alternatively, if ν is singular in some neighborhood of 0, then
ν(R) = ∞ and the Lévy process is said to have infinite activity since the sample paths of Lt
almost surely have a countably infinite number of jumps on any closed interval [0, T].

By the Lévy-Khintchine Theorem, Lt has characteristic exponent given by
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ΨL1(u) = iγu − σ2

2
u2 +

∫
R
(eiux − 1 − iuh(x))ν(dx),

where h(x) is a truncation function which is required in some cases when
∫
R ν(dx) = ∞,

depending on the behavior of ν near 0. The characteristic function of a Lévy process can be
defined in terms of its characteristic exponent, E(eiuLt) = etΨL1 (u). Thus, a Lévy process is
completely determined by its characteristic exponent.

Now, we specialize to the case of a Lévy process, Lt, with Lévy triple (γ, 0, ν) (no
Brownian motion part). The Lévy–Itô decomposition of Lt can be written as

Lt = γt +
∫ t

0

∫
|x|≥1

xN(ds, dx) +
∫ t

0

∫
|x|<1

x(N(ds, dx)− ν(dx)ds), (8)

where N is a Poisson random measure and µ ⊗ ν(dt, dx) = ν(dx)dt is the product measure
of Lebesgue measure, µ, and the Lévy measure, ν. The first jump term represents large
jumps (arbitrarily defined as being ≥ 1 in magnitude) and the second jump term represents
small compensated jumps (with jumps of size 0 disallowed). The representation of Lt in (8)
corresponds to the truncation function h(x) = x1{|x|<1}.

The Lévy processes that we consider in this paper have finite first moments, that is,∫
|x|>1 |x|ν(dx) < ∞. In this case, the Lévy–Itô decomposition of Lt can be written as

Lt = γt +
∫ t

0

∫
R

x(N(ds, dx)− ν(dx)ds), (9)

corresponding to h(x) = x. Here, the jump part with the compensator is a martingale. The
integral in (9) cannot be split into two terms unless the jumps have finite variation, which
is implied by

∫
0<|x|<1 |x|ν(dx) < ∞. In this case, a truncation function is not needed for

the process to be well defined. Thus, we can choose h(x) = x, h(x) = x1{|x|<c}, c ∈ R+, or
h(x) = 0. In the case of h(x) = 0, the jump process is uncompensated and (9) becomes

Lt = γt +
∫ t

0

∫
R

xN(ds, dx). (10)

The σ and Lévy measure ν are invariant for a given Lévy process, and once an ap-
propriate truncation function is chosen, the Lévy triple (γh, σ, ν) is unique. In this paper,
we will follow the convention of offsetting through γh any changes to the linear drift due
to compensating the jump process. That is, when we give Lévy triples for specific Lévy
processes, the linear drift coefficient will be γh = γ +

∫
R h(x)ν(dx).

3. Combining Stochastic Strings and Jump Processes

A stochastic process Xt on (Ω,F , (Ft)t≥0,P) is called a semimartingale if it can
be written

Xt = At + Mt, (11)

where At is a process with RCLL sample paths of finite variation and Mt is a local martin-
gale. (a property is said to hold locally for a stochastic process X if there exists a sequence
of stopping times (τn)n∈N such that, for all n, the stopped process Xt∧τn has the property).
A locally integrable semimartingale is called a special semimartingale, in which case a
decomposition as in (11) exists with At being a predictable process of finite variation.
Moreover, the local martingale Mt can be written as a sum of a continuous local martin-
gale and a purely discontinuous local martingale. Thus, a special semimartingale has
the decomposition

Xt = X0 + At + Xc
t + Xd

t , (12)

where Xc
0 = M0 = 0, At is a predictable process of finite variation, Xc

t is a continuous local
martingale, and Xd

t is a local martingale orthogonal to all continuous local martingales.
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Lévy processes are semimartingales and it is proven in [19] that stochastic integrals
with respect to stochastic string processes are continuous martingales. Thus, if Xt is the sum
of a stochastic string integral and a Lévy process with Lévy triple (γ, 0, ν) and finite first
moment, then it is a semimartingale. Moreover, such a process is a special semimartingale
since it has decomposition as in (12) with

At = γt, Xc
t =

∫ t

0

∫
R+

σ(s, x)dZ(s, x) dx, Xd
t =

∫ t

0

∫
R

x(N(ds, dx)− ν(dx)ds). (13)

Special semimartingales with decompositions as in (13) are the focus of this paper. It is
important to note that Xt is not a Lévy process, in general, because the term with the
stochastic integral does not appear in the Lévy–Itô decomposition. It only becomes a Lévy
process in the particular case in which the stochastic string integral becomes a stochastic
integral with respect to Brownian motion (see Section 2.2). Therefore, the results of our
model can be seen as generalizations of all the (exponential) Lévy models.

It will be useful to state an Itô’s lemma for such special semimartingales. We first recall
Itô’s lemma for a general one-dimensional semimartingale. This result can be found in [21]
(Chapter 1).

Theorem 1. Let Xt be a semimartingale and f : R → R a C2 function. Then, the stochastic process
f (Xt) is also a semimartingale and

f (Xt) = f (X0) +
∫ t

0
f ′(Xs−)dXs +

1
2

∫ t

0
f ′′(Xs−)d⟨Xc⟩s

+ ∑
s≤t

(
f (Xs)− f (Xs−)− f ′(Xs−)∆Xs

)
.

(14)

To describe the dynamics of a one-dimensional process driven by a stochastic string,
the inherent multidimensionality of the stochastic string must be recognized. For the
semimartingale decomposition above, with

Xc
t =

∫ t

0

∫ ∞

0
σ(s, x)dZ(s, x) dx,

we have
d⟨Xc⟩t =

∫ ∞

0

∫ ∞

0
σ(t, x)σ(t, y)d[Z(·, u), Z(·, y)]tdudy .

In the case of the stochastic string plus a Lévy process with finite first moment, it can
be shown that (14) becomes

f (Xt) = f (X0) +
∫ t

0
γ f ′(Xs−)ds +

∫ t

0
f ′(Xs−)

∫ ∞

0
σ(s, u)Z(s, u) du ds

+
1
2

∫ t

0
f ′′(Xs−)

∫ ∞

0

∫ ∞

0
Rs(u, y)dudyds

+
∫ t

0

∫ ∞

−∞
( f (Xs− + x)− f (Xs−))(N(ds, dx)− ν(dx)ds)

4. Option Pricing with the Generalized Black and Scholes Model with Jumps

In this section, we specify the general form for the stochastic processes we will use
to model underlying price dynamics. We posit two independent random processes in
the underlying security price consisting of a stochastic string process Z(t, x) and a Lévy
process Lt. The instantaneous interest rate rt is driven by a standard Brownian motion
that is assumed to be independent of both the stochastic string and the Lévy process. The
available information at any time t ≥ 0 is given by the filtration

Ft = σ{Z(s, x), Ls, Bs : 0 ≤ s ≤ t, x ≥ 0}, t ≤ Y .
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We start by including the Lévy process in Expression (4) for the discounted underlying
price of the GBS model in the form

ST = St exp{Yt,T + Lt,T + αt,T} (15)

where Lt,T ≡ LT − Lt and αt,T is a deterministic term which accounts for the martingale
property of ST . Applying this property, we have

St = EQ{ST |Ft
}
= Steαt,TEQ

{
eYt,T |Ft

}
EQ
{

eLt,T |Ft

}
= Steαt,T e(T−t)ΨL1 (−i)

from where we obtain αt,T = −(T − t)ΨL1(−i). Replacing this value in (15), we obtain

Thus, applyingPropositionST = St exp
{

Yt,T − (T − t)ΨL1(−i) + Lt,T
}

which can be rewritten as

ST = St exp
{∫ T

t
rsds + Yt,T − (T − t)ΨL1(−i) + Lt,T

}
(16)

Equation (16) is the general expression for the price dynamics in our model.

5. Jump Processes

In this section, we present four specific cases of the Lévy jumps, Lt in order to obtain
different option pricing models. The first two are finite-activity Lévy processes, that is,
compound Poisson processes, with lognormal ([8]) and double-exponential ([9]) distribu-
tions of jumps, respectively. The other two jump processes are Lévy processes of infinite
activity: the generalized hyperbolic Lévy motion ([11]) and the CGMY process ([10]).

We will defer to Section 7 the numerical calculation of option prices through the
characteristic function of Gaussian string plus jump dynamics.

5.1. Compound Poisson Process with Lognormal Jumps

Consider a compound Poisson process, Lt = ∑Nt
i=1 Ji, where Nt is a Poisson process

with parameter λ (the jump intensity) and Ji are the jump sizes. The compound Poisson
process has sample paths of bounded variation and its characteristic function is given by
([22], Proposition 3.4)

φCP
t (u) = exp

{
tλ
∫ +∞

−∞

(
eiux − 1

)
f (dx)

}
where f is the jump size distribution. In our case, as in [8], the jump sizes are i.i.d. with
Ji ∼ N

(
m, δ2), and thus, we have

ΨL1(−i) = λ
∫ +∞

−∞
(ex − 1)e−

(x−m)2

2δ2 dx = λ

(
em+ δ2

2 − 1
)

Replacing these expressions for the compound Poisson process in (16), we obtain

ST = St exp

{∫ T

t
rsds + Yt,T − λ(T − t)

(
exp

(
m +

δ2

2

)
− 1
)
+

NT

∑
i=Nt+1

Ji

}

where Nt, the Poisson process that counts the jumps of St, is independent from r and Z,
and the jump sizes, Ji, are also independent from r, Z, and N.

