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Abstract: In practical applications, learning models that can perform well even when the data
distribution is different from the training set are essential and meaningful. Such problems are often
referred to as out-of-distribution (OOD) generalization problems. In this paper, we propose a method
for OOD generalization based on causal inference. Unlike the prevalent OOD generalization methods,
our approach does not require the environment labels associated with the data in the training set.
We analyze the causes of distributional shifts in data from a causal modeling perspective and then
propose a backdoor adjustment method based on variational inference. Finally, we constructed a
unique network structure to simulate the variational inference process. The proposed variational
backdoor adjustment (VBA) framework can be combined with any mainstream backbone network.
In addition to theoretical derivation, we conduct experiments on different datasets to demonstrate
that our method performs well in prediction accuracy and generalization gaps. Furthermore, by
comparing the VBA framework with other mainstream OOD methods, we show that VBA performs
better than mainstream methods.

Keywords: out-of-distribution generalization; causal inference; machine learning; backdoor adjustment;
supervised learning
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1. Introduction

Traditional machine learning algorithms often achieve satisfactory results only when
the data adheres to the assumption of being independently and identically distributed
(i.i.d.) [1,2]. However, the traditional machine learning algorithms that optimize empirical
risk often exhibit poor generalization performance due to distributional shifts in real-world
data stemming from potential heterogeneity or selection biases. Ensuring robust out-of-
distribution (OOD) generalization capabilities and stability in the face of distribution shifts
is of paramount importance [2,3], particularly in domains such as financial forecasting,
medical diagnosis, autonomous driving, and others. In the next paragraph, we provide a
simple example illustrating the challenges traditional machine learning algorithms face
when there is a shift in data distribution.

Consider the problem of classifying images of cows and camels [1,4]. As we all know,
most cattle are on the grassland, while most camels are in the desert. This phenomenon
introduces selection bias, causing the trained model to rely on spurious correlations between
the environment and the animals. Therefore, after training on this dataset, the model fails
to correctly classify simple examples of cow images when they are taken on sandy beaches.
This failure is because the model exploits an easily detectable spurious relationship between
animal categories and background colors during training to reduce training error. In
summary, traditional methods based on Empirical Risk Minimization can lead to significant
errors when confronted with out-of-distribution data.

To address this issue, we need to distinguish between causal features (animal shapes)
and spurious correlated (background colors) features related to the category [1,5,6]. The

Mathematics 2024, 12, 85. https://doi.org/10.3390/math12010085 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12010085
https://doi.org/10.3390/math12010085
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1135-4915
https://doi.org/10.3390/math12010085
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12010085?type=check_update&version=1


Mathematics 2024, 12, 85 2 of 21

reason that models often rely on spurious correlated features is the presence of unobserv-
able confounders that simultaneously affect both features and categories. Confounders
lead to correlations between certain observed features and categories without a causal
relationship. The distribution of the confounder P(C), along with the conditional proba-
bility distributions of the confounder given the observed features P(C|X) and categorical
variables P(C|Y), may undergo changes with variations in the environment from which
the data are sampled. Therefore, traditional machine learning methods based on Empirical
Risk Minimization may fail when the environment in which the training data are collected
differs from the testing environment.

Most of the existing out-of-distribution generalization algorithms utilize datasets with
multiple training environments to discover invariant features and subsequently use these
invariant features for category inference [1,5,7–9]. These methods are called invariant
learning algorithms, which assume that the causal relationship does not vary with the
environment and aim to learn invariant causal relationships by training in various sam-
pling environments. The invariant learning algorithms require the source data to include
labels indicating the data sampling environment. Therefore, their performance is highly
dependent on the quality of the environment. Moreover, the requirements for environment
labels can sometimes be overly strict. Typically, raw data comprise randomly selected data
from multiple environments without explicit environment labels [2,10].

In this paper, we model the causal relationships between observed features, category
labels, and unobservable confounders using Structural Causal Models (SCM) [11–13]. See
Figure 1a for a causal graph to illustrate the SCM of real-world data.

(a) (b)

Figure 1. Structural causal model for machine learning. The dashed circle represents unobservable
confounders, X represents observed features, and Y represents category labels. (a) SCM of real-world
data. (b) Our interventional model.

From the SCM, it can be seen that the confounders simultaneously affect both features
and labels. Since the confounders are unobservable, models trained through empirical risk
will learn the spurious correlation between some dimensions of X and Y. The spurious
correlation will change when the distribution of the confounder varies. This is why most
traditional machine learning models fail to generalize to new datasets.

To address the confounding effect of C and endow the model with robustness to
the confounder distributional shift, we propose an interventional model that utilizes the
do-operator to cut off the causal path between the confounder C and the feature X [12,13], as
shown in Figure 1b. By cutting off the path from C to X, we simulated an ideal environment
where the generation of feature X is not influenced by the confounder C. Therefore, the
correlation between the obtained feature X and the label Y is also a causal relationship in
this training environment.

The ideal way to introduce the do-operator is to conduct new random experiments and
collect data again. However, in most practical applications of the algorithm, we can only
obtain data sampled randomly from the natural environment rather than collecting data
through random experiments. Additionally, randomized experiments are often impractical
and can involve significant costs and ethical concerns in many situations. Fortunately, there
are backdoor adjustment methods in statistical causal estimation [13]. This method divides
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the data based on different values of the confounders and assigns different weights to
each partition. It allows the probability distribution after intervention by the do-operator
to be calculated solely based on observed data. We introduce the variational inference
method to compute the distributions involved in backdoor adjustment, which are difficult
to calculate directly.

In summary, based on a causal model different from invariant learning, we construct
a variational backdoor adjustment (VBA) framework to solve the OOD generalization
problem. This framework does not require multiple training environments. Furthermore,
experimental results validate that our algorithm outperforms most existing distributional
generalization methods.

The main contributions of this paper can be summarized as follows:

• We present a novel and meaningful perspective on the OOD generalization problem.
It involves capturing changes in data sampling environments through variations in
the distribution of confounders.

• We propose a method for out-of-distribution generalization without environment
labels. Our proposed method employs a variational approach to perform backdoor
adjustment on features, thereby eliminating the impact of environmental changes on
model training.

• We propose a framework for an OOD generalization algorithm that can be combined
with any backbone model.

2. Related Work

Our work combines two research domains: OOD generalization and causal inference.
OOD generalization: The OOD generalization problem has been widely observed in

various domains [1,5,6,9,14–18]. To address this issue, researchers have proposed various
algorithms from different perspectives, such as distributional robust optimization [19,20]
and causal invariant learning [1,5,6,21–26].

