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Abstract: Previous studies on rub-impact faults have mainly focused on the rub-impact between
rotors and stators, with less research on inter-rotor rub impact. The impact of inter-rotor rub impact
on rotor nonlinear vibration is particularly significant. This study investigates the effects of inter-shaft
rub impact on the vibration characteristics and whirl behavior of dual-rotor systems. Initially, a
dual-rotor model with inter-shaft bearings is established using the finite element method, and inter-
shaft rub-impact forces are derived based on contact mechanics. Next, the system response is solved
using the Newmark method. Vibration characteristics are analyzed through Campbell diagrams, 3D
waterfall plots, time-frequency domain plots, and steady-state rub-impact force plots. Finally, the
influence of inter-shaft rub impact on the whirl behavior of the dual-rotor system is studied based on
the theory of full-spectrum analysis. The study concludes that inter-shaft rub-impact faults shift the
system’s resonance points backward, increase harmonic and combination frequency components,
and significantly affect the system response under dual-rotor co-rotation. Excessive friction can lead
to self-excited vibrations and sudden amplitude increases, particularly in the LP rotor frequency.
Additionally, inter-shaft rub impact primarily affects the whirl behavior of the LP-compressor disk1,
showing multiple cycles of forward and backward whirl alternation during acceleration due to
combined unbalanced and rub-impact excitations.

Keywords: inter-shaft rub impact; dual-rotor system; whirl behavior; nonlinear vibration

MSC: 37M05

1. Introduction

In the structural design of aircraft engines, reducing the clearance between components
to pursue higher efficiency and better aerodynamic performance can easily lead to mutual
impact and friction between two components due to nonlinear motion such as vibration [1].
This secondary fault is commonly referred to as a rub-impact fault. The occurrence of this
fault causes the rotor to exhibit high-intensity nonlinear dynamic behaviors, including
quasi-periodic and chaotic responses, sub-harmonic and super-harmonic responses, and
reverse whirl, thereby affecting the security and reliability of the engine [2,3]. Therefore,
studying the vibration characteristics of the rotor system under rub-impact faults and their
effects on whirl behavior is of great significance.

To calculate the nonlinear dynamic response caused by rub-impact faults, it is crucial
to establish an accurate rotor dynamic model. Scholars widely apply effective modeling
methods, such as the transfer matrix method, lumped parameter method, and finite element
method. Shan et al. [4] conducted a simulation study on the nonlinear characteristics of rub-
impact forces in rotors. They established the rotor rub-impact dynamic equations using the
global transfer coefficient method and obtained the fault characteristics of the rotor under
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local rub-impact conditions. Zhu et al. [5] established a dynamic model of a dual-rotor-
bearing system incorporating rub-impact faults using the lumped parameter method. They
investigated the system’s vibration characteristics across three stages: normal operation,
minor rubbing, and severe rubbing. Ma et al. [6–8] have conducted extensive research on the
modeling of complex rotor coupling structures using the finite element method. They have
corrected the rub-impact force model between blade structures and casings. The results
indicate that blade-tip rubbing can induce high-frequency components, and as the structure
becomes more complex, the nonlinear behavior of the system also increases. Recently, some
scholars have explored the mechanism of rub-impact faults from a more microscopic level.
Yang et al. [9–11] have considered the effect of coatings on nonlinear vibration in rotor–stator
contact. Through experiments, they have derived a function describing the effect of coatings
on the contact stiffness of rotor–stator contact. Compared to the previous assumption of
linear contact stiffness, this model more accurately describes the mechanism of nonlinear
motion. Building upon this work, Kang et al. [12] considered the influence of coating wear
during rubbing. Through finite element simulations and experimental comparisons, they
validated the feasibility of the new model. In terms of the impact of rub-impact faults on
rotor-whirl behavior, Wang et al. [13] conducted simulation and experimental analyses
on a dual-rotor system under single-point rub-impact faults. The study indicated that
the concentrated composite frequency components caused by fixed-point rubbing have
different weight ratios in forward whirl and reverse whirl. Prabith et al. [14] analyzed the
reverse whirl motion of a dual-rotor aircraft engine under multi-disc rub-impact excitations.
They observed significant sub-harmonic components in the spectrum. Kang et al. [15,16]
first studied the reverse whirl behavior of rotors under unbalanced excitation. They then
analyzed the whirl characteristics of a dual-rotor system with single-disk and multi-disk
rub impacts. The study found that rubbing can cause significant reverse whirl frequencies,
which are particularly influenced by the rub-impact stiffness.