Theorem 2. The price, CLN
GBS, of a European call option with payoff [ST − K]+, is given by

CLN
GBS(t, St) = e−λ(T−t)

∞

∑
n=0

[λ(T − t)]n

n!
CGBS

(
t, T, SLN

t , Rt,T + nδ2
)
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where CGBS(t, T, St, Rt,T) is the call option price of the GBS model, Equation (6), and

SLN
t ≡ St exp

[
nm +

nδ2

2
− λ(T − t)

(
exp

(
m +

δ2

2

)
− 1
)]

Proof. By risk-neutral valuation, we have

CLN
GBS(t, St) = EQ

{
e−
∫ T

t rsds[ST − K]+|Ft

}
Conditioning on the number of jumps between t and T, NT − Nt = NT−t, we can write the
option value as follows

CLN
GBS(t, St)

=
∞

∑
n=0

Q(NT−t = n)EQ
{

e−
∫ T

t rsds

[
S̃t exp

(
Yt,T +

n

∑
i=1

Ji

)
− K

]
+

|Ft

}

=
∞

∑
n=0

e−λ(T−t)[λ(T − t)]n

n!
B(t)EQ

{
e−
∫ T

0 rsds

[
S̃t exp

(
Yt,T +

n

∑
i=1

Ji

)
− K

]
+

|Ft

}

where we have defined S̃t ≡ St exp
[∫ T

t rsds − λ(T − t)
(

em+ δ2
2 − 1

)]
. Taking into account

that
∫ T

0 rsds ∼ N
(

µt,T , σ2
t,T

)
and Yt,T +∑n

i=1 Ji ∼ N
(
− 1

2 Rt,T + nm, Rt,T + nδ2
)

on Ft under
Q, and using standard calculations with lognormal random variables, we have

B(t)EQ
{

e−
∫ T

0 rsds

[
S̃t exp

(
Yt,T +

n

∑
i=1

Ji

)
− K

]
+

|Ft

}

= SLN
t Φ

 ln SLN
t
K + µt,T + 1

2
(

Rt,T + nδ2)√
σ2

t,T + Rt,T + nδ2


−KP(t, T)Φ

 ln SLN
t
K + µt,T − 1

2 (Rt,T + nδ2)− σ2
t,T√

σ2
t,T + Rt,T + nδ2



where we have taking into account that P(t, T) = B(t)e−µt,T+
σ2
t,T
2 ([17], proof of Theorem 1).

The following corollary provides the consistency of the previous theorem with the
models in [8,17].

Corollary 1. In the cases of no jumps and Black–Scholes price dynamics with constant interest
rates, the expression of Theorem 2 reduces to the call option price in the models of [8,17], respectively.

Proof. The no-jumps case can be obtained by making λ → 0, from where we obtain

Q(NT−t = n) = e−λ(T−t)[λ(T−t)]n

n! → δn,0, SLN
t → St, and then CLN

GBS(t, St) → CGBS(t, T, St, Rt,T).
The Black–Scholes case with jumps correspond to making the substitutions rt → r, σ(t, u) →
σδ(u) and c(t, u, y) → 1. From these changes, we obtain Rt,T → σ2(T − t), σt,T → 0,
µt,T → rT and P(t, T) → e−r(T−t). Replacing them in the expression of Theorem 2, we
arrive at the call option price in the [8] model.

5.2. Compound Poisson Process with Double-Exponential Jumps

In [9], a finite activity jump-diffusion model is presented in which the density function
of the jump size is given by

fDE(x) = pθ1e−θ1 x1x<0 + (1 − p)θ2eθ2x1x>0
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In this case, the characteristic exponent of the jump process, Lt, is given by

ΨL1(u) = λ
∫ +∞

−∞

(
eiux − 1

)
fDE(dx)

= λ

[
pθ1

∫ ∞

0

(
eiux − 1

)
e−θ1xdx + (1 − p)θ2

∫ 0

−∞

(
eiux − 1

)
eθ2xdx

]
= λ

[
pθ1

(
θ1 + iu
θ2

1 + u2
− 1

θ1

)
+ (1 − p)θ2

(
θ2 − iu
θ2

2 + u2
− 1

θ2

)]

from which it follows that

ΨL1(−i) = λ

[
pθ1

θ1 − 1
+

(1 − p)θ2

θ2 + 1
− 1
]

Using this expression in Equation (16), we obtain

ST = St exp
{∫ T

t rsds + Yt,T − λ(T − t)
[

pθ1
θ1−1 + (1−p)θ2

θ2+1 − 1
]
+ Lt,T

}
= SDE

t exp
[∫ T

t rsds + Yt,T + Lt,T

] (17)

where

SDE
t ≡ St exp

{
−λ(T − t)

[
pθ1

θ1 − 1
+

(1 − p)θ2

θ2 + 1
− 1
]}

Theorem 3. The price, CDE
GBS, of a European call option with payoff [ST − K]+, is given by

CDE
GBS(t, St) = StΞ+ − KP(t, T)Ξ−

with

Ξ± = e−λ(T−t)Φ

 ln
(

SDE
t
K

)
± 1

2 Rt,T + µt,T ± x±√
σ2

t,T + Rt,T



+

exp
(

θ2
1(σ2

t,T+Rt,T)
2

)
√

2π
(

σ2
t,T + Rt,T

) ∞

∑
n=1

e−λ(T−t)[λ(T − t)]n

n!

n

∑
k=1

Pn,k

(
θ1

√
σ2

t,T + Rt,T

)k

×Ik−1

ln

(
K

SDE
t

)
∓ 1

2
Rt,T − µt,T ∓ x∓;−θ1,− 1√

σ2
t,T + Rt,T

,−θ1

√
σ2

t,T + Rt,T



+

exp
(

θ2
2(σ2

t,T+Rt,T)
2

)
√

2π
(

σ2
t,T + Rt,T

) ∞

∑
n=1

e−λ(T−t)[λ(T − t)]n

n!

n

∑
k=1

Qn,k

(
θ2

√
σ2

t,T + Rt,T

)k

×Ik−1

ln

(
K

SDE
t

)
∓ 1

2
Rt,T − µt,T ∓ x∓; θ2,

1√
σ2

t,T + Rt,T

,−θ2

√
σ2

t,T + Rt,T


where x+ = 0, x− = σ2

t,T , and

Pn,k =
n−1

∑
i=k

(
n − k − 1

i − k

)(
n
i

)(
θ1

θ1 + θ2

)i−k( θ2

θ1 + θ2

)n−i
pi(1 − p)n−i

Qn,k =
n−1

∑
i=k

(
n − k − 1

i − k

)(
n
i

)(
θ1

θ1 + θ2

)n−i( θ2

θ1 + θ2

)i−k
pn−i(1 − p)i
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for 1 ≤ k ≤ n − 1, Pn,n = pn, Qn,n = (1 − p)n, (0
0) ≡ 1, and for all n ≥ −1

In(c; α, β, δ) = − eαc

α

n

∑
i=0

(
β

α

)n−i
Hhi(βc − δ)

+

(
β

α

)n+1 √2π

β
e

αδ
β + α2

2β2 Φ
(
−βc + δ +

α

β

)
if β > 0 and α ̸= 0, and

In(c; α, β, δ) = − eαc

α

n

∑
i=0

(
β

α

)n−i
Hhi(βc − δ)

−
(

β

α

)n+1 √2π

β
e

αδ
β + α2

2β2 Φ
(

βc − δ − α

β

)
if β < 0 and α < 0, where Hhn is defined for n ≥ 0 by

Hhn =
1
n!

∫ ∞

x
(t − x)ne−

t2
2 dt

and Φ is the cumulative distribution function of a standard normal random variable.

Proof. The risk-neutral price of the option is given by

CDE
GBS(t, St) = EQ

{
e−
∫ T

t rsds[ST − K]+|Ft

}
= EQ

{
e−
∫ T

t rsdsST1ST>K|Ft

}
− KEQ

{
e−
∫ T

t rsds1ST>K|Ft

}
In order to obtain the first expectation, we need to work under the measure Q1, defined

by the Radon–Nikodym derivative dQ
dQ1

= S0e
∫ T

0 rsds

ST
. By Bayes formula, we have

EQ
{

e−
∫ T

t rsdsST1ST>K|Ft

}
=

EQ1

{
e−
∫ T

t rsdsST1ST>K
dQ

dQ1
|Ft

}
EQ1

{
dQ

dQ1
|Ft

}
= e

∫ t
0 rsdsQ1{ST>K|Ft }
EQ1

{
S−1

T |Ft

} (18)

Applying the Bayes formula again and using the martingale property of Q, it is not dif-
ficult to show that the inverse of the discounted price is a martingale under Q1, namely
EQ1

{
S−1

T |Ft

}
= S−1

t . Replacing this in (18), we obtain

EQ
{

e−
∫ T

t rsdsST1ST>K|Ft

}
= StQ1{ST > K|Ft }

Now, to obtain the conditional probability, we need to work with expression (17) under
Q1. The stochastic string shock under a measure Qi equivalent to Q, dZQi (t, u), is given by

dZQi (t, u) = dZ̃(t, u)− dt
∫ ∞

0
c(t, u, y)h(t, y)dy

with h(t, y) being a function that is determined by ([19], Lemma 4.8). Imposing that S−1
t is a

Q1–martingale, it can be shown that h(t, y) = σ(t, y) and then

dZQ1(t, u) = dZ̃(t, u)− dt
∫ ∞

0
c(t, u, y)σ(t, y)dy
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With this change, we can write Yt,T = ZQ1
t,T + 1

2 Rt,T, with ZQ1
t,T ≡

∫ T
t

∫ ∞
0 σ(s, u)dZQ1(s, u)du,

and Equation (17) reads

ST = SDE
t exp

[∫ T

t
rsds + ZQ1

t,T +
1
2

Rt,T + Lt,T

]
= SDE

t exp
[∫ T

0
rsds + ZQ1

t,T +
1
2

Rt,T + Lt,T

]
Applying the Bayes rule and the independence assumption, it can be shown that the

conditional mean and variance of
∫ T

0 rsds do not change under the measure Q1. Moreover,
under this same measure, ZQ1

t,T ∼ N(0, Rt,T). Thus, applying Proposition B.3 and Theorem
B.1 in [9], we obtain Q1{ST > K|Ft } = Ξ+.