Distributional robust optimization methods [19,20] consider OOD data that are close
to the training distribution in terms of probability distance or divergence, such as the
Wasserstein distance or f -divergence [9]. They train the model through robust optimiza-
tion, making the model robust to the distribution of the training set, thus achieving good
generalization performance on what is called an uncertainty set. However, the performance
of such methods is highly dependent on the choice of a probability distance metric, and
there is no efficient method to select an appropriate probability distance metric [27]. More-
over, they can only be effective for a specific type of OOD data, such as noise-disturbed
data [28] or adversarial samples [9], without considering common OOD data caused by
distributional shifts. Our VBA framework designs a causal model for the distributional
shift and proposes a variational backdoor adjustment method based on the causal model.
Therefore, the VBA framework is very effective for distributional shifts that commonly
exist in nature. Moreover, there is no need to choose a probability distance.

Causal invariant learning methods rely on the assumption of causal invariance, mean-
ing that the causal relationships between variables do not change with environmental
variations [6]. These methods all require training data to include environment labels, and
the algorithm’s performance heavily depends on the quality of environmental partitioning.
The work in [1,5] is representative of the causal invariant learning methods. In these stud-
ies, they construct constraints based on the invariance of causal feature distributions and
ultimately add regularization terms to the loss function to enable the model to learn causal
features. However, extracting causal features through optimization methods is passive,
often fails to obtain true causal features, and also has strict requirements for the number of
environments in the training set [29]. To address this challenge, our proposed method not
only constructs a special loss function but also designs an ingenious model structure. It
facilitates the model in converging more easily to the optimal solution and eliminates the
strict requirement of the model on the number of training set environments.
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Currently, some studies have relaxed the constraints on the environment [2,10,30].
However, these methods all have their limitations. The model proposed in [2] can only
handle scenarios where the decomposition of invariant and variant features occurs at the
raw feature level. It may break down when the decomposition can only be performed in
the representation space [10]. The model in [10] is an improved version in [2]. However, it
requires pre-setting the clustering parameter K, and when K deviates significantly from
the ground truth, the model’s performance may deteriorate. The model proposed in [30]
employs a two-stage process to infer the environment. This process cannot be jointly
optimized, and its performance heavily relies on a pre-defined biased model. The model
we propose in this paper does not rely on pre-defined models and parameters and does not
require explicit inference of the data’s environment. Therefore, our method demonstrates
better robustness compared to existing approaches.

Causal inference: Causal inference is a classic problem in the field of statistics. The
research on it can be divided into three theoretical branches: the framework of potential
outcomes and counterfactuals [31,32], the structural equation model (SEM) [13,33,34], and
graphical modeling [35,36]. The work in [37] established a connection between these
frameworks using single-world intervention graphs. However, these methods are applied
to low-dimensional and physically meaningful raw data. They cannot be directly applied
to high-dimensional scenarios such as images and natural language. In recent years, some
researchers have investigated the combination of causal inference and machine learning
methods [38,39]. Our proposed method applies causal estimation techniques to image data.
We use variational inference methods to make causal estimation amenable to optimization.
Furthermore, the VBA framework enables causal inference methods in high-dimensional
data through variational inference methods and deep feature extraction models, providing
a broader application prospect for causal inference methods.

3. Methodology

This section proposes a novel learning objective based on the backdoor adjustment
formula and variational inference methods. Then, we construct a learning framework to
estimate the conditional probability distribution between features, labels, and confounders.

3.1. Problem Formulation

Consider a training dataset {(xi, yi)}N
i=1 sampled randomly from the overall popula-

tion, where xi ∈ Rd and N represent the number of collected samples. Unlike invariant
learning methods, there is no requirement to know the specific environment from which
each data point is sampled. We aim to build a model Φ to fit the function f (·) : X → Y.

As shown in Figure 1a, Y and some dimensions in X are influenced by the con-
founders C ∈ Rm, which are associated with the environment. Therefore, the training data
{(xi, yi)}N

i=1 are generated from the distribution (xi, yi) ∼ P(X, Y|C = ci) [12], where ci
represents the confounders corresponding to the environment from which the i-th sample
is collected. Therefore, our objective is to learn a model Φ(x) = P(Y|X = x, C = c).

3.2. Limitations of the Empirical Risk Minimization Model

To illustrate the necessity of our proposed model, we will discuss the limitations of
traditional models based on Empirical Risk Minimization (ERM) in the problem of OOD
generalization [1,12] in this subsection.

Most existing machine learning methods optimize models through the ERM loss
function as follows:

minθE(x,y)∼P(X=x,Y=y|C=c)[l( f̂ (x; θ), y)], (1)

where θ represents the model parameters, f̂ (·; θ) represents the prediction model, and
l(·, ·) represents a certain metric function, e.g., the cross-entropy function. Through the
ERM loss function, what is actually fitted is the conditional distribution P(Y|X). It is
equivalent to the Maximum Likelihood Estimation (MLE) method. However, Y is actually
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generated by the distribution P(Y|X, C = c), so different unobservable confounders, C,
correspond to different PC(Y|X). Therefore, ERM methods attempt to generalize multiple
distributions,

{
Pc(Y|X)

}
c∈etr

, by learning a single distribution, P(Y|X), where etr includes

all of the sampling environments in the training dataset. It is clear that the learned model
cannot generalize to Pcnew when cnew is not in etr.

3.3. Backdoor Adjustment Based on Variational Inference

To eliminate the influence of confounders on model training, we intervene on the
feature X to cut off the causal path from C to X, as shown in Figure 1b. The intervened
conditional probability can be expressed as P(Y|do(X)), where the do-operator represents
the intervention operation.

According to the backdoor criterion [13], it is known that C satisfies the backdoor
criterion for (X, Y). Therefore, we can calculate P(Y|do(X)) by performing backdoor
adjustment on C:

P(Y = y|do(X = x)) = ∑
c

P(Y = y|X = x, C = c)P(C = c), (2)

where do(X = x) represents the intervention to make X = x, and c represents the value of
the confounders C.

A description of backdoor adjustment is provided in Appendix A. Equation (2) allows
the result of the intervention to be calculated from observed data without conducting a
randomized experiment. Unfortunately, optimizing Equation (2) on the training dataset is
not feasible because the values of C are unobservable. Therefore, the prior distribution P(C)
and the conditional distribution P(Y|X, C) are both unobservable and cannot be estimated.

To address the above problem, inspired by [12,40], we use the variational inference
method to estimate distributions P(Y|X, C) and use the reparameterization method to
estimate prior P(C). We introduce a variational distribution Q(C|X) to estimate the poste-
rior distribution P(C|X). Then, through variational inference, we obtained the following
Evidence Lower BOund (ELBO) of P(Y|do(X)):

logPθ(Y|do(X)) ≥ −DKL(Q(C|X)||P(C)) +Ec∼Q(C|X)[logPθ(Y|X, C)], (3)

where θ represents the parameters of the inference model and DKL represents the Kullback–
Leibler divergence. The derivation for Inequation (3) is presented in Appendix B. The
right-hand side of the inequality is referred to as ELBO, which consists of two terms. The
first term implies that Q(C|X) should approximate P(C), while the second term represents
the similarity between the Ŷ generated by the inference model and the ground truth Y.
From Inequation (3), it can be concluded that by maximizing the ELBO, the maximum of
Pθ(Y|do(X)) can be achieved.