The above are all studies on rub-impact faults between rotors and stators. In dual-rotor
aircraft engines, gas leakage is one of the key factors contributing to efficiency loss [17].
To avoid such problems when both rotors are operating in tandem, the gap between the
two rotors is typically sealed [18]. This design feature reduces the clearance between the
HP and LP rotors. However, if the relative displacement due to the bending vibration
of the two rotors exceeds the gap range, rub-impact faults between the shafts may occur.
As early as the 1980s, NASA studies pointed out that, under adverse conditions such
as blade loss, attention should be paid not only to the rub impact between rotating and
stationary components but also to the rub impact between rotors and rotor shafts [19].
He et al. [20] applied spectral analysis to investigate the measured vibration signals of
rub-impact faults between HP and LP rotors in aircraft engines. They found that when
rotor-to-rotor rub-impact occurs, the signal components are complex, showing significant
0.5× and 2× frequencies in the spectrum. However, the study used a relatively simple rotor
model and did not consider the effects of HP rotor vibration. Yu et al. [21,22] found three
forms of rub impact during inter-shaft rubbing: continuous rubbing, intermittent rubbing,
and self-excited vibration. They analyzed each form and discovered that the dynamic
coupling between HP and LP rotors due to inter-shaft rubbing can induce multiple sub-
harmonic frequency components. At a certain speed, the self-excited vibration of the rotor
is significantly influenced by the initial conditions. Furthermore, they studied the nonlinear
vibration behavior of the system under the conditions of HP and LP rotors rotating in
the same direction and the opposite direction. They found that the rotation direction
significantly affects the inter-shaft rub impact in the rotor system. Under conditions of
both rotors rotating in the same direction, the modal components of the system are more
complex, and the response amplitude during the self-excited vibration process of the rotor
is higher during acceleration. Building on the research by Yu et al., Ling et al. [23] proposed
a computational framework suitable for analyzing the response of high-dimensional rotor
systems to inter-shaft rub impact. They found that reducing the friction coefficient or rub-
impact stiffness can effectively reduce the speed range where self-excited vibrations occur.
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The aforementioned studies represent the research on the nonlinear vibration characteristics
of inter-shaft rub-impact faults. For the diagnosis of inter-shaft rub-impact faults, Bian
et al. [24] proposed a parameterized adaptive variational mode decomposition (APVMD)
method that effectively extracted characteristic frequencies from the signals of HP rotors
when inter-shaft rub-impact occurred.

In previous studies on inter-shaft rub-impact faults, scholars established dual-rotor
models where the HP rotor and the LP rotor were treated as independent entities, with
dynamic coupling only occurring during rub-impact faults. However, in actual aircraft
engines with dual-rotor configurations, the use of inter-shaft bearings between the HP and
LP rotors is common. Therefore, building on previous work, this paper first establishes a
finite element model of a dual-rotor structure with inter-shaft bearings suitable for studying
inter-shaft rub-impact issues. The paper then analyzes the effects of rub-impact stiffness
and friction coefficient on the nonlinear dynamic response. Furthermore, there is a gap
in the research regarding the impact of inter-shaft rub impact on the whirl behavior in
dual-rotor systems. Therefore, this paper, based on the full-spectrum theory, studies the
effect of inter-shaft rub-impact faults on the whirl behavior of rotors.

The second section of the paper presents the establishment of a dual-rotor dynamic
model using the finite element method, along with the derivation of the dynamic mech-
anism underlying inter-shaft rub-impact faults. The third section utilizes 3D waterfall
plots, time-domain plots, frequency-domain plots, and steady-state rub-impact force plots
to study the effects of inter-shaft rub-impact faults on the vibration characteristics of the
dual-rotor system. The fourth section, based on the full-spectrum theory, analyzes the
impact of inter-shaft rub-impact faults on the whirl behavior of the rotors. The fifth section
presents the main conclusions of the entire paper.

2. Modeling of Inter-Shaft Rub-Impact Dynamics in Dual-Rotor Systems

In this section, the establishment of the finite element model for the dual-rotor system
and the model for inter-shaft rub-impact forces, as well as the subsequent solution of
the fault dynamics equations in the following sections, are all accomplished through the
development of MATLAB programs. The simplified model of the dual-rotor structure of an
aircraft engine, based on the structure shown in Figure 1, is depicted in Figure 2. This rotor
structure consists of a low-pressure rotor, a high-pressure rotor, and bearings.