For the second expectation, taking into account the properties of the T-forward mea-
sure, QT , we have

EQ
{

e−
∫ T

t rsds1ST>K|Ft

}
= P(t, T)QT{ST > K|Ft }

In order to obtain this last probability, we need to know the conditional distribution of
ST under QT . From [19], we know that dZ̃QT (t, y) = dZ̃(t, y) + dt

∫ T−t
0 c(t, u, y)σ(t, u)du,

where dZ̃QT (t, y) is the stochastic string shock under the T-forward measure. Replacing
this equality in Equation (3), and then in (17), we obtain

ST = SDE
t exp

[∫ T

0
rsds + ZQT

t,T − 1
2

Rt,T −
∫ T

s=t

∫ ∞

u=0

∫ T−t

y=0
Rt(u, y)dudyds + Lt,T

]
(19)

where ZQT
t,T ≡

∫ T
s=t

∫ ∞
u=0 σ(s, u)dZ̃QT (s, u)du. Now, we need to study the behavior under QT

of the terms in the exponential of (19), except for − 1
2 Rt,T , which is deterministic, and Lt,T ,

whose distribution is assumed to be the same, independent of the (equivalent) measure.
Taking into account that σ(s, u) is deterministic, we have that ZQT

t,T ∼ N(0, Rt,T) under

QT on Ft. In order to obtain the distribution of
∫ T

0 rsds under that measure, we need to
elaborate some more.

The dynamics of the discounted bond price in the stochastic string framework is given
by ([19])

dP(t, T)
P(t, T)

= −
∫ T−t

y=0
σ(t, y)dZ̃(t, y)dy =

=

[∫ T−t

y=0

∫ T−t

u=0
Rt(u, y)dudy

]
dt −

∫ T−t

y=0
σ(t, y)dZ̃QT (t, y)dy

whose solution is
P(t,T)
P(0,T)

= exp
{
− 1

2

∫ t
s=0

∫ T−s
y=0

∫ T−s
u=0 Rs(u, y)dudyds

−
∫ t

s=0

∫ T−s
y=0 σ(s, y)dZ̃(s, y)dy

} (20)

= exp
{

1
2

∫ t
s=0

∫ T−s
y=0

∫ T−s
u=0 Rs(u, y)dudyds

−
∫ t

s=0

∫ T−s
y=0 σ(s, y)dZ̃QT (s, y)dy

} (21)

With these preliminaries, we can now explicitly find that µt,T , and the conditional
expectation of

∫ T
0 rsds under Q, as
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µt,T = EQ
{∫ T

0
rsds|Ft

}
= −EQ{ln P(T, T)|Ft

}
= ln P(t, T) +

1
2

∫ T

s=t

∫ T−s

y=0

∫ T−s

u=0
Rs(u, y)dudyds

where we have used Equation (20). On the other hand, from [17], we know that, for

Gaussian models, we have P(t, T) = Bte−µt,T+
1
2 σ2

t,T . Solving for µt,T and replacing in the
previous equation, we can identify σ2

t,T =
∫ T

s=t

∫ T−s
y=0

∫ T−s
u=0 Rs(u, y)dudyds, and write

µt,T = ln P−1
(t, T) +

1
2

σ2
t,T

Performing a similar calculation using Equation (21), we arrive at

EQT

{∫ T

0
rsds|Ft

}
= ln P−1

(t, T)− 1
2

∫ T

s=t

∫ T−s

y=0

∫ T−s

u=0
Rs(u, y)dudyds

= µt,T − σ2
t,T

Taking into account that, under our framework, conditional variances remain the
same under a change of measure, we conclude that

∫ T
0 rsds ∼ N

(
µt,T − σ2

t,T , σ2
t,T

)
under

QT on Ft. The remaining term with the triple integral in (19) is equal to zero. To see this,
considering (20) and the expression for Yt,T , we can write

∫ T

0
rsds = − ln P(0, T) +

1
2

∫ T

s=t

∫ T−s

y=0

∫ T−s

u=0
Rs(u, y)dudyds

+
∫ T

s=0

∫ T−s

y=0
σ(s, y)dZ̃(s, y)dy

and

Yt,T ≡ ZQ
t,T − 1

2
Rt,T =

∫ T

s=t

∫ ∞

y=0
σ(s, y)dZ̃(s, y)dy − 1

2
Rt,T

Taking conditional covariance and applying the conditional Itô isometry, after some calcu-
lations, we arrive at

CovQ
{∫ T

0
rsds, Yt,T |Ft

}
=
∫ T

s=t

∫ ∞

u=0

∫ T−t

y=0
Rt(u, y)dudyds

which is zero by our independence assumption.
In summary, we have

ST = SDE
t exp

[∫ T

0
rsds + ZQT

t,T − 1
2

Rt,T + Lt,T

]
(22)

and
∫ T

0 rsds + ZQT
t,T − 1

2 Rt,T ∼ N
(

µt,T − 1
2 Rt,T − σ2

t,T , σ2
t,T + Rt,T

)
. Now, again applying

Proposition B.3 and Theorem B.1 in [9], we arrive at Q{ST > K|Ft } = Ξ−, which concludes
the proof.

As in the case of lognormal jumps, we have the following consistency result.

Corollary 2. In the cases of no jumps and Black–Scholes price dynamics with constant interest
rates, the expression of Theorem 3 reduces to the call option price in the models of [9,17], respectively.
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Proof. Working as in the proof of Corollary 1, in the no-jump case (λ → 0), we obtain

Q(NT−t = n) = e−λ(T−t)[λ(T−t)]n

n! → δn,0, SDE
t → St, and then CDE

GBS(t, St) → CGBS(t, T, St, Rt,T).
For the Black–Scholes case with jumps, we had Rt,T → σ2(T − t), σt,T → 0, µt,T → rT and
P(t, T) → e−r(T−t). Replacing them in the expression of Theorem 3, we arrive at the call
option price in the model of [9].

5.3. Generalized Hyperbolic Lévy Motion

The generalized hyperbolic Lévy motion is a Lévy process, Lt, such that L(L1), the
distribution of L1, has the density of a generalized hyperbolic distribution, ρGH(x), given by

ρGH(x; λ, α, β, δ, µ) = a(λ, α, β, δ)
(

δ2 + (x − µ)2
)(λ− 1

2 )/2

×Kλ− 1
2

(
α

√
δ2 + (x − µ)2

)
exp(β(x − µ))

where

a(λ, α, β, δ) =

(
α2 − β2)λ/2

√
2παλ− 1

2 δλKλ

(
δ
√

α2 − β2
)

and Kν is the modified Bessel function of the third kind with index ν:

Kν(z) =
1
2

∫ ∞

0
yν−1 exp

(
−1

2
z
(

y + y−1
))

dy

The parameter α > 0 determines the shape, β, with 0 ≤ |β| < α, denotes the skewness,
µ ∈ R denotes the location, δ is a scaling parameter, and λ ∈ R characterizes certain
subclasses. The value λ = 1 corresponds to the subclass of hyperbolic distributions, which
was the first used in finance. When λ = − 1

2 , we obtain the normal inverse Gaussian
distribution, which has the gamma distribution as a special case ([11]).

The moment-generating function of the generalized hyperbolic distribution is given
in ([11]) as

MGH(u) = eµu

(
α2 − β2

α2 − (β + u)2

)λ/2 Kλ

(
δ

√
α2 − (β + u)2

)
Kλ

(
δ
√

α2 − β2
) (23)

from which we obtain the characteristic function, φGH(u), as φGH(u) = MGH(iu). From
this expression, for φGH(u), we can easily obtain the characteristic exponent of the general-
ized hyperbolic Lévy motion as ΨL1(u) = ln(φGH(u)).

We know from the definition that ρGH(x) is the density of L1, but Lt does not have the
same density and it has to be obtained from its characteristic function,
φt,GH(u) ≡ E

[
eiuLt

]
= [φGH(u)]

t by Fourier inversion (The exception is the case λ = − 1
2 ,

for which we only have to make the substitutions δ → tδ and µ → tµ in the density ρGH).
Denoting by ρt,GH(x) the density function associated with Lt, we can define, for each

θ ∈ R, a new density, ρt,GH(x; θ), by

ρt,GH(x; θ) =
eθx∫ +∞

−∞ eθyρt,GH(y)dy
(24)
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Under the corresponding probability, Pθ , the process is again a Lévy process, called the
Esscher transform of the original process. We will choose the value θ∗ of the parameter that
makes Pθ∗ an equivalent martingale measure. Taking into account Expression (16), we have

S0 = EPθ∗
[
St
]

= EPθ∗
[

S0 exp
{
−1

2
R0,t + ZPθ∗

0,t − tΨL1(−i) + Lt

}]
= S0e−tΨL1 (−i)EPθ∗

[
eLt
]

= S0e−t ln(φGH(−i))
∫ +∞

−∞
exρt,GH(x; θ∗)dx

= S0(φGH(−i))−t MLt(θ
∗ + 1)

MLt(θ
∗)

= S0(φGH(−i))−t
[

MGH(θ
∗ + 1)

MGH(θ∗)

]t

where MLt(u) is the moment generating function of Lt. Taking into account that
φGH(−i) = MGH(1), and using Equation (23), we can rewrite the previous expression as

 (α2 − β2)(α2 − (β + (θ∗ + 1))2
)

(
α2 − (β + 1)2

)(
α2 − (β + θ∗)2

)
−λt/2

Kλ

(
δ

√
α2 − (β + (θ∗ + 1))2

)
Kλ

(
δ

√
α2 − (β + θ∗)2

)


t

= 1

As this equality must hold for every t > 0, we arrive at the following equation that
determines the value of θ∗: (α2 − β2)(α2 − (β + (θ∗ + 1))2

)
(

α2 − (β + 1)2
)(

α2 − (β + θ∗)2
)
−λ/2 Kλ

(
δ

√
α2 − (β + (θ∗ + 1))2

)
Kλ

(
δ

√
α2 − (β + θ∗)2

) = 1 (25)

The time-T stock price of Equation (16) can be written in this case as

ST = SGH
t exp

{∫ T

0
rsds + Yt,T + Lt,T

}
where we have defined

SGH
t = St exp

−(T − t)

µ +
λ

2
ln

(
α2 − β2

α2 − (β + 1)2

)
+ ln

Kλ

(
δ

√
α2 − (β + 1)2

)
Kλ

(
δ
√

α2 − β2
)





Theorem 4. The price, CGH
GBS, of a European call option with pay-off [ST − K]+, is given by