Above all, we can formulate the following loss function:

N

∑
i=1

[l(yi, Φ(xi; θ))] + βDKL(qϕ||P(C)), (4)

where β is a weight coefficient, Φ(·; θ) is the inference model, qϕ is the learned variational
distribution, and ϕ represents the parameters of the variational distribution.

Choosing an appropriate prior P(C) is an important and challenging problem. Some
researchers estimate P(C) by taking the average of the variational posterior qϕ [41], i.e.,
P(C) = 1

N ∑N
i=1 qϕ(C|X = xi). However, this method requires a significant computational

cost [42], and the effectiveness of the prior estimation depends on the quality of the
samples. In addition, [40,43] use a predefined distribution as the prior distribution, such as a
Gaussian or uniform distribution. However, such choices often impose over-regularization
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on the model, limiting its flexibility [12]. Inspired by [40], we choose a mixture variational
posterior as the prior distribution for C with pseudo-inputs, i.e.,

P(C) =
1
K

K

∑
k=1

qϕ(C|X = x(p)
k ), (5)

where x(p) represents pseudo-inputs, and K represents the number of pseudo-inputs. We
can treat the pseudo-inputs as learnable model parameters, with K serving as a hyperpa-
rameter of the model. Additionally, we set the variational posterior qϕ to be a multivariate
Gaussian distribution N (µ, σ2 I). The advantage of this choice is that we can use the repa-
rameterization trick to learn the variational posterior, and the Gaussian distribution aligns
with our intuition about the confounders in the natural world.

In summary, we have developed a variational inference-based backdoor adjustment
algorithm to learn P(Y|do(X)), which is entirely data-driven. To enable the optimization of
our method, we transformed the backdoor adjustment problem into a variational inference
problem through mathematical derivation. In the following section, we construct a unique
network structure to simulate the variational inference process and provide a detailed
overview of the model’s optimization methods.

3.4. Model Structure

From Inequation (3), it is evident that we need to parameterize Q(C|X) and Pθ(Y|X, C)
and fit them through the model. Therefore, we propose a model framework that encodes
features to generate the distribution of the confounders and infer the labels of data.

3.4.1. Variational Posterior Encoder

We introduce a variational posterior encoder to parameterize the variational posterior
distribution Q(C|X). This encoder takes the original features X as input and produces the
parameters of the variational posterior from which C is sampled.

We define Φe as the encoding function. To enable the model to be optimized through
gradient backpropagation, we use the reparameterization trick to simulate the learning
process of Q(C|X). For input xi, we define qϕ(C|X = xi) = N (µ(xi; ϕ), σ2(xi; ϕ)I).
Therefore, the encoder encodes X into a multivariate Gaussian distribution with a mean
vector and variance, i.e.,

Φe(xi) = wi, where wi ∈ Rm+1;

µ(xi; ϕ) = wi[: m];

σ(xi; ϕ) = wi[m],

(6)

where wi represents the vector obtained by Φe for xi, and m represents the dimension of C.
Through Equation (6), we obtain the mean and variance of the variational posterior.

The encoder can adopt any existing backbone network based on the data type, such as Mul-
tilayer Perceptron (MLP), Convolutional Neural Network (CNN) [44], or Transformer [45].

3.4.2. Inference Model

Then, according to Inequation (3), it is necessary to sample from Q(C|X) as input
for the inference model Pθ(Y|X, C). For similar situations, some researchers first sample
ϵi from N (0, I) and then set ci = µ(xi) + σ(xi) · ϵi [40,42]. However, random sampling
can introduce significant uncertainty into the results, which is not conducive to precise
inference by our inference model. In order to avoid the uncertainty introduced by the
sampling process, we introduce a network Φs to model the sampling process:



Mathematics 2024, 12, 85 7 of 21

Φ(1)
s (µi) = c(1)i ;

Φ(2)
s (σi) = c(2)i ;

Φ(3)
s (c(1)i , c(2)i ) = ci,

(7)

where Φ(1)
s represents the mean coding network in the sampling network Φs, Φ(2)

s repre-
sents the variance coding network in Φs, and c(1), c(2) represent the coding results of the
mean and variance, respectively.

In Equation (7), for simplicity, we denote µ(xi) and σ(xi) as µi and σi, respectively.
Additionally, ci represents the confounders corresponding to xi. Equation (7) describes
the three branch units in the sampling network Φs(µi, σi) = Φ(3)

s [Φ(1)
s (µi), Φ(2)

s (σi)] = ci.
The model Φ(3)

s first splices c(1)i and c(2)i before entering the backbone network. The three
branch units in Φs can use MLP as the backbone network. The network structure of the
sampling process is illustrated in Figure 2.

Figure 2. The network structure of the sampling process.

The estimated label ŷ can be obtained through the inference unit Φin:

Φin(xi, ci) = ŷi, (8)

where ŷi represents the model’s prediction for yi.
We parameterize Pθ(Y|X, C) through Φin. For more complex data forms, such as

images or natural language, extracting features to obtain a low-dimensional representation
is necessary. This representation, along with the sampled confounders, then enters the
inference unit. In order to visually illustrate the structure of the VBA framework, we
present the flowchart of the VBA framework in Figure 3.

Figure 3. The flowchart of the VBA framework. The blue box represents the network in the framework,
and the green box represents the new data representation generated during the processing of the
VBA framework.

From the loss function Equation (4), it can be seen that we need to compute the
DKL(qϕ||P(C) during optimization. Based on the calculation of the prior in Equation (5),
the following method for computing DKL(qϕ||P(C) using samples can be obtained:

DKL[qϕ(C|X = xi)||P(C)] =
1
2
[m

σ2
i

σ2
(p)

+
1

σ2
(p)

(µ(p) − µi)
T I(µ(p) − µi) + ln(

σ2m
(p)

σ2m
i

)−m],

(9)
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where µ(p) and σ2
(p) are the mean and variance of P(C). According to the additivity of the

Gaussian distribution, µ(p) and σ2
(p) can be obtained by summing the mean and variance

of each qϕ(C|X = x(p)
k ), respectively. The derivation of Equation (9) is presented in

Appendix C.
In this section, we first simulated the variational posterior distribution through an

encoder, followed by simulating the sampling process from the variational posterior distri-
bution Q(C|X) using a sampler. Finally, we simulated Pθ(Y|X, C) through an inference unit.
Algorithm 1 presents the detailed steps of the proposed variational backdoor adjustment
(VBA) framework.

Algorithm 1 Variational backdoor adjustment framework

Input: {(xi, yi)}N
i=1, xi ∈ Rd, dimensions of confounders m, the number of pseudo-inputs

K, and weight parameter β.