Figure 1. Schematic diagram of a typical aerospace dual-rotor system.

Figure 2. Schematic of the finite element model of the dual-rotor system.
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The LP rotor comprises two disks and two supports, with disk1 and disk2 representing
the simplified fan and turbine components, respectively. Similarly, the HP rotor includes
two disks and two supports, with disk3 and disk4 representing the simplified compressor
and turbine components, respectively. The HP and LP rotors are supported by inter-shaft
bearings. Based on reference [25], the specific parameters of the dual-rotor system are given
in Table 1.

Table 1. Structural parameters of components in the dual-rotor system.

Name Parameter Value

Disk
Mass md1, md2, md3, md4 (kg)

Diameter moment of inertia Jd1, Jd2, Jd3, Jd4 (kg·m2)
Polar moment of inertia Jp1, Jp2, Jp3, Jp4 (kg·m2)

9.683, 9.139, 9.683, 9.139
0.242, 0.228, 0.242, 0.228
0.484, 0.456, 0.484, 0.456

Shaft length LP shaft (m)
HP shaft (m)

0.6
0.3

Shaft diameter DLP, (DHPi, DHPo) (m) 0.022, (0.026,0.038), (0.040,0.052)

Shaft material
Density(kg/m3)

Young’s modulus (Gpa)
Poisson’s ratio

7850
210
0.3

Support
Support stiffness kb1, kb2, kb3, kb4, kb5 (N/m)
Support damping coefficient cb1, cb2, cb3, cb4,

cb5(N·s/m)

2.6 × 107,1.75 × 107,1.75 × 107,0.5 × 107,8.75 × 106

1.1 × 103, 1.1 × 103, 1.1 × 103, 1.1 × 103, 1.1 × 103

To prevent gas leakage and more closely align with the actual structure of aircraft
engines, the front end of the HP rotor has a smaller inner and outer diameter. It is sealed
with the LP rotor, and the intermediate section uses a variable-section shaft to transition to
the rear end of the HP rotor. The LP rotor is slender and long, making it more flexible and
prone to bending deformation. When there is significant relative vibration displacement
between the two rotors, areas with small inter-rotor clearances are more likely to experience
rub-impact faults, leading to highly nonlinear vibration phenomena.

Based on the finite element method (FEM), the dual-rotor system shown in Figure 2 is
divided into multiple simple and uniform finite sub-elements through virtual segmentation.
Nodes are defined in each element, and the displacements of these nodes are used to
represent the displacements of any micro-element in the element. Through this operation,
the continuous system with infinite degrees of freedom is simplified into a system with
finite degrees of freedom. The low-pressure rotor is divided into 12 beam elements, each
with a length of 50 mm, and 13 nodes in total due to the shared nodes between elements.
The high-pressure rotor is discretized into five beam elements with six nodes in total. The
lengths of the first, second, fourth, and fifth beam elements are 50 mm, while the third
beam element’s length is 100 mm. All disks are simulated using 4-DOF rigid disk elements
with mass eccentricity, and all bearing support components are simplified using linear
spring-damping elements.

2.1. Finite Element Dynamic Equations

To solve the dynamic response of the entire system, the corresponding dynamic
equations need to be derived. The dual-rotor system was discretized using finite element
modeling in the preceding text, where the disks, shafts, and bearings were discretized
into separate sub-elements. To obtain the dynamic equations for the entire system, it is
necessary to derive the dynamic equations for each sub-element and obtain the parameter
matrices for each element. These parameter matrices are then assembled in a defined order
to form the overall parameter matrix, which is then substituted into the dynamic equations
of the entire system.
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The first step is to derive the dynamic equations and parameter matrices for the
rigid disk element. The kinetic energy equation for the disk element [26] is shown in
Equation (1).

Td =
1
2

md(
.
yd

2 +
.
zd

2) +
1
2

Jpd

{
ω2 + ω(

.
ϕydϕzd − ϕyd

.
ϕzd)

}
+

1
2

Jdd(
.
ϕyd

2 +
.
ϕzd

2) (1)

Here, md is the mass of the disk, Jdd is the moment of the inertia, and Jpd is the
polar moment of the inertia. The displacement vector of the disk in the coordinate system
is demoted by ud = [yd, zd,−ϕyd, ϕzd]

T , where yd and zd are the translational degrees of
freedom along the Y-axis and Z-axis, respectively, and −ϕyd and ϕzd are the rotational
degrees of freedom around the Y-axis and Z-axis, respectively. ω represents the angular
velocity component. Substituting the above equation into the Lagrange Equation (2) [26],
we obtain dynamic Equation (3) for the rigid disk as follows:

d
dt

(
∂Td
∂

.
ud

)
− ∂Td

∂ud
= Qs (2)

[md]
{ ..

ud
}
+ [gd]{ud} = { fd} (3)

The mass matrix [md] and gyroscopic matrix [gd] of the disk are represented by
Equation (4). { fd} is the unbalanced force caused by the eccentricity of the disk element,
as shown in Equation (5). Here, ed represents the eccentricity of the disk, Ω represents the
current rotational speed of the disk, and φd represents the initial phase of the disk.