CGH
GBS(t, St) = SGH

t

∫ +∞

−∞
ρT−t,GH(x; θ∗ + 1)Φ

(
dGH

1 (x)
)

dx

−KP(t, T)
∫ +∞

−∞
ρT−t,GH(x; θ∗)Φ

(
dGH

2 (x)
)

dx
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where

dGH
1 (x) =

x + ln
(

SGH
t
K

)
+ 1

2 Rt,T + µt,T√
σ2

t,T + Rt,T

dGH
2 (x) = dGH

1 (x)−
√

σ2
t,T + Rt,T

Proof. The value of the call option, CGH
GBS, is given by

CGH
GBS(t, St) = EPθ∗

{
e−
∫ T

t rsds[ST − K]+|Ft

}
= EPθ∗

{
e−
∫ T

t rsdsST1ST>K|Ft

}
− KEPθ∗

{
e−
∫ T

t rsds1ST>K|Ft

} (26)

For the first expectation, we obtain

EPθ∗
{

e−
∫ T

t rsdsST1ST>K |Ft

}
= EPθ∗

{
e−
∫ T

t rsdsSGH
t exp

[∫ T

0
rsds + ZPθ∗

t,T − 1
2

Rt,T + Lt,T

]
1ST>K |Ft

}
= SGH

t e−
1
2 Rt,TEPθ∗

{
exp

[
ZPθ∗

t,T + Lt,T

]
1ST>K|Ft

}
=

SGH
t e−

1
2 Rt,T

2πσt,T
√

Rt,T

×
∫ +∞

x=−∞
exρT−t,GH(x; θ∗)

∫ +∞

r=−∞
e
− (r−µt,T)

2

2σ2
t,T

∫ +∞

z=ln
(

K
SGH

t

)
−r+ 1

2 Rt,T−x
eze

− z2
2Rt,T dzdrdx

=
SGH

t

σt,T
√

2π

×
∫ +∞

x=−∞
exρT−t,GH(x; θ∗)

∫ +∞

r=−∞
e
− (r−µt,T)

2

2σ2
t,T Φ

 x + ln
(

SGH
t
K

)
+ r + 1

2 Rt,T√
Rt,T

drdx

=
SGH

t√
2π

×
∫ +∞

x=−∞
exρT−t,GH(x; θ∗)

∫ +∞

r=−∞
e−

w2
2 Φ

 x + ln
(

SGH
t
K

)
+ σt,Tw + 1

2 Rt,T + µt,T√
Rt,T

dwdx

= SGH
t

∫ +∞

x=−∞
ρT−t,GH(x; θ∗ + 1)Φ

 x + ln
(

SGH
t
K

)
+ 1

2 Rt,T + µt,T√
σ2

t,T + Rt,T

dx

where, in the third step, we have used that ZPθ∗
t,T ∼ N(0, Rt,T) and

∫ T
0 rsds ∼ N

(
µt,T , σ2

t,T

)
un-

der Pθ∗ on Ft, and in the last step, we used the equality
∫ +∞
−∞ Φ(a + bx)ϕ(x)dx

= Φ
(

a√
1+b2

)
.
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For the second expectation:

EPθ∗
{

e−
∫ T

t rsds1ST>K |Ft

}
= B(t)EPθ∗

{
e−
∫ T

0 rsds1ST>K |Ft

}
=

B(t)
2πσt,T

√
Rt,T

×
∫ +∞

x=−∞
ρT−t,GH(x; θ∗)

∫ +∞

r=−∞
e−re

− (r−µt,T)
2

2σ2
t,T

∫ +∞

z=ln
(

K
SGH

t

)
−r+ 1

2 Rt,T−x
e
− z2

2Rt,T dzdrdx

=
B(t)

2πσt,T

×
∫ +∞

x=−∞
ρT−t,GH(x; θ∗)

∫ +∞

r=−∞
e−re

− (r−µt,T)
2

2σ2
t,T

∫ +∞

z=
ln

(
K

SGH
t

)
−r+ 1

2 Rt,T−x

√
Rt,T

e−
w2
2 dwdrdx

=
B(t)

σt,T
√

2π

×
∫ +∞

x=−∞
ρT−t,GH(x; θ∗)

∫ +∞

r=−∞
e−re

− (r−µt,T)
2

2σ2
t,T Φ

 x + ln
(

S
GH
t
K

)
+ r − 1

2 Rt,T√
Rt,T

drdx

=
B(t)e

1
2 σ2

t,T−µt,T

√
2π

×
∫ +∞

x=−∞
ρT−t,GH(x; θ∗)

∫ +∞

r=−∞
e−

v2
2 Φ

 x + ln
(

S
GH
t
K

)
− σt,Tv − σ2

t,T − 1
2 Rt,T + µt,T√

Rt,T

dv

= P(t, T)
∫ +∞

x=−∞
ρT−t,GH(x; θ∗)Φ

 x + ln
(

S
GH
t
K

)
− σ2

t,T − 1
2 Rt,T + µt,T√

σ2
t,T + Rt,T

dx

Replacing both expectations in Equation (26), we obtain the desired result.

Remark 1. In order to apply the previous theorem, we first need to obtain the characteristic
function φt,GH(u) = [φGH(u)]

t, and then ρt,GH(x) by Fourier inversion. Secondly, we solve the
Equation (25) for θ∗, and finally, we apply Expression (24) to obtain ρT−t,GH(x; θ∗).

The consistency result in this case is as follows.

Corollary 3. In the cases of no jumps and only jumps, the expression of Theorem 3 reduces to the
call option price in the models of [11,17], respectively.

Proof. If there are no jumps, then SGH
t → St, and ρT−t,GH(x; θ∗), ρT−t,GH(x; θ∗ + 1) →

δ(x), which lead to CGH
GBS(t, St) → CGBS(t, St). On the other hand, when we consider

a pure jump model, as in [11], we have ST = St exp(Lt,T). Thus, we should make the
replacements σt,T , µt,T , Rt,T → 0, but at the same time, maintaining P(t, T) = e−r(T−t). Then,
Φ
(
dGH

1 (x)
)
, Φ
(
dGH

2 (x)
)
→ 1

x>ln
(

K
St

), and we recover the call option price of [11].

5.4. CGMY

In [10], an infinite activity pure-jump Lévy process called the CGMY process is intro-
duced. This process has the Lévy measure given by
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νCGMY(dx) = C
(

eGx

|x|1+Y 1x<0 +
e−Mx

x1+Y 1x>0

)
dx

where C > 0, G > 0, M > 0, and Y < 2. Its characteristic function is

φLt(u) = exp
{

tCΓ(−Y)
(
(G + iu)Y − GY + (M − iu)Y − MY

)}
from which we can obtain the characteristic exponent as

ΨL1(u) = CΓ(−Y)
(
(G + iu)Y − GY + (M − iu)Y − MY

)
(27)

where Γ(·) is the gamma function. The CMGY process has Lévy–Itô decomposition given by

Lt = tE(X1) +
∫ t

0

∫
R

x(N(dx, ds)− νCGMY(dx)ds)

Using (27), we can rewrite Expression (16) for the CGMY process as

ST = SCGMY
t exp

{∫ T

0
rsds + Yt,T + Lt,T

}
with

SCGMY
t = St exp

{
−(T − t)CΓ(−Y)

(
(G + 1)Y − GY + (M − 1)Y − MY

)}
The parameters C, G, M, and Y determine the properties of the process ([10]). Specifically,
G and M control the rate of exponential decay on the right and the left of the Lévy density,
respectively. The parameter C is a measure of the overall level of activity, and in the case
of symmetric Lévy measure (G = M), it determines the kurtosis of the distribution of the
process. The parameter Y characterizes the fine structure of the stochastic process. For
example, Y > −1 implies a completely monotone Lévy density, allowing large jumps to
arrive less frequently than small jumps. When Y = 0, we recover the variance gamma
process, and if 1 < Y < 2, the process has infinite activity and infinite variation.

In order to obtain a closed-form expression for the call option price under our model,
we will follow [23], which, to the best of our knowledge, presents the unique closed-form
solution of the CGMY model for European options. In the following theorem and proof, ∗
denotes the convolution product.

Theorem 5. The price, CCGMY
GBS , of a European call option with payoff [ST − K]+, is given by

CCGMY
GBS (t, St)

= k0

k2/Y
2

{
B(t)

∫ +∞
−∞ ex−sΦ(d1(s, x))

(
e−Gs fY,0

(
|s|

k1/Y
2

))
∗
(

eMs fY,0

(
|s|

k1/Y
2

))
ds

−KP(t, T)
∫ +∞
−∞ Φ(d2(s, x))

(
e−Gs fY,0

(
|s|

k1/Y
2

))
∗
(

eMs fY,0

(
|s|

k1/Y
2

))
ds
} (28)

where x = ln SCGMY
t , k0 = exp

{
−(T − t)CΓ(−Y)

(
GY + MY)}, k2 = (T − t)CΓ(−Y),

d1(s, x) =
x − s − ln K + 1

2 Rt,T + µt,T√
σ2

t,T + Rt,T

d2(s, x) = d1(s, x)−
√

σ2
t,T + Rt,T

and fY,0(x) is the stable Lévy density given by

fY,0(x) =
1
Y

H1,1
2,2

x

∣∣∣∣∣∣
(

1 − 1
Y , 1

Y

) (
1
2 , 1

2

)
(0, 1)

(
1
2 , 1

2

) 
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where Hm,n
p,q (x) is the H-function introduced in [24], and given by

Hm,n
p,q (x) = Hm,n

p,q

[
x
∣∣∣∣ (a1, A1), . . . ,

(
ap, Ap

)
(b1, B1), . . . ,

(
bq, Bq

) ]
=

1
2πi

∫
L

Πm
j=1Γ

(
bj + Bjs

)
Πn

j=1Γ
(
1 − aj − Ajs

)
Πq

j=m+1Γ
(
1 − bj − Bjs

)
Πp

j=n+1Γ
(
aj + Ajs

) x−sds

with Ai, Bj ∈ R+, ai, bj ∈ R or C, i = 1, . . . , p; j = 1, . . . , q; and L is a suitable contour
separating the poles of the gamma functions Γ

(
bj + Bjs

)
and Γ

(
1 − aj − Ajs

)
(a detailed study of

the H-function can be found in the references [25–27]).