Initialize the parameters of Φe, Φs, Φin, and
{

x(p)
k

}K

k=1
.

1: while not converged do
2: {wi}N

i ← {Φe(xi)}N
i

3: µi ← wi[: m]; σ2
i ← wi[m]

4: for k in range(K) do
5: w(p)+= Φe(x(p)

k )
6: end for
7: µ(p) ← 1

K ·w(p)[: m]; σ2
(p) ←

1
K2 ·w(p)[m]

8: KL = 1
2 ∑N

i=1[m
σ2

i
σ2
(p)

+ 1
σ2
(p)
(µ(p) − µi)

T I(µ(p) − µi) + ln(
σ2m
(p)

σ2m
i
)] + 1

2 mN

9: {ci}N
i ←

{
Φs(µi, σ2

i )
}N

i

10: {ŷi}N
i ←

{
Φe(µi, σ2

i )
}N

i
11: L = ∑N

i=1 l(yi, ŷi) + βKL

12: Backpropagate the gradients for parameters in Φe, Φs, Φin, and
{

x(p)
k

}K

k=1

13: Update the parameters in Φe, Φs, Φin, and
{

x(p)
k

}K

k=1
14: end while
Output: The parameters of models Φe, Φs, and Φin.

4. Experimental Results

To test whether our proposed VBA framework can effectively address the impact
of distributional shifts caused by confounders on model generalization, we conducted
experiments in this section on the simulated, semi-synthetic, and real-world datasets, re-
spectively. We compare our proposed VBA framework with Empirical Risk Minimization
(ERM), Distributionally Robust Optimization (DRO) [27], Kernelized Heterogeneous Risk
Minimization (KerHRM) [10], Environment Inference for Invariant Learning (EIIL) [30],
and Invariant Risk Minimization (IRM) [1]. The IRM method, representing invariant causal
learning approaches, requires environment labels. Therefore, we provided environment
labels to IRM during training, while other algorithms did not require environment la-
bels. We implement the VBA framework and baselines with PyTorch 2.0.1 on a computer
with NVIDIA RTX 3070 Ti. The implementation of the VBA framework is accessed on
19 December 2023. It can be downloaded at https://github.com/hangsuuuu/VBA. The
parameter settings of the VBA framework in each dataset are shown in Table 1. The settings
for other methods are described in Appendix E.

https://github.com/hangsuuuu/VBA
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Table 1. The parameters and backbone network of the VBA framework used in experiments.

Datasets Φe Φ
(1)
s Φ

(2)
s Φ

(3)
s Φin m K β

Linear 2-layer MLP 1-layer FNN 1-layer FNN 1-layer FNN 2-layer MLP 1 5 0.5
Colored MNIST 3-layer CNN 2-layer MLP 2-layer MLP 1-layer FNN 2-layer MLP 5 10 0.5

NICO ResNet [46] 3-layer MLP 3-layer MLP 1-layer FNN 4-layer MLP 20 10 0.2
House prices 2-layer MLP 2-layer MLP 2-layer MLP 2-layer MLP 3-layer MLP 5 5 0.4

4.1. Linear Simulated Data

In this subsection, we assess the performance of the VBA framework on linear simu-
lated data. We employed three different data generation methods. The detailed descriptions
of the data generation procedures can be found in Appendix D.

To test the performance of the VBA framework under different conditions, we designed
three different OOD cases. The causal graphs for the three cases are illustrated in Figure 4.
In each case, the label Y is generated by a linear combination of x and c. From Figure 4
and Table A1, it can be observed that C is a common unobservable cause for both X and
Y. Hence, C serves as a confounder for X and Y. By altering the distribution of C, we can
change P(Y|X), thereby simulating an OOD dataset.

(a) (b) (c)

Figure 4. The causal graphs for the linear simulated dataset, where the yellow circle represents C
generated from a Gaussian distribution, and the blue circle indicates C generated from a uniform
distribution. The black arrows indicate a variable directly involved in the generation process of
another variable, while the gray arrows signify a variable influencing the generation process of
another variable by affecting its distribution parameters. The dashed circles indicate that the variables
are unobservable. (a) The causal diagram of Case 1. (b) The causal diagram of Case 2. (c) The causal
diagram of Case 3.

We set continuous values for y to test the model’s regression ability. In each case, we
generated 800 data points as the training set and 200 data points as the test set. To test the
model’s performance when there is a distributional shift in the confounder, we use different
confounder distributions for the training and test sets. In Case 1 and Case 2, we simulated
the distributional shift by changing γ1 and γ2 in Table A1. We chose γ1, γ2 ∈ {0, 0.5, 1, 1.5}
in the training set, and γ1 = 2 in the test set. In Case 3, we chose γ3 ∈ {1, 1.5, 2, 2.5} in the
training set and γ3 = 5 in the test set. To evaluate the performance of the VBA framework
when the prior of the confounder is not a Gaussian distribution, as in Case 3, we generated
C using a uniform distribution. We simulated the distributional shift by altering the range
of values in the uniform distribution.

The experimental results are reported in Table 2. Each experimental result is the
average obtained after running the experiments 10 times.

In Table 2, we evaluate the performance using Mean Squared Error (MSE) and the
variance of the MSE. The results indicate that all methods perform suboptimally in Case 3.
On the one hand, this is due to using a uniform distribution to generate confounders in
Case 3. On the other hand, the distributional shift is most pronounced in Case 3. Overall,
ERM performs the worst as it has the highest MSE and variance. DRO, KerHRM, and
EIIL show varying performances across the three cases, but, overall, KerHRM exhibits the
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best performance among these three environment inference algorithms. IRM performs
significantly better than DRO, KerHRM, and EIIL, as it utilizes environment labels directly
during optimization. In contrast, the performance of the latter three algorithms depends on
the effectiveness of environment inference. Our proposed VBA framework performs better
than IRM in most cases (Case 1 and Case 2), even without environment labels. However,
the MSE of the VBA framework in Case 3 is significantly higher than in Case 1 and Case 2.
This is because the distribution of the confounder in the test set differs significantly from
a Gaussian distribution, resulting in the model having difficulty accurately inferring the
confounder. Although the performance of the VBA framework decreases in Case 3, its
MSE remains close to mainstream methods that do not require environment labels (such as
KerHRM), and there is no significant increase in variance.

Table 2. Results of linear simulation experiments.

Case 1 Case 2 Case 3 Need Environment Labels?

Methods MSE Var MSE Var MSE Var

ERM 5.16 0.28 5.04 0.31 5.97 0.35 no
DRO 4.74 0.21 4.51 0.25 5.22 0.23 no

KerHRM 4.52 0.18 4.56 0.21 4.97 0.28 no
EIIL 4.83 0.23 4.74 0.22 5.18 0.25 no
IRM 4.14 0.16 4.17 0.18 4.68 0.20 yes
VBA 4.04 0.18 3.87 0.15 5.07 0.23 no

The bold numbers indicate the best results among all methods.