[md] =


md 0 0 0
0 md 0 0
0 0 Jdd 0
0 0 0 Jdd

[gd] =


0 0 0 0
0 0 0 0
0 0 0 Jpd
0 0 −Jpd 0

 (4)

{ fd} =
[

mdedΩ2 cos(Ωt + φd) mdedΩ2 sin(Ωt + φd) 0 0
]T (5)

The rotor shaft, as the main component of the dual-rotor system, has a total number of
degrees of freedom that mainly depends on the number of finite element discretizations of
the shaft. In this paper, three types of Timoshenko beam elements, which consider shear
deformation, are used to model the shaft, as shown in Figure 3. Nodes 1 to 13 in the LP shaft
are simulated using 12 traditional Timoshenko beam elements, as shown in Figure 3a. In the
HP shaft, nodes 14 to 16 and nodes 17 to 19, totaling four beam elements, are constructed
using equal cross-section hollow beam elements, as shown in Figure 3b. The variable
cross-section beam element shown in Figure 3c is applied between nodes 16 and 17, serving
as the transitional section between the front and rear ends of the HP shaft. These three beam
elements have different geometric structures but share common assumptions about degrees
of freedom. Each element has two nodes, and each node has four degrees of freedom: two
radial displacements in the Z and Y directions and two angular displacements around the
Z and Y axes. Axial displacement and torsional deformation are ignored. Therefore, each
beam element has a total of eight degrees of freedom. The kinetic energy and potential
energy of the beam element shown in Figure 3a with an equal section can be determined
by integrating the kinetic energy and potential energy of the microelement ds along the
length l of the beam element. Similar to the disk element, the parameter matrices for the
beam element can be derived using the Lagrange equation. The detailed derivation process
and specific parameter matrices have been clearly outlined in reference [27–29].
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Figure 3. Three types of beam element models: (a) traditional beam element, (b) hollow beam
element, and (c) variable-section hollow beam element.

Before introducing the spring-damping support elements, Rayleigh damping
Ci = αMi + βKi (i = LP, HP) is applied to the rotor part (without damping). This process
forms the corresponding damping matrix. Subsequently, support damping is incorporated
into the damping matrix of the rotor part based on the position of the support nodes,
resulting in the final damping matrix.

To obtain the finite element model of the dual-rotor system, the elements are condensed.
The specific condensation method is shown in Figure 4. Taking the stiffness matrix as an
example, the LP rotor has 13 nodes and 52 degrees of freedom, while the HP rotor has 6
nodes and 24 degrees of freedom. After condensation, the system has a total of 76 degrees
of freedom. The LP-compressor disk is located at node 3, the LP-turbine disk is at node
11, the HP-compressor disk is at node 16, and the HP-turbine disk is at node 17. Nodes 1,
13, 14, and 19 represent regular spring-damping units, and their stiffness is added to the
model based on their node positions. The blue part represents the inter-shaft bearing unit
located between nodes 9 and 10. This unit couples the independent equations of the LP
and HP rotors, introducing coupling terms in the stiffness matrix.

Figure 4. Schematic diagram of the assembly of parameter matrices for the dual-rotor system.

Inserting the condensed overall matrix into the dynamic equations yields the control
equation for the entire system, as shown in Equation (6):

M
..
q + (C +

[
ΩLPGLP 0

0 ΩHPGHP

]
)

.
q + Kq = 0 (6)

In the equation, M, K, and C represent the mass, stiffness, and damping matrices of
the entire system, respectively. GLP and GHP represent the gyroscopic matrices of the LP
and HP rotors, respectively. ΩLP and ΩHP are the rotational speeds of the LP and HP
rotors, respectively. q,

.
q, and

..
q represent the displacement column vector, velocity column
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vector, and acceleration column vector of the entire rotor system, respectively. If solving
for the dynamic response of the system, q,

.
q, and

..
q will encompass the displacements,

velocities, and accelerations of all nodes in all degrees of freedom. It is important to
emphasize that, because rigid disk elements are used in this study, considering only the
mass and gyroscopic moment of the disk without considering deformation. Therefore, the
displacement of the disk is equivalent to the displacement of the nodes on the shaft.