Proof. The call option value is given by

CCGMY
GBS (t, St) = EQ

{
e−
∫ T

t rsds[ST − K]+|Ft

}
= EQ

{
e−
∫ T

t rsdsΠ(VT)|Ft

}
where VT ≡ ln ST and Π(x) ≡ [ex − K]+.

Making use of the Fourier transform of the payoff

Π̃(ξ) =
∫ +∞

−∞
e−iξuΠ(u)du

we can write

CCGMY
GBS (t, St)

= 1
2πE

Q
{

e−
∫ T

t rsds ∫ +∞
−∞ eiξVT Π̃(ξ)dξ|Ft

}
= B(t)

2π EQ
{

e−
∫ T

0 rsds ∫ +∞
−∞ eiξVT Π̃(ξ)dξ|Ft

}
= B(t)

2π

∫ +∞
−∞ EQ

{
eiξ
(

ln SCGMY
t +Yt,T+Lt,T

)
+(iξ−1)

∫ T
0 rsds|Ft

}
Π̃(ξ)dξ

(29)

By the independence assumption, we can factorize the expectation and calculate the
expectation of each factor separately. For the first expectation, we have

EQ
{

eiξ ln SCGMY
t |Ft

}
= eiξ ln SCGMY

t

For the second expectation, taking into account that Yt,T ∼ N
(
− 1

2 Rt,T , Rt,T

)
under Q on

Ft, we obtain
EQ
{

eiξYt,T |Ft

}
= e−

i
2 ξRt,T− 1

2 ξ2Rt,T

The third expectation can be directly obtained as

EQ
{

eiξLt,T |Ft

}
= e(T−t)ΨL1 (ξ) = e(T−t)CΓ(−Y)((G+iξ)Y−GY+(M−iξ)Y−MY)

For the fourth expectation, taking into account that
∫ T

0 rsds ∼ N
(

µt,T , σ2
t,T

)
under Q on Ft,

we obtain (iξ − 1)
∫ T

0 rsds ∼ N
(
(iξ − 1)µt,T , (iξ − 1)2σ2

t,T

)
under Q on Ft, and then

EQ
{

e(iξ−1)
∫ T

0 rsds|Ft

}
= e(iξ−1)µt,T+

1
2 (iξ−1)2σ2

t,T

= P(t, T)eiξ(µt,T−σ2
t,T)−

1
2 ξ2σ2

t,T

where we have used that, for Gaussian models, P(t, T) = e−µt,T+
1
2 σ2

t,T ([17]).
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Replacing these expectations in (29), we have

CCGMY
GBS (t, St)

= k0P(t,T)
2π

×
∫ +∞
−∞ eiξxe

iξ(µt,T−σ2
t,T− 1

2 Rt,T)− 1
2 ξ2(σ2

t,T+Rt,T)
e(T−t)CΓ(−Y)((G+iξ)Y+(M−iξ)Y)Π̃(ξ)dξ

= k0P(t, T)
×F−1

[
eiξk1 Π̃(ξ)

]
∗ F−1

[
e−

1
2 ξ2k3

]
∗ F−1

[
ek2(G+iξ)Y

]
∗ F−1

[
ek2(M−iξ)Y

]
(30)

where we have applied the convolution theorem for inverse Fourier transforms, and we
defined k1 = µt,T − σ2

t,T − 1
2 Rt,T , and k3 = σ2

t,T + Rt,T .
For the two first inverse transforms, we obtain

F−1
[
eiξk1 Π̃(ξ)

]
= Π(x + k1)

and

F−1
[
e−

1
2 ξ2k3

]
=

1√
2πk3

e−
x2
2k3

where, for the first one, we have applied the shift theorem for inverse Fourier transforms.
For the two remaining transforms, we apply Lemma 3.1 of [23] to obtain

F−1
[
ek2(G+iξ)Y]

= e−Gx 1

k1/Y
2

fY,0

(
|x|

k1/Y
2

)
(31)

and

F−1
[
ek2(M−iξ)Y]

= eMx 1

k1/Y
2

fY,0

(
|x|

k1/Y
2

)
(32)

With these inverse transforms, we can obtain explicitly the first convolution in (30) as

F−1
[
eiξk1 Π̃(ξ)

]
∗ F−1

[
e−

1
2 ξ2k3

]
= Π(x + k1) ∗

1√
2πk3

e−
x2
2k3

=
1√

2πk3

∫ +∞

−∞

[
ex−s+k1 − K

]
+

e−
s2

2k3 ds (33)

= ex+k1+
1
2 k3 Φ

(
x + k1 − ln K + k3√

k3

)
− KΦ

(
x + k1 − ln K√

k3

)

= exP−1
(t, T)Φ

 x − ln K + 1
2 Rt,T + µt,T√

σ2
t,T + Rt,T


−KΦ

 x − ln K − 1
2 Rt,T + µt,T − σ2

t,T√
σ2

t,T + Rt,T


Substituting (31)–(33) in (30), we obtain the desired result.

As in the previous examples of jump processes, we have a consistency result for
stochastic strings plus CGMY jumps.

Corollary 4. In the cases of no jumps and jumps without diffusion part, the expression of Theorem 5
reduces to the call option price in the models of [17,23], respectively.
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Proof. The no jumps case is given by C → 0, and then k0 → 1 and(
e−Gs fY,0

(
|s|

k1/Y
2

))
∗
(

eMs fY,0

(
|s|

k1/Y
2

))
= F−1

[
ek2(G+iξ)Y]

∗ F−1
[
ek2(M−iξ)Y]

→ δ(s) ∗ δ(s) = δ(s)

Replacing these results in (28), and taking into account that x = ln SCGMY
t → ln St , we

arrive at the call option price in [17]. On the other hand, in the case of CGMY jumps and
no diffusion part, we have Rt,T → 0, µt,T → rT, σt,T → 0, Bt → ert, P(t, T) → e−r(T−t); and
then, the two normal cumulative distribution functions in (28) tend to 1

s<ln
(

SCGMY
t

K

)
+rT

.

Introducing all these changes in (28), we recover the call option price expression in [23].

6. Alternative Models

In this section, we present, for completeness, a brief summary of each of the benchmark
models that will be used for comparison with our GBS plus jumps model. These models are
the Merton jump-diffusion model and the Heston stochastic volatility model with jumps.

6.1. Merton Jump-Diffusion Model

Starting from the price dynamics of [1]

dSt

St
= µdt + σdWt

where the parameters µ and σ > 0 are constants, and Wt is a standard Brownian motion
under the physical probability measure P , [8] adds lognormally distributed jumps, so that

dSt

St−
= µdt + σdWt + d

(
Nt

∑
i=1

(eJi − 1)

)
, (34)

where Nt is a Poisson process with parameter λ > 0, and J ∼ N(m, δ2). Under Q,
(34) becomes

dSt

St−
= rdt + σdW∗

t + d

(
Nt

∑
i=1

(eJi − 1)

)
− λ

(
em+δ2/2 − 1

)
dt, (35)

where r ∈ R is the risk-free interest rate and W∗
t is a Brownian motion under an equivalent

martingale measure.
The solution to (35) is given by

St = S0 exp

{
(r − σ2/2 − λ(em+δ2/2 − 1))t + σW∗

t +
Nt

∑
i=1

Ji

}

and the price of a European call option with exercise price K and time-to-maturity τ is
given by ([22])

CMJD(t, τ, St, K) = e−λτ
∞

∑
n=0

(λτ)n

n!
CBS(t, τ, Sn, σn),

where CBS(t, τ, S, σ) is the Black–Scholes price of a call option with the same strike,
underlying price S, and volatility σ, Sn = St exp

[
nm + nδ2

2 − λτ(em+δ2/2 − 1)
]
, and

σn =
√

σ2 + nδ2/τ.
The addition of jumps makes the model much more flexible and capable of capturing

the skew and kurtosis observed in the empirical distributions of asset returns. The calibration
of the Merton jump-diffusion model entails the estimation of four parameters (σ, λ, m, δ).
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6.2. Heston Model with Jumps

For the Heston stochastic volatility model with jumps, we have taken the stochastic
volatility, stochastic interest rates and random jumps (SVSR-J) model of [14]. This model
is an extension of the model in [7] with the addition of the CIR stochastic interest rates,
and the compound Poisson jumps with the lognormal distribution of jump sizes. This
model provides a semi-closed form expression for the price of a European call option, and
generalizes most of the models with closed or semi-closed formulas for the option price.

The Heston model with jumps is defined by the following equations:

dSt

St
=

(
rt − λµJ

)
dt +

√
vtdW̃1t + Jtdqt

dvt = κv(ηv − vt)dt + σv
√

vtdW̃2t

drt = κr(ηr − rt)dt + σr
√

rtdW̃rt

where:

• vt is the instantaneous variance of returns (conditional of no jumps occurring);

• W̃1t and W̃2t are standard Q-Brownian motions with d
[
W̃1·, W̃2·

]
t
= ρdt;

• Jt is the percentage jump size (conditional on jump occurring), with ln(1 + Jt)

∼ N
(

ln
(
1 + µJ

)
− 1

2 σ2
J , σ2

J

)
;

• qt is a Poisson jump counter with intensity λ;
• κv, ηv and σv are, respectively, the mean-reversion speed, the long-run mean, and the

volatility coefficient of the variance process;
• κr, ηr and σr are, respectively, the mean-reversion speed, the long-run mean, and the

volatility coefficient of the risk-free interest rate process;
• W̃rt is a Q-Brownian motion uncorrelated with any other process.