Table 3 presents the methods’ time consumption, including the convergence time
during the training phase and the inference time during the prediction phase, where the
inference time refers to the time required for the model to predict 200 data points from the
test set. Due to the lowest computational and parameter complexity of the ERM model,
it exhibits the fastest inference speed. However, ERM has a longer convergence time due
to the need for a large number of iterations to converge on OOD datasets, especially in
datasets with complex variable relationships, such as in Case 3. Since EIIL performs only
environment inference without outputting predicted values for y, for comparison with
other models, we utilize the environment classification output by EIIL as the environment
label for IRM. Subsequently, we employ the IRM method to obtain the final prediction
results of EIIL. Therefore, to ensure fairness, we recorded the total convergence time for
both the environment inference module of EIIL and the inference module of IRM when
calculating the convergence time. The recorded inference time reflects the time required
for the environment inference module of EIIL to perform environment classification. Thus,
EIIL has the longest convergence time among all of the methods. DRO and KerHRM do
not separate the training of their environment inference and prediction processes; there-
fore, their convergence times are shorter than that of EIIL. Although the VBA framework
comprises three modules (encoding, sampling, and inference), the simultaneous training
of these modules and the backdoor adjustments allow the model to converge after fewer
iterations. Consequently, the training time of VBA is comparable to that of IRM, and, in
some complex scenarios, it even exhibits the least convergence time. However, the inference
time of VBA is slower than that of IRM and ERM. This is because the input features need to
pass through multiple modules to obtain the predicted values.
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Table 3. Convergence time during training and inference time during prediction in linear simulation
experiments.

Case 1 Case 2 Case 3

Methods Conv_Time Infer_Time Conv_Time Infer_Time Conv_Time Infer_Time

ERM 20.91 s 1.55 s 15.83 s 1.04 s 25.47 s 1.53 s
DRO 29.95 s 2.89 s 23.57 s 1.91 s 37.20 s 3.01 s

KerHRM 25.37 s 2.53 s 23.69 s 1.86 s 29.42 s 2.58 s
EIIL 33.50 s 2.26 s 29.16 s 1.81 s 36.11 s 2.30 s
IRM 17.75 s 2.13 s 16.36 s 1.46 s 19.53 s 2.16 s
VBA 18.56 s 2.50 s 17.20 s 1.83 s 18.76 s 2.39 s

The bold numbers indicate the best results among all methods.

Since the VBA framework uses X and C to predict the values of Y, the ability to gener-
ate the correct confounders is a crucial evaluation metric for assessing the interpretability
of the VBA framework. To evaluate whether the VBA framework can accurately estimate
the confounders, we present in Table 4 the mean values of the estimated confounders
obtained by the sampler of the VBA framework. Since different distributions are used
to generate the confounders in different environments when generating the dataset, we
can evaluate the VBA framework’s ability to estimate the confounders by examining the
mean values of the estimated confounders in different environments. Table 4 shows that
the estimated confounders’ mean values by the VBA framework are very close to the true
values, demonstrating that the VBA framework provides nearly unbiased estimates for the
confounders. The accurate estimation of the confounders is not only a necessary condition
for OOD predictions but also indicative of the interpretability of the VBA framework.

Table 4. The mean of the confounders generated by the VBA framework. Here, E1 ∼ E4 represent the
training environments, and E5 is the testing environment. The values in parentheses indicate the true
mean of the confounders generated in each environment.

Cases E1 E2 E3 E4 E5

Case 1 0.02 (0) 0.47 (0.5) 0.97 (1) 1.50 (1.5) 1.91 (2)
Case 2 −0.01 (0) 0.49 (0.5) 1.03 (1) 1.47 (1.5) 1.94 (2)
Case 3 0.06 (0) 0.09 (0) 0.11 (0) 0.09 (0) 0.09 (0)

4.2. Colored MNIST

To further assess the performance of our method on high-dimensional data, we
utilized the Colored MNIST [1], a semi-synthetic dataset, in this experiment. The Col-
ored MNIST, is derived from MNIST and is designed for binary classification meth-
ods. In Colored MNIST, the hand-written digits 0–4 are labeled as y = 0, and digits
5–9 are labeled as y = 1. To simulate distributional shifts in the data, for digits with
y = 1, we colored them green with a probability of pe, and, for digits with y = 0,
we colored them green with a probability of 1 − pe. Then, the remaining uncolored
digits were colored red. In the training set, we set p ∈ {0.1, 0.3}, while in the testing
set, p = 0.9. The data for this example can be generated using the code available at
https://github.com/facebookresearch/InvariantRiskMinimization. The code is accessed
on 29 September 2020. For the IRM method, we divided different environments based on
different values of pe and enabled IRM to utilize environment labels. For other methods,
we mix generated training data from different environments and use them as input for
the models.

In Colored MNIST, the original pixel values and the arrangement of pixels in the
images constitute the model’s raw input X. The true numerical value of the handwritten
digit serves as an unobservable confounder C that influences both X and Y. The proposed
VBA framework is to eliminate the impact of environmental factors (digit color) on model
training through backdoor adjustment.

https://github.com/facebookresearch/InvariantRiskMinimization
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Table 5 presents the experimental results of VBA and other methods. It includes
the accuracy and time consumption of all methods. As in the previous experiment, each
experimental result is the average obtained after running the experiments 10 times. Infer-
ence time refers to the time required for the model to predict 10,000 images from the test
set. We employed three metrics to evaluate the methods’ performance: training accuracy,
testing accuracy, and generalization gap (|Train_acc− Test_acc|). To assess the impact of
the number of environments in the training set on the methods’ performance, we tested
each method’s performance as the number of environments varied from two to seven. In
different training environments, pe values range from 0.1 to 0.7. The testing accuracy of
each method with respect to the number of training environments is shown in Figure 5.

Table 5. Results in Colored MNIST dataset.

Methods Train_Acc Test_Acc Gener_Gap Conv_Time Infer_Time Need Environment Labels?

ERM 0.94 0.48 0.46 33.32 s 5.10 s no
DRO 0.79 0.55 0.24 87.12 s 8.31 s no

KerHRM 0.81 0.65 0.16 42.60 s 9.02 s no
EIIL 0.85 0.64 0.21 79.35 s 6.38 s no
IRM 0.81 0.68 0.13 35.38 s 5.94 s yes
VBA 0.84 0.75 0.09 31.61 s 8.40 s no

The bold numbers indicate the best results among all methods.

Figure 5. The testing accuracy of all methods with respect to the number of training environments.