2.2. Inter-Shaft Rub-Impact Force Model

Due to the effect of disk imbalance forces, the system exhibits whirl phenomena. When
the relative whirl amplitude between the HP and LP rotors exceeds the gap between them,
inter-shaft rub-impact faults occur. In the aforementioned study, the finite element method
discretizes the rotor structure into multiple elements, with each beam element having
two nodes. When rubbing occurs, there is an interacting excitation force, which can be
considered as acting on node 5 of the LP shaft and an equal and opposite reaction force
acting on node 15 of the HP shaft.

Figure 5 illustrates the stable operation of the high and LP rotors and the occurrence of
inter-shaft rub impact, where the two shafts come into contact with each other. In the stable
operating state, the initial clearance between the two rotors is δ0, where RLP and RHP are
the radii of the LP rotor and the inner radius of the HP rotor, respectively. ΩLP and ΩHP
are the rotational speeds of the LP and HP rotors, respectively. When rub-impact occurs,
rLP and rHP are the precession motion radii of the LP rotor and the HP rotor, respectively.
In this paper, these two quantities are vectors, as shown in Equation (7). zLP and yLP are
the displacements of the rub point of the LP rotor in the z and y directions, respectively,
while zHP and yHP are the displacements of the rub point of the LP rotor in the z and y
directions, respectively. ωLP and ωHP are their respective precession angular velocities.
To accurately depict the kinematic mechanism under this condition, the linear model and
Coulomb friction model are used to simulate the variation of forces during the rubbing
process, leading to the derivation of Equation (8).

|rLP| =
√

zLP2 + yLP2

|rHP| =
√

zHP2 + yHP2 (7)

{
FnLP = H(|rLP − rHP| − δ0)× krub(|rLP − rHP| − δ0)
FtLP = sign(vrel)× µFnLP{
FnHP = −FnLP
FtHP = −FtLP

sign(vrel) =


−1
0
1

vrel < 0
vrel = 0
vrel > 0

(8)

vrel = (ΩLPRLP + ωLPrLP)− (ΩHPRHP + ωHPrHP) (9)

Figure 5. Inter-shaft rub-impact force model.
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The formula describes the normal contact force experienced by the LP rotor during
inter-shaft rub impact, where FnLP is the normal rub-impact force, FtLP is the tangen-
tial rub-impact force, FnHP, and FtHP are the forces acting on the HP and LP rotors,
respectively, with equal magnitudes but opposite directions. krub is the rub-impact stiff-
ness. µ is the Coulomb friction coefficient. H(·) is the Heaviside function used to indi-
cate whether rub impact occurs. When |rLP − rHP| − δ0 > 0, rub impact occurs. And
H(|rLP − rHP| − δ0) = 1, otherwise H(|rLP − rHP| − δ0) = 0. sign(·) is a sign function,
representing the direction of the friction force. Here, vreL is the relative velocity at the
contact point, considering both the rotor precession speed and rotor rotation speed. This is
detailed in Equation (9).

The change in the direction of the friction force directly impacts the positive or negative
work done on the whirl motion. If the LP rotor undergoes reverse whirl motion, and the
amplitude is large, when the direction of the friction force is the same as the direction of the
whirl motion, it increases the rotor’s energy and reduces the damping dissipation capacity,
which may lead to system instability. Decomposing the normal force and tangential force
in the radial degree of freedom direction from Figure 5 yields the following Equation (10): f rLPz = H(|rLP − rHP| − δ0) · krub

(
1 − δ0

|rLP−rHP|

)
× (−(zLP − zHP) + sign(vrel) · µ(yLP − yHP))

f rLPy = H(|rLP − rHP| − δ0) · krub
(

1 − δ0
|rLP−rHP|

)
× (−sign(vrel) · µ(zLP − zHP)− (yLP − yHP){

f rHPz = − f rLPz
f rHPy = − f rLPy

(10)

The terms f rLPz and f rLPy represent the forces acting on node 5 of the LP rotor in
the Y-axis and Z-axis directions, while f rHPz and f rHPy correspond to the forces acting
on node 15 of the HP rotor in the Y-axis and Z-axis directions.