The time-t price of a European call option written on S, with strike price K, and
time-to-maturity τ, CHJ(t, τ, St, K), is given by

CHJ(t, τ, St, K) = StΠ1(t, τ; St, rt, vt)− KP(t, t + τ)Π2(t, τ; St, rt, vt)

where the conditional probabilities Π1 and Π2 can be obtained from

Πj(t, τ; St, rt, vt) =
1
2
+

1
π

∫ ∞

0
R
[

e−iϕ ln K f j(t, τ; St, rt, vt; ϕ)

iϕ

]
dϕ

and f j are the characteristic functions, whose explicit expression can be found in [14].
Setting λ = κr = ηr = σr = 0, we recover the [7] model and, therefore, the Heston

model with jumps generalizes the original Heston model to stochastic interest rates and
jumps. Moreover, when κv = ηv = σv = 0, the Heston model with jumps reduces to the
Merton jump-diffusion model. Nevertheless, we will keep on using the Merton model in
order to assess the effect of introducing stochastic volatility.

In order to calibrate the Heston model with jumps (excluding the CIR model), we need
to estimate eight parameters (λ,κv, ηv, σv, v0, ρ, µJ , σJ).

7. Empirical Tests

Given the characteristic functions for underlying returns processes, a variety of Fourier
transform techniques, such as those developed in [28] or [29], can be used to price European
options. Under the assumption that

∫ T
0 rs ds, Yt,T , and Lt are mutually independent, we can

calibrate a short-rate model for interest rates separately from the model for the returns of the
underlying security, and then combine them when calculating option values. Specifically,
we calibrate a CIR short-rate model using zero coupon bond (ZCB) yield curve data for each
pricing date. Then, for each expiration, a constant yield-to-maturity (YTM) is implied from



Mathematics 2024, 12, 82 23 of 39

the calibrated ZCB price. Options are priced with the constant but expiration-dependent
short-rate equal to the YTM. This is consistent with [14] in their SVJ case, but not with
SVSR-J, which estimates the CIR parameters at the same time as the stock parameters. So
our empirical study does not consider SR models, but rather models with constant but
maturity-dependent interest rates estimated from an SR model. There are two main reasons
for which we take this approach. First, estimating CIR and underlying stock parameters
simultaneously adds three additional parameters to each optimization. Since our focus is
on combining strings with jumps to model the dynamics of the underlying security, we
prefer to keep the models as parsimonious as possible in order to focus on the marginal
improvements achieved by changing the parameterizations of the underlying dynamics.
Second, Ref. [14] finds little to no tangible improvement from including SR, either in their
study of in-sample fit or in their study of hedging performance.

The characteristic function for the return process of the Gaussian string model under
the Q–measure, Yt,T , is given by

φGS
τ (u) = exp

(
ω1iuτ − σTS(τ)

2

2
τu2

)
(36)

with τ = T − t, σTS(τ) as defined in (7), and ω1 = −σTS(τ)
2/2.

If φJ
τ is the characteristic function for Lτ under Q, then the characteristic function for

the string plus jumps process is given by the product,

φτ(u) = φGS
τ (u)φL

τ(u). (37)

The price of a European call option can then be expressed as a Black–Scholes style
formula as derived in [29]

C(St, K, T) = StΠ1 − KP(t, T)Π2

where

Π1 =
1
2
+

P(t, T)
π

∫ ∞

0
R
[

eiu log(St/K)φT(u − i)
iu

]
du,

and

Π2 =
1
2
+

P(t, T)
π

∫ ∞

0
R
[

eiu log(St/K)φT(u)
iu

]
du

7.1. The Carr and Madan Methods for Fourier Transform Pricing

In [28], Carr and Madan derive two Fourier transform pricing methods to be applied
depending on the moneyness of the call option to be priced. For the in-the-money case,
they begin with the following formula for the call option price

C(k) =
∫ ∞

k
e−rT(es − ek) f (s) ds

where k = ln(K) and fT(s) is the density function for ln(ST). However, C(k) is not square-
integrable, so they work with a dampened call price function

c(k) = eαkC(k),

where α > 0. Now, the Fourier transform ĉ(u) of c(k) exists and it can be shown that

ĉ(u) =
∫ ∞

−∞
eiukc(k) dk =

e−rT φ(u − (α + 1)i)
α2 + α − u2 + iu(2α + 1)
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For α = 0, ĉ(u) is undefined at u = 0. Thus, α must be nonzero. The call price can then be
found by Fourier inversion

C(k) =
e−αk

2π

∫ ∞

−∞
eiuk ĉ(u) du =

e−αk

π

∫ ∞

0
R[e−iuk ĉ(u)] du

For pricing out-of-the money options, [28] proceeded as follows. If k = ln(K), define

zT(k) = e−rT
∫ ∞

−∞

(
(ek − es)1s<k,k<0 + (es − ek)1s>k,k>0

)
fT(s)ds

which is the price of a call option if k > ln(S0) or the price of a put option if k < ln(S0).
Now, let ζT be the Fourier transform of zT(k),

ζT(v) =
∫ ∞

−∞
eivkzT(k)dk

=
∫ ∞

−∞
eivke−rT

∫ ∞

−∞

(
(ek − es)1s<k,k<0 + (es − ek)1s>k,k>0

)
fT(s)dkds

=
∫ 0

−∞
eivke−rT

∫ k

−∞
(ek − es)qT(s)dkds +

∫ ∞

0
eivke−rT

∫ ∞

k
(es − ek) fT(s)dkds

=
∫ 0

−∞
e−rTqT(s)

∫ ∞

s
(e(1+iv)k − es+ivk)dsdk +

∫ ∞

0
e−rTqT(s)

∫ s

0
(es+ivk − e(1+iv)k)dsdk

= e−rT
(

1
1 + iv

− ert

iv
− φT(v − i)

v2 − iv

)
.

The pricing formula follows after applying the Fourier inversion to∫ ∞

−∞
eivk sinh(αk)zT(k)dk =

ζT(v − iα)− ζT(v + iα)
2

,

to obtain

zT(k) =
1

2π sinh(αk)

∫ ∞

−∞
e−ivk

(
ζT(v − iα)− ζT(v + iα)

2

)
dv.

In both moneyness cases, prices can be calculated easily using the fast Fourier trans-
form and standard numerical integration procedures. Given the efficiency and accuracy of
the Fourier methods developed in [28], we will use them to calculate option prices in the
empirical part of this study.

7.2. Calibrating Models to Option Market Data

The calibration of option pricing models to market data constitutes a critical empirical
test of their validity. We conduct a calibration exercise using actual option data to assess
the value of including jumps in the stochastic string option pricing model. In this exercise,
we utilize the Option Metrics volatility surface for the S&P 500 index to evaluate the
merit of incorporating jumps into the stochastic string option pricing framework. We
select three distinct dates— 3 February 2021, representing moderate market volatility; 30
August 2017, indicative of a low volatility climate; and 5 November 2008, a period of
heightened volatility—to anchor our analysis. The corresponding 30-day 50 delta Black–
Scholes-implied volatilities for these dates were 19.1%, 9.1%, and 45.5%, respectively. The
closing levels of the S&P 500 index for these dates were, respectively, 3830.17, 2457.59, and
952.77.

For each date, we extract option prices for eight expirations—spanning from one to
twelve months (30, 60, 91, 122, 152, 182, 273, and 365 days)—and for each expiration, we
collect call option prices (and strike prices) for calls with deltas ranging in moneyness from
10% to 90% in increments of 5%. Thus, for each trading date, we have 17 call option prices
for each expiration, for a total of 136 call option prices per trading date. Our objective is, for
each date, to estimate a single constant parameter set that optimally aligns model-generated
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option prices with prices observed in the market, minimizing the root mean square error
(RMSE) across all expirations. The calibration is extended to include a Cox–Ingersoll–Ross
(CIR) model for the short-rate, fitted to the zero-coupon U.S. Treasury yield curve on each
selected date.

The RMSE, a goodness-of-fit measure for a calibrated model, is computed as:

RMSE =

√
1
n

n

∑
i=1

(Ci − C̃i)2 (38)

where Ci denotes the model-predicted call option prices, C̃i denotes the market-observed
prices, and n denotes the aggregate count of observations. The minimization task is
formulated as an optimization problem:

min
θ∈Θ

RMSE({Cθ(Si, Ki, Ti)}n
i=1, {C̃(Si, Ki, Ti)}n

i=1) (39)

wherein:

• θ symbolizes the vector of model parameters, with Θ representing the permissible
parameter space;

• Cθ(Si, Ki, Ti), for i = 1 . . . n, is the price of a call option as determined by the model for
given parameters θ, underlying asset price Si, strike price Ki, and time to expiration
Ti;

• C̃(Si, Ki, Ti), for i = 1 . . . n, is the corresponding market price of the option.

For each market scenario, we calibrated a suite of option pricing models, considering
various configurations of underlying price dynamics and jump components. The computa-
tional implementation of the Carr and Madan Fourier transform methods using the Python
programming language is detailed in [30]. The optimization of the calibration function is
carried out via the Nelder–Mead simplex algorithm, a gradient-free method well suited for
application to nonlinear optimization problems. The algorithm employs a simplex or an
N-dimensional polytope, to probe the objective function at its vertices and iteratively apply
transformations—reflection, expansion, contraction, or shrinkage—based on the function’s
evaluated results. This iterative process continues until some termination criterion is met,
such as convergence to a specified tolerance level or the exhaustion of a maximum number
allotted iterations.

The following list summarizes the various model configurations we will consider:

• Underlying models without jumps:

– Black–Scholes (BS) ([1]) (one parameter);
– Heston stochastic volatility (HSV) ([7]) (five parameters);
– Generalized Black–Scholes (GBS) ([17]) (three parameters).

• Only jumps:

– CGMY ([10]) (four parameters);
– Generalized hyperbolic Lévy motion (GHLM) ([11]) (five parameters);

• Underlying models plus jumps:

– Brownian motion plus CGMY (BM+CGMY) (five parameters);
– Brownian motion plus GHLM (BM+GHLM) (six parameters);
– BS plus lognormal compound Poisson (BS+LN) ([8]) (four parameters);
– BS plus double-exponential compound Poisson (BS+DE) ([9] ) (five parameters);
– HSV plus lognormal compound Poisson (HSV+LN) ([14]) (eight parameters);
– GBS plus lognormal compound Poisson (GBS+LN) (five and six parameters);
– GBS plus double-exponential compound Poisson (GBS+DE) (six and seven pa-

rameters);
– GBS plus CGMY (GBS+CGMY) (six and seven parameters);
– GBS plus GHLM (GBS+GHLM) (seven and eight parameters).