By benefiting from environment labels, IRM achieves decent testing accuracy. How-
ever, in scenarios with fewer environments, the performance of IRM significantly lags
behind the VBA framework. This result indicates that the performance of IRM is highly
dependent on the heterogeneity of environments. KerHRM and EIIL have similar test
accuracies in various situations because both methods are based on environment inference,
and they obtain similar environment partitions. However, KerHRM and EIIL fall signifi-
cantly behind the VBA framework regarding test accuracy and generalization gap. ERM
and DRO obtain test accuracies close to random selection (50%) in this experiment, and,
as the number of environments increases, the performance of DRO even falls behind that
of ERM. As the number of environments increases, the distributional shift in the training
data is weakened. This benefits ERM in learning the relationship between features and
labels, while it does not significantly assist the robust optimization algorithm DRO. The
results show that VBA exhibits the best testing performance in terms of testing accuracy
and generalization gap. The VBA framework maintains high prediction accuracy when
the number of training environments is two. However, due to their high requirements for
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environmental heterogeneity, other methods exhibit much lower prediction accuracies than
that of the VBA framework. This indicates that the VBA framework has a more significant
advantage when the training set exhibits low environmental heterogeneity.

Regarding time consumption, the VBA framework benefits from the rapid conver-
gence facilitated by the variational backdoor adjustment intervention, resulting in the least
convergence time. However, the inference speed of the VBA framework ranks only at a
moderate level among all of the methods. This is attributed to its complex inference process.
DRO struggles to converge on the Colored MNIST dataset, with its training iterations
far exceeding those of other methods. Consequently, the convergence time of DRO is
significantly longer than those of other methods. This indicates that robust optimization
methods struggle to converge stably to solutions with robustness.

4.3. Real-World Data

In this subsection, we utilize two real-world datasets to assess the practical applicabil-
ity of the VBA framework in real scenarios. The two datasets are Non-I.I.D. Image Dataset
with Contexts (NICO) [47] and house sales prices from King County, USA [10], respectively.
We evaluate the methods’ classification and regression capabilities in real-world scenarios
through these two datasets.

NICO contains wildlife and vehicle images captured in different environments. The
environments in the NICO dataset are divided based on the collection environment of the
images. This dataset is available at https://nico.thumedialab.com. This dataset is accessed
on 18 April 2022. In this experiment, we use NICO to construct a binary classification
dataset. The dataset contains images of cows and bears from three environments (forest,
river, and snowfield). The different collection environments led to a distributional shift
in the data. Since our goal is to classify the species of animals, in this dataset, the label Y
represents the species of the animals, and the confounder C may include advanced features
such as the outline and color of the animals, as well as the background color. We choose
data from the forest and river environments to form the training set, while data from the
snowy environment serve as the test set.

The house sales prices dataset comprises the sale prices and 17 different house at-
tributes, such as the number of rooms, the built year, etc. This dataset is available at
https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data. This
dataset is accessed on 11 January 2020. The dataset contains data for a total of 3000 houses.
We use the house sale prices as the target variable Y, with the other information about the
houses serving as predictive variables X. The relationship between predictor variables
and house prices may vary with the built time of the houses. This is because the criteria
for assessing the value of houses may change over different periods. Thus, the dataset
experiences a distribution shift as the construction year changes. We can partition the data
into different environments based on the built year to construct an OOD dataset. The built
years of houses in the dataset range from 1872 to 2010. However, due to the scarcity of
houses built between 1872 and 1900, we only select data with built years between 1900 and
2010. We divide the dataset into five periods, where the first three decades serve as the
training set, and each subsequent period contains a time span of two decades. We test each
method in the subsequent four periods and display the MSE for each method in Figure 6.
Since training IRM requires environment labels, we divide the training environment into
two environments based on the built year, using these as the training environment for IRM.

https://nico.thumedialab.com
https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data
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Figure 6. The results of all methods on house sales prices dataset. We trained all methods in E1 and
tested them in E2–E5.

The results of the experiment on NICO are provided in Table 6. Inference time refers
to the time required for the model to predict 250 images from the test set. The testing
accuracy of ERM and DRO is very low (close to 50%), indicating that the dataset exhibits a
distributional shift. KerHRM and EIIL still exhibit similar performance, both in terms of
testing accuracy and generalization gap. This indicates that invariant learning methods
based on the environment have limited capabilities in handling complex data, as their
testing accuracy is only slightly higher than that of ERM. The testing accuracy of IRM
shows a significant improvement compared to that of ERM, indicating that environment
labels provide valuable information for addressing out-of-distribution generalization prob-
lems. The proposed VBA framework outperforms all of the compared methods, exhibiting
the best testing accuracy and the lowest generalization gap. This indicates that our de-
signed backdoor adjustment method can address complex OOD generalization problems
effectively.

The VBA framework exhibits the shortest convergence time among all methods,
indicating its ability to rapidly converge to optimal solutions even on complex datasets.
This is attributed to the VBA framework having three modules with different functionalities
(encoding, sampling, and inference), each of which can rapidly accomplish its specific task
during training. Despite incorporating environment labels, IRM experiences a longer
convergence time than VBA. This is attributed to the challenge faced by IRM’s single model
structure in effectively capturing the complex variable relationships present in the OOD
dataset. While KerHRM also adopts a training approach with multiple modules, it initially
requires clustering to partition data environments, a process that typically converges slowly
on complex datasets. Consequently, KerHRM has a longer convergence time than VBA. Due
to the complexity of the model parameters, the VBA framework requires a longer inference
time. However, even on complex datasets, the inference time of the VBA framework is only
slightly longer than those of DRO and EIIL and shorter than that of KerHRM.

Figure 6 shows that all methods perform well on the test set close to the training
environment, while the MSE significantly increases in the test set far from the training envi-
ronment. This aligns with our intuition, as greater time intervals make the distributional
shift more pronounced. The MSEs of ERM and DRO increase sharply, and the MSE of DRO
was even higher than that of ERM in the test set, indicating that DRO cannot achieve OOD
generalization in the real-world dataset. IRM shows slower MSE growth than KerHRM
and EIIL, and its MSE is lower than those of KerHRM and EIIL across all test sets. This
suggests that environment labels are beneficial for enhancing OOD generalization. The
MSE curve for the VBA framework exhibits a very gradual increase, and, in E4 and E5, the
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MSE is even lower than that of IRM. This indicates that the VBA framework maintains
excellent OOD generalization even in situations with strong dataset distributional shifts.

Table 6. Results in real-world dataset.

Methods Train_Acc Test_Acc Gener_Gap Conv_Time Infer_Time Need Environment Labels?

ERM 0.90 0.54 0.36 1648.64 s 10.91 s no
DRO 0.79 0.55 0.24 4681.59 s 16.89 s no

KerHRM 0.81 0.62 0.19 3980.41 s 19.90 s no
EIIL 0.80 0.58 0.18 5023.60 s 16.32 s no
IRM 0.85 0.69 0.16 2351.21 s 15.64 s yes
VBA 0.83 0.73 0.10 1631.63 s 17.75 s no

The bold numbers indicate the best results among all methods.

In this subsection, we evaluate the performance of the VBA framework in two
real-world scenarios. The dataset includes both high-dimensional image data and low-
dimensional tabular data. Therefore, the experiments in this subsection can validate the
practical applicability of the method. The experimental results demonstrate that the VBA
framework performs excellently in various scenarios, even when significant distributional
shifts occur in the data. This indicates that the VBA framework has excellent applicability
in real-world scenarios.

In the experimental section, we combined several mainstream backbone networks,
such as MLP, CNN, ResNet, etc., with the VBA framework and achieved good performance.
Since the VBA framework does not specify the type of network used. Theoretically, the
VBA framework can be combined with any backbone network. Therefore, when applying
the VBA framework in practice, we can choose an appropriate backbone network based on
the data type. This enables the VBA framework to apply to a wide range of data types.

5. Discussion

Currently, most existing OOD generalization methods divide the dataset into different
environments [1,2,5,10]. During training, the model needs to calculate losses separately in
different environments, significantly compromising computational efficiency. The VBA
framework adopts an entirely different perspective, estimating causal effects using inter-
vention methods, and thus does not require partitioning the training set into different
environments. Therefore, the VBA framework has better practicality compared to other
OOD methods. According to the nature of the intervention operator, calculating P(Y|do(X))
requires using the distribution of the confounder C. However, due to the unobservability
and diversity of the confounder’s values, directly calculating P(C) is impractical. Therefore,
we employ variational inference methods to approximate the posterior distribution P(C)
and solve it through model optimization. This significantly enhances the computational
efficiency of the model. Although the multi-module structure of the VBA framework
slows down its inference speed, the experimental results indicate that this structure en-
ables the model to converge quickly during training. Therefore, compared to other OOD
generalization methods, the VBA framework is more suitable for large-scale datasets.

We have demonstrated through experiments that the VBA framework is flexible and
can integrate with most mainstream backbone networks. Therefore, if more advanced
feature-extraction backbone models emerge in the future, the performance of the VBA
framework will be further enhanced. The flexibility of the VBA framework also enables it
to handle various types of data, such as natural language and images.

6. Conclusions

In this paper, we focus on the issue of OOD generalization. Considering the character-
istics of out-of-distribution generalization problems and the limitations of existing methods,
we propose a causal learning framework based on variational backdoor adjustment (VBA).
We construct a causal graph for the OOD generalization problem by observing features X,
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labels Y, and unobservable confounders C. We then employ variational backdoor adjust-
ment to mitigate the deleterious effects of confounders on the model’s generalization ability.

The VBA framework demonstrates excellent predictive performance, even in distribu-
tional shifts, without relying on environment labels. We theoretically derive that the VBA
framework can simulate the backdoor adjustment method and learn the causal relationship
between X and Y. We then conducted experiments on datasets of different types. Due to
the proposed VBA framework eliminating the interference of confounders through back-
door adjustment without relying on environmental heterogeneity, it exhibits a significant
advantage compared to other invariance learning methods in scenarios with low environ-
mental heterogeneity. The experimental results indicate that the performance of the VBA
framework surpasses that of most mainstream OOD generalization methods. This suggests
that the VBA framework can endow models with robust OOD generalization capabilities
even without environment labels. We have also demonstrated through experiments that
the VBA framework exhibits more significant superiority than other methods in datasets
with stronger distributional shifts.

The VBA framework introduces a novel perspective for OOD generalization meth-
ods by combining causal inference with deep learning through variational inference and
optimization methods. The incorporation of causal inference enhances the model’s OOD
generalization capabilities and imparts interpretability to the model. The VBA framework
demonstrates excellent OOD generalization performance without the need for training en-
vironment labels. This enables OOD generalization methods to extend to domains without
training environment labels.

7. Limitations and Future Work

The VBA framework utilizes three modules (encoding, sampling, and inference) to
achieve variational adjustment. While this imparts excellent predictive capabilities to
the VBA framework, the complex model structure requires a longer inference time. This
hinders the application of the VBA framework in tasks that require real-time prediction,
such as autonomous driving and high-frequency stock trading. Therefore, enhancing the
structure of the VBA framework to achieve faster inference speed would be a topic worthy
of further investigation.

For ease of optimization, we choose the Gaussian distribution as the posterior distri-
bution for the confounder. However, when the true distribution of the confounder differs
significantly from the Gaussian distribution, the performance of the VBA framework may
decline. Therefore, finding a better method for simulating the distribution would benefit
the VBA framework. This method should not only be objective but also facilitate sampling.

The VBA framework requires sampling from the conditional distribution P(C|X)
obtained from the encoder. However, a completely random sampling process can hinder the
convergence of the training of the inference unit model. Therefore, we use a neural network
in VBA to simulate the sampling process. This approach may not fully capture the meaning
of the mean and variance obtained from the encoder. We believe that investigating sampling
methods that better capture the characteristics of probability distributions is meaningful
work. These sampling methods allow the inference process of VBA to meet theoretical
requirements better, thereby further improving the performance of the VBA framework.
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Appendix A. The Description of Backdoor Adjustment

Firstly, we provide the definition of the backdoor criterion [11,13]:

Definition A1. For the path from X to Y, if the nodes in the set C are not descendants of X, and
conditioning on C blocks every path from X to Y that contains an arrow into X, then C satisfies the
backdoor criterion for (X, Y).

Theorem A1. If C satisfies the backdoor criterion, then backdoor adjustment can be performed on
C to calculate P(Y|do(X)) as:

P(Y = y|do(X = x)) = ∑
c

P(Y = y|X = x, C = c)P(C = c) (A1)

Proof of Theorem A1. Because do(X) represents the intervention that cuts off all causal
paths leading to X, for the intervened model (as shown in Figure 1b) P(Y|do(X)) =
Pinter(Y|X), where Pinter represents the probability distribution in the intervened model,
the backdoor adjustment formula can be derived as follows:

P(Y = y|do(X = x)) = Pinter(Y = y|X = x)

= ∑
c

Pinter(Y = y|X = x, C = c)Pinter(C = c|X = x)

= ∑
c

Pinter(Y = y|X = x, C = c)Pinter(C = c)

= ∑
c

P(Y = y|X = x, C = c)P(C = c)

(A2)

The second equality in the equation is obtained from the law of total probability. The third
equality can be derived from the causal graph shown in Figure 1b and the properties of
conditional probability. The final equality is derived from the invariance relationship.

According to Definition A1 and the causal model shown in Figure 1a, it can be con-
cluded that the confounder C satisfies the backdoor criterion. So, according to Theorem A1,
the conditional probability distribution of Y after intervening on X can be obtained from
Equation (2).