Mathematics 2024, 12, 82 26 of 39

We report the RMSEs in Table 1 and optimal parameter values for the calibrated
models are reported in Tables 2–4. In Figures 1–5, we plot option prices from calibrated
models compared to market prices for a selection of the models.

(a) 5 November 2008

(b) 30 August 2017

(c) 3 February 2021

Figure 1. European call option prices from the calibrated Black–Scholes model are overlaid on market
observed option prices for the given pricing dates. For each pricing date, model calibration is carried
out using pricing data for eight expirations spanning from one to twelve months (30, 60, 91, 122,
152, 182, 273, and 365 days), and for each expiration, calls with deltas ranging in moneyness from
10% to 90% in increments of 5%. A total of 136 call option prices per trading date are used in the
calibration. Model prices are depicted as distinct points, while observed market prices are depicted
using interpolating curves. Option expiration is color-coded according to the legend in Panel (a).
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Table 1. Comparative analysis of in-sample model performance for different volatility conditions: This table reports the root mean square errors (RMSEs) of various
option pricing models calibrated against market data from three distinct volatility environments. The RMSEs serve as a quantitative metric for the precision of each
model’s fit to the observed option prices. The calibration exercise spans models without jump processes, models exclusively featuring jumps, and hybrid models
combining the underlying price dynamics with jumps. Lower RMSE values denote a more accurate representation of market prices by the model. The volatility
regimes are defined by the dates: low volatility on 3 February 2021, moderate volatility on 30 August 2017, and high volatility on 5 November 2008.

Underlying Models without Jumps Parameters Low Vol Moderate Vol High Vol

Black–Scholes (BS) 1 36.040 12.619 10.388

Heston stochastic volatility (HSV) 5 13.031 4.088 3.901

Generalized Black–Scholes (GBS(3)) 3 35.794 11.879 8.117

Only Jumps Parameters Low Vol Moderate Vol High Vol

CGMY 4 9.563 1.284 8.339

Generalized hyperbolic Lévy motion (GHLM) 5 11.815 3.521 9.437

Underlying Models Plus Jumps Parameters Low Vol Moderate Vol High Vol

BS plus lognormal compound Poisson (BS+LN) 4 10.530 4.858 8.204

BS plus double-exponential compound Poisson (BS+DE) 5 8.491 1.138 8.606

Brownian motion plus CGMY (BM+CGMY) 5 9.410 1.165 8.280

Brownian motion plus GHLM (BM+GHLM) 6 10.268 2.907 8.867

GBS plus lognormal compound Poisson (GBS(3)+LN) 6 4.632 1.465 2.175

GBS plus double-exponential compound Poisson (GBS+DE) 7 3.700 1.083 3.577

GBS plus CGMY (GBS(3)+CGMY) 7 3.630 1.050 3.403

HSV plus lognormal compound Poisson (HSV+LN) 8 6.128 2.116 2.293

GBS plus GHLM (GBS(3)+GHLM) 8 6.512 2.892 4.828

GBS plus CGMY (GBS(4)+CGMY) 8 3.536 1.049 2.006
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Table 2. Parameter estimation for calibrated models under high-volatility conditions: This table presents the estimated parameter values for a range of option
pricing models calibrated to the S&P 500 index options data from 5 November 2008—a date characterized by high market volatility.

Underlying Models without Jumps Parameters

Black–Scholes 1 σ
0.356

Stochastic string model (GBS(3)) 3 σ a2 a3
0.459 −0.222 0.117

Heston stochastic volatility (HSV) 5 κv ηv σv ρ v0
1.216 0.073 0.420 −0.938 0.176

Only Jumps Parameters

CGMY 4 C G M Y
71.234 12.546 5624.007 −0.574

GHLM 5 λ α β δ µ
9.990 −2.819 1.428 −1.182 0.320

Underlying Models Plus Jumps Parameters

Brownian motion plus CGMY (BM+CGMY) 5 σ C G M Y
0.01 71.234 12.546 5624.007 −0.574

Brownian motion plus GHLM (BM+GHLM) 6 σ λ α β δ µ
0.216 10.829 −3.785 0.169 4.258 0.272

BS plus lognormal compound Poisson (BS+LN) 4 σ λ µ δ
0.038 6.929 −0.130 0.062

BS plus double-exponential compound Poisson (BS+DE) 5 σ λ p θ1 θ2
0.368 0.010 0.226 2.096 0.001

HSV plus lognormal compound Poisson (HSV+LN) 8 λ κv ηv σv ρ v0 µJ σJ
6.487 0.009 0.116 −1.000 0.189 0.522 −0.444 1.591 × 10−8

GBS plus lognormal compound Poisson (GBS(3)+LN) 6 σ a2 a3 λ µ δ
0.367 −0.264 0.142 0.947 -0.364 0.005

GBS plus double-exponential compound Poisson (GBS+DE) 7 σ a2 a3 λ p θ1 θ2
0.486 0.001 −0.261 0.013 0.001 2.100 0.121

GBS plus CGMY (GBS(3)+CGMY) 7 σ a2 a3 C G M Y
0.301 −0.112 0.023 477.300 11.023 78.750 −2.324

GBS plus GHLM (GBS(3)+GHLM) 8 σ a2 a3 λ α β δ µ
−0.178 0.075 0.320 9.998 −4.818 0.028 3.352 0.357

GBS plus CGMY (GBS(4)+CGMY) 8 σ a2 a3 a4 C G M Y
0.362 −0.330 0.274 −0.076 1589.635 12.836 6343.843 −2.756



Mathematics 2024, 12, 82 29 of 39

Table 3. Parameter estimation for calibrated models under low-volatility conditions: This table presents the estimated parameter values for a range of option pricing
models calibrated to the S&P 500 index options data from 30 August 2017—a date characterized by low-market volatility.

Underlying Models without Jumps Parameters

Black–Scholes 1 σ
0.120

Stochastic string model (GBS(3)) 3 σ a2 a3
0.086 0.020 −0.01

Heston stochastic volatility (HSV) 5 κv ηv σv ρ v0
1.840 0.028 0.323 −1.000 0.013

Only Jumps Parameters

CGMY 4 C G M Y
0.092 2.909 53.105 0.841

GHLM 5 λ α β δ µ
8.571 4.610 0.064 0.072 0.069

Underlying Models Plus Jumps Parameters

Brownian motion plus CGMY (BM+CGMY) 5 σ C G M Y
0.046 0.470 5.282 1008.237 0.207

Brownian motion plus GHLM (BM+GHLM) 6 σ λ α β δ µ
0.046 12.714 −7.301 0.002 0.639 0.076

BS plus lognormal compound Poisson (BS+LN) 4 σ λ µ δ
0.085 0.089 −0.498 0.001

BS plus double-exponential compound Poisson (BS+DE) 5 σ λ p θ1 θ2
0.057 0.091 0.000 33.941 9.963

HSV plus lognormal compound Poisson (HSV+LN) 8 λ κv ηv σv ρ v0 µJ σJ
32.743 0.005 0.000 0.089 0.004 0.261 −0.252 0.001

GBS plus lognormal compound Poisson (GBS(3)+LN) 6 σ a2 a3 λ µ δ
0.060 0.001 −0.001 0.533 −0.153 0.106

GBS plus double-exponential compound Poisson (GBS+DE) 7 σ a2 a3 λ p θ1 θ2
0.055 0.001 −0.001 0.091 0.000 26.920 9.938

GBS plus CGMY (GBS(3)+CGMY) 7 σ a2 a3 C G M Y
0.048 4.787 × 10−4 −0.001 0.719 5.900 6199.174 0.044

GBS plus GHLM (GBS(3)+GHLM) 8 σ a2 a3 λ α β δ µ
0.051 0.000 0.001 10.168 −5.410 −0.000 0.504 0.062

GBS plus CGMY (GBS(4)+CGMY) 8 σ a2 a3 a4 C G M Y

0.049 4.953 × 10−4 −0.001 −2.000 ×
10−5 0.813 6.089 639.277 −0.004
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Table 4. Parameter estimation for calibrated models under moderate-volatility conditions: This table presents the estimated parameter values for a range of option
pricing models calibrated to the S&P 500 index options data from 3 February 2021—a date characterized by moderate market volatility.

Underlying Models without Jumps Parameters

Black–Scholes 1 σ
0.222

Stochastic string model (GBS(3)) 3 σ a2 a3
0.086 0.020 −0.01

Heston stochastic volatility (HSV) 5 κv ηv σv ρ v0
0.701 0.160 0.473 −1.000 0.042

Only Jumps Parameters

CGMY 4 C G M Y
0.052 0.238 122.079 1.277

GHLM 5 λ α β δ µ
8.571 4.610 0.064 0.072 0.069

Underlying Models Plus Jumps Parameters

Brownian motion plus CGMY (BM+CGMY) 5 σ C G M Y
0.050 0.043 0.083 201.355 1.291

Brownian motion plus GHLM (BM+GHLM) 6 σ λ α β δ µ
0.086 4.653 −4.286 0.187 −0.987 0.151

BS plus lognormal compound Poisson (BS+LN) 4 σ λ µ δ
0.127 0.384 −0.380 0.202

BS plus double-exponential compound Poisson (BS+DE) 5 σ λ p θ1 θ2
0.134 0.279 0.347 71.226 3.885

HSV plus lognormal compound Poisson (HSV+LN) 8 λ κv ηv σv ρ v0 µJ σJ
3.122 0.005 0.016 0.145 0.028 0.280 −0.494 0.006

GBS plus lognormal compound Poisson (GBS(3)+LN) 6 σ a2 a3 λ µ δ
0.150 −0.020 0.005 0.521 −0.302 0.240

GBS plus double-exponential compound Poisson (GBS+DE) 7 σ a2 a3 λ p θ1 θ2
0.147 −0.016 0.003 0.234 0.221 789.440 4.195

GBS plus CGMY (GBS(3)+CGMY) 7 σ a2 a3 C G M Y
0.122 −0.015 0.000 0.227 1.537 74.000 0.550

GBS plus GHLM (GBS(3)+GHLM) 8 σ a2 a3 λ α β δ µ
0.136 −0.016 0.004 7.491 −5.848 0.043 0.162 0.149

GBS plus CGMY (GBS(4)+CGMY) 8 σ a2 a3 a4 C G M Y
0.123 0.017 1.128e−4 0.002 0.273 1.653 15.638 0.383
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Table 5. Model parameter estimates on 5 November 2008 for two 8-parameter models, HSV+LN and GBS(4)+CGMY.