Appendix B. The Derivation of ELBO

It can be derived from Equation (2) that P(Y|do(X)) = Ec∼P(C)[P(Y|X, C)]. Then, we
can derive the ELBO through the following steps:

https://www.dropbox.com/sh/8mouawi5guaupyb/AAD4fdySrA6fn3PgSmhKwFgva?dl=0
https://www.dropbox.com/sh/8mouawi5guaupyb/AAD4fdySrA6fn3PgSmhKwFgva?dl=0
https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data
https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data


Mathematics 2024, 12, 85 18 of 21

logP(Y|do(X)) = logEc∼P(C)[P(Y|X, C)]

= logEc∼P(C)[P(Y|X, C) · Q(C|X)

Q(C|X)
]

= log ∑
c
[P(Y|X, C) · P(C)

Q(C|X)
·Q(C|X)]

= logEc∼Q(C|X)[P(Y|X, C) · P(C)

Q(C|X)
]

≥ Ec∼Q(C|X)[log[P(Y|X, C) · P(C)

Q(C|X)
]]

= Ec∼Q(C|X)[logP(Y|X, C) + log
P(C)

Q(C|X)
]

= ∑
c∼Q(C|X)

Q(C|X) · [logP(C)− logQ(C|X)] +Ec∼Q(C|X)[logP(Y|X, C)]

= −DKL[Q(C|X)||P(C)] +Ec∼Q(C|X)[logP(Y|X, C)],

(A3)

where the derivation of the inequality relies on the convexity of the logarithmic function
and Jensen’s inequality.

Appendix C. Calculation of Kullback–Leibler Divergence

The derivation process for Equation (9) is as follows:

DKL[qϕ(C|X = xi)||P(C)]

= Eqϕ(C|X=xi)
[ln qϕ(C|X = xi)− ln P(C)]

=
1
2
Eqϕ(C|X=xi)

[−ln σ2m
i − (x− µi)

T 1
σ2

i
I(xi − µi) + ln σ2m

(p) + (x− µ(p))
T 1

σ2
(p)

I(x− µ(p))]

=
1
2

ln
σ2m
(p)

σ2m
i

+
1
2
Eqϕ(C|X=xi)

[−tr[
1
σ2

i
I(x− µi)(x− µi)

T ] + tr[
1

σ2
(p)

I(x− µ(p))(x− µ(p))
T ]]

(A4)

Then, we define that:

A = Eqϕ(C|X=xi)
[−tr[

1
σ2

i
I(x− µi)(x− µi)

T ] + tr[
1

σ2
(p)

I(x− µ(p))(x− µ(p))
T ]]

= −tr[Eqϕ(C|X=xi)
[

1
σ2

i
I(x− µi)(x− µi)

T ]] + tr[Eqϕ(C|X=xi)
[

1
σ2
(p)

I(x− µ(p))(x− µ(p))
T ]

= −tr[
1
σ2

i
IEqϕ(C|X=xi)

[(x− µi)(x− µi)
T ]] + tr[

1
σ2
(p)

IEqϕ(C|X=xi)
[(xxT − µ(p)x

T − XµT
(p)

+ µ(p)µ
T
(p))]

= −tr[(
1
σ2

i
I)(σ2

i I)] + tr[
1

σ2
(p)

I[(σ2
i I + µiµ

T
i − µ(p)µ

T
i − µiµ

T
(p) + µ(p)µ

T
(p))]

= −m + tr[(
1

σ2
(p)

I)(σ2
i I)] + tr[µi(

1
σ2
(p)

I)µT
i − 2µT

i (
1

σ2
(p)

I)µ(p) + µT
(p)(

1
σ2
(p)

I)µ(p)]

= −m + m
σ2

i
σ2
(p)

+
1

σ2
(p)

(µ(p) − µi)
T I(µ(p) − µi),

(A5)
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where the fourth line uses the property: E[xxT ] = Σ + µµT . Finally, substituting A into
Equation (A4), we obtain that:

DKL[qϕ(C|X = xi)||P(C)] = xi)||P(C)]

=
1
2
[m

σ2
i

σ2
(p)

+
1

σ2
(p)

(µ(p) − µi)
T I(µ(p) − µi) + ln(

σ2m
(p)

σ2m
i

)−m],
(A6)

where I represents the unit matrix with diagonal elements of 1 and other elements of 0.

Appendix D. Generating Linear Simulated Data

We constructed three simulated datasets following the causal structure illustrated in
Figure 1a. Table A1 provides detailed descriptions of the data generation formulas.

Table A1. The data generation formulas of linear simulated data.

Case 1 Case 2 Case 3

c← N (γ1
1, 1) c← N (γ2, 2) c← U (−γ3, γ3)

ctest
2 ← N (2, 1) ctest ← N (1, 1) ctest ← U (0, 1)

x1 ← N (0.5, 1) x1 ← N (0, 1) + c x1 ← N (0, 1) + c
x2 ← U (−1, 1) + 2c y← x1 + 0.5c x2 ← U (−1, 0)− 2c

y← 2x1 + x2 +N (c, 1) y← x1 + 3x2 + c
1 To simulate the distributional shift, we generate data with different distributions by setting multiple values for γ.
2 ctest represents the distribution of the confounder in the test set.

Appendix E. Model Settings

Below, we will introduce the parameter settings of each model on different datasets.

Appendix E.1. Linear Simulated Data

ERM adopts a three-layer MLP as the backbone network and employs the Mean
Squared Error (MSE) as the loss function. DRO adopts a three-layer MLP as the backbone
network and sets ρ = 0.5. EIIL adopts a three-layer MLP as the backbone network.
KerHRM adopts a two-layer MLP as theMp andMc. We set the cluster number K = 2.
IRM adopts a three-layer MLP as the backbone network and sets λ = 0.5.

Appendix E.2. Colored MNIST

ERM adopts a three-layer CNN as the backbone network and employs cross-entropy
as the loss function. DRO adopts a three-layer CNN as the backbone network and sets
ρ = 0.8. EIIL adopts a three-layer CNN as the backbone network. KerHRM adopts a
two-layer MLP as theMp and a three-layer CNN asMc. We set the cluster number K = 5.
IRM adopts a three-layer CNN as the backbone network and sets λ = 0.2.

Appendix E.3. Real-World Data

NICO: ERM adopts ResNet18 as the backbone network and employs cross-entropy as
the loss function. DRO adopts ResNet18 as the backbone network and sets ρ = 0.5. EIIL
adopts ResNet18 as the backbone network. KerHRM adopts a five-layer MLP as theMp
and adopts ResNet18 asMc. We set the cluster number K = 8. IRM adopts ResNet18 as
the backbone network and sets λ = 0.1.

House prices: ERM adopts a four-layer MLP as the backbone network and employs
cross-entropy as the loss function. DRO adopts a four-layer MLP as the backbone network
and sets ρ = 0.5. EIIL adopts a three-layer MLP as the backbone network. KerHRM adopts
a three-layer MLP as the Mp and a four-layer MLP as Mc. We set the cluster number
K = 5. IRM adopts a four-layer MLP as the backbone network and sets λ = 0.2.
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