Underlying Model Parameters RMSE

HSV plus lognormal compound Poisson (HSV+LN) 8 λ κv ηv σv ρ v0 µJ σJ

2.293 6.487 0.009 0.116 −1.000 0.189 0.522 −0.444 1.591 × 10−8

GBS plus CGMY (GBS(4)+CGMY) 8 σ a2 a3 a4 C G M Y
2.006 0.366 −0.338 0.287 −0.082 1648.945 12.840 5503.566 −2.787
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(a) 5November 2008

(b) 30 August 2017

(c) 3 February 2021
Figure 2. European call option prices from the calibrated GBS(3) model are overlaid on market
observed option prices for the given pricing dates. For each pricing date, the model calibration is
carried out using pricing data for eight expirations spanning from one to twelve months (30, 60, 91,
122, 152, 182, 273, and 365 days), and for each expiration, calls with deltas ranging in moneyness
from 10% to 90% in increments of 5%. A total of 136 call option prices per trading date are used in the
calibration. Model prices are depicted as distinct points, while observed market prices are depicted
using interpolating curves. Option expiration is color-coded according to the legend in Panel (a).
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(a) 5 November 2008

(b) 30 August 2017

(c) 3 February 2021
Figure 3. European call option prices from the calibrated BS+LN model are overlaid on market
observed option prices for the given pricing dates. For each pricing date, model calibration is carried
out using pricing data for eight expirations spanning from one to twelve months (30, 60, 91, 122,
152, 182, 273, and 365 days), and for each expiration, calls with deltas ranging in moneyness from
10% to 90% in increments of 5%. A total of 136 call option prices per trading date are used in the
calibration. Model prices are depicted as distinct points, while observed market prices are depicted
using interpolating curves. Option expiration is color-coded according to the legend in Panel (a).
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(a) 5 November 2008

(b) 30 August 2017

(c) 3 February 2021
Figure 4. European call option prices from the calibrated GBS(3)+LN model are overlaid on market
observed option prices for the given pricing dates. For each pricing date, model calibration is carried
out using pricing data for eight expirations spanning from one to twelve months (30, 60, 91, 122,
152, 182, 273, and 365 days), and for each expiration, calls with deltas ranging in moneyness from
10% to 90% in increments of 5%. A total of 136 call option prices per trading date are used in the
calibration. Model prices are depicted as distinct points, while observed market prices are depicted
using interpolating curves. Option expiration is color-coded according to the legend in Panel (a).
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(a) 5 November 2008

(b) 30 August 2017

(c) 3 February 2021
Figure 5. European call option prices from the calibrated GBS(3)+CGMY model are overlaid on
market observed option prices for the given pricing dates. For each pricing date, model calibration
is carried out using pricing data for eight expirations spanning from one to twelve months (30, 60,
91, 122, 152, 182, 273, and 365 days), and for each expiration, calls with deltas ranging in moneyness
from 10% to 90% in increments of 5%. A total of 136 call option prices per trading date are used in the
calibration. Model prices are depicted as distinct points, while observed market prices are depicted
using interpolating curves. Option expiration is color-coded according to the legend in Panel (a).
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The calibration exercise yields several key insights, not only about the comparative
performance of the option pricing models under different market conditions, but also about
the fine structure of the stochastic processes underlying equity price dynamics. Based on
the RMSEs reported in Table 1, the addition of jump processes to models without jumps
such as Black–Scholes (BS), Heston’s Stochastic Volatility (HSV), and generalized Black–
Scholes (GBS) consistently improves the fit across all three volatility regimes. This fact
supports the hypothesis of the presence of jumps in price dynamics.

Moreover, the GBS(3) model augmented with any jump process (lognormal, double-
exponential, CGMY, GHLM) consistently outperforms its pure jump counterparts, as well
as its continuous sample path alternatives. These results indicate that GBS plus jump
models can indeed provide robust fits for the market prices of options across moneyness
and expiry, simultaneously.

Specifically, the GBS(3) model with CGMY jumps provides superior fits of option
skews compared to the alternative models considered in two out of the three volatility
environments. The Heston model with jumps of [14] outperforms in the high volatility
case, although it has one more parameter than GBS(3)+CGMY. Adding an additional
stochastic string parameter to the GBS model with CGMY jumps, so that it has a total
of eight parameters, results in dramatic reductions in RMSEs across all three volatility
environments, with improvements exceeding 50% in the moderate- and high-volatility
cases. In particular, the GBS(4)+CGMY model outperforms HSV+LN in each case. Close
scrutiny of the plots in Figure 6 reveals that, in the high volatility case, the GBS(4)+CGMY
is better able to fit the skews for out-of-the-money (OTM) calls with short expiries, while
the HSV+LN appears to provide a better fit for deep OTM calls with 273 and 365 days
until expiration. Overall, we can conclude that, on an equal parameter count basis, the
GBS model with CGMY jumps provides the best in-sample fits, across all three volatility
environments, compared to any of the alternative models reported in Tables 2–5.

Parameter estimation from the calibrated models shows that the jump component
in the GBS(4)+CGMY model, which has the best overall performance, exhibits a variance
gamma process-like behavior Y = 0 under moderate volatility conditions. The Lévy
density is skewed in the three scenarios, with the left tail heavier than the right tail G < M,
indicating a predominance of left-tail risk across all volatility scenarios. The parameter Y
delineates distinct properties related to the fine structure of the stochastic process ([10]).
In the high-volatility scenario (Y < −1), the process is not completely monotone and
has finite activity, while for moderate volatility (−1 < Y < 0), the process is completely
monotone with finite activity. In the low-volatility case (0 < Y < 1) the process has a
completely monotone Lévy density with infinite activity and finite variation. The parameter
C reflects the intensity of jumps within the CGMY process, with a markedly higher level
of activity in the high volatility regime (C = 1589.635) compared to the moderate and low
volatility scenarios (C = 0.813 and C = 0.273, respectively), suggesting the existence of a
volatility-dependent jump intensity in market dynamics.
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(a) 5 November 2008

(b) 5 November 2008
Figure 6. Market option prices vs. model prices on 5 November 2008 for two eight-parameter models,
namely HSV+LN and GBS(4)+CGMY.

8. Conclusions

In this paper, we present a new model for pricing European options that extends the
Black–Scholes framework to include stochastic interest rates, stochastic string dynamics,
and jump processes. Our model synthesizes the generalized Black–Scholes model proposed
by [17] with an array of pure jump Lévy processes. Thus, our model is also a generalization
of exponential Lévy models. We derive closed or semi-closed form pricing formulas
for European call options in GBS plus jump models with four different types of jumps:
compound Poisson processes with lognormal and double-exponential jumps ([8,9]), the
CGMY process of [10], and the generalized hyperbolic Lévy motion of [11]. We also
show that these expressions are reduced to those obtained in the literature for the cases of
Black–Scholes dynamics or in the absence of jumps.

In order to assess the performance of the GBS model with jumps, we conduct in-
sample empirical tests against several alternative models consisting of fitting the skews
of options on S&P 500 under three different volatility scenarios. The results of the test
can be summarized as follows: (a) including jumps improves the performance of all the
models; (b) the GBS plus jumps model outperforms alternative models with the same jump
distributions; (c) the GBS model with CGMY jumps (seven parameters) provides superior
in-sample fits of option skews than the alternative models considered in two out of the
three volatility regimes. The Heston model with jumps of [14] (eight parameters) is better
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in the high volatility regime, although it has one more parameter to estimate. Adding
an additional stochastic string parameter to the GBS model with CGMY jumps, so that
it has a total of eight parameters outperforms all alternative models in each of the three
volatility regimes.

The findings of this paper not only firmly support the presence of random jump
discontinuities in equity index dynamics, but also challenge the necessity of stochastic
volatility in option pricing models. Our empirical results suggest that models combining
continuous dynamics featuring a deterministic volatility function conditioned on option
expirations, in addition to random jump processes, can yield equal or superior performance
compared to alternatives that specify volatility as a stochastic process. The blend of
simplicity and precision offered by the GBS model with jumps is well suited for practical
application under diverse market conditions.

Building on the models developed in this paper, there are a number of interesting
directions for future research. For instance, the utility of GBS plus jumps models for
dynamic hedging applications could be investigated. Using the Black–Scholes hedge
ratio combined with GARCH volatility estimates, Ref. [31] documented that delta-neutral
portfolios consisting of long positions in index call options delta-hedged by short-index
positions, on average, experience negative returns. This finding provides evidence of a
negative volatility risk premium. Since a calibrated GBS model contains an estimated
term-structure of volatility, conducting a dynamic hedging study using a GBS-derived
hedge ratio could yield further insights on the pricing of volatility risk.

Additionally, the pricing of American and Asian options, as well as several types of
exotic options, with a GBS plus jumps model could be investigated with simulation meth-
ods. Such a study would necessitate the development of Monte Carlo methods combining
stochastic strings with pure jump Lévy processes. Ref. [18] simulated forward interest
rates in a stochastic string model by discretizing stochastic string shocks as increments
of correlated Brownian motion. They performed the simulation with three different para-
metric correlations. Efficient Monte Carlo methods for simulating the sample paths of
the underlying price as exponential Lévy processes are developed in [32] and applied to
price barrier options and fixed and floating strike lookback options. With the simulated
paths of the underlying price, the least-squares Monte Carlo (LSM) technique of [33] can be
applied to price American options for underlying dynamics given by a stochastic string
plus jumps. In fact, the examples of derivative pricing using the LSM technique presented
in [33] include both an American put when the underlying price follows a jump-diffusion,
as well as the deferred American swaption in a 20-factor string model of the term structure.
Moreover, as studied in [34], a modified LSM technique can be applied to price a variety of
exotic path-dependent options.
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