The overall dynamic equation of the dual-rotor system under inter-shaft rub impact is
derived by incorporating the unbalanced forces and rub-impact forces into the right-hand
side of the dynamic equation based on their respective force node positions. This yields
Equation (11):

M
..
q + (C +

[
ΩLPGLP 0

0 ΩHPGHP

]
)

.
q + Kq = Fd + Frub (11)

where the M, K, C, GLP, and GHP matrices correspond to those in Equation (5), Fd
represents the column vector of unbalanced forces of the disk, and Frub represents the
column vector of inter-shaft rub-impact forces.

3. Analysis of Vibration Characteristics of Inter-Shaft Rub-Impact Fault in
Dual-Rotor System
3.1. Natural Characteristics of the Dual-Rotor System

Figure 6 shows the Campbell diagram of the dual-rotor system. In the diagram, the
red line represents the LP synchronous excitation line, the purple line represents the HP
synchronous excitation line, the blue lines represent the various orders of reverse whirl
frequency lines, and the yellow lines represent the various orders of forward whirl frequency
lines. The intersection of the excitation lines and the dynamic frequency lines corresponds
to the system’s critical speeds. Define the speed ratio between the HP and LP rotors as
λ = ΩHP/ΩLP. When the HP and LP rotors rotate in the same direction, λ > 0. When
they rotate in opposite directions, λ < 0. In this paper, it is assumed that λ = 1.5 under the
condition of same-direction rotation and λ = −1.5 under the condition of opposite-direction
rotation. The critical speed values vary under different rotation conditions, indicating an
influence of the rotor system’s mode when there is an inter-shaft bearing between the two
rotors. Figure 6a depicts the Campbell diagram of the system when the two rotors rotate in
the same direction. The first critical speed point, labeled as A, is caused by the unbalance of
the HP disk, while the first critical speed point B is caused by the unbalance of the LP disk.
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Similarly, the second critical speed points, labeled as C and D, are caused by the unbalance
of the HP and LP disks, respectively. The third critical speed points, labeled E and F, are also
caused by the unbalance of the HP and LP disks, respectively, as shown in Figure 6b and
similar diagrams. The specific critical speed data are presented in Table 2.

Figure 6. Campbell diagram for a dual-rotor system under different rotation conditions: (a) co-
rotation and (b) counter-rotation.

Table 2. Critical speeds of the dual-rotor system under different rotation conditions.

Order Point
Critical Speeds of Dual-Rotor System (rpm) Excitation

SourceCo-Rotation Counter-Rotation

1
A ΩLP = 3489 ΩLP = 3445 HP rotor

B ΩLP = 5410 ΩLP = 5299 LP rotor

2
C ΩLP = 4527 ΩLP = 4411 HP rotor

D ΩLP = 6872 ΩLP = 6610 LP rotor

3
E ΩLP = 7425 ΩLP = 7454 HP rotor

F ΩLP = 11, 194 ΩLP = 11, 278 LP rotor

3.2. Analysis of the Influence of Inter-Shaft Rub-Impact Parameters on System Vibration
Characteristics

This section investigates the nonlinear vibration response of a dual-rotor system with
inter-shaft rub impact. The dynamic equations of the system are derived, and numerical
simulations of the rub-impact process are conducted using the Newmark-β explicit numer-
ical integration method. In the calculation, the integration step is chosen as dt = 10−4 s
and the total integration set as 3 s, which ensures the system response is in a steady state.
During the analysis, steady-state data were selected to analyze the response characteristics.
These data were complemented by the rotor structural parameters shown in Table 1. The
inter-rotor gap size was set to δ0 = 0.01 mm, the disk eccentricity distance was set to
e = 0.0025 mm, and both unbalanced phases were set to 0◦.

In this model, the HP-compressor disk (disk3) is located close to the rubbing position,
leading to a more pronounced response that can significantly reflect the system’s dynamic
behavior under fault conditions. The magnitude of the rubbing excitation directly deter-
mines the amplitude of the system’s response. According to the derived rubbing force
Formula (6) in Section 2.2, the magnitude of the normal collision force is mainly related to
the rubbing stiffness krub, while the magnitude of the tangential friction force is mainly
influenced by the friction coefficient µ. This section will analyze the effects of these two
parameters on the system’s vibration characteristics.
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3.2.1. Influence of Rubbing Stiffness on System

To investigate the influence of rubbing stiffness on the vibration characteristics, three
different rubbing stiffness values, krub = 5e6, krub = 7e6, and krub = 9e6 are selected to
calculate the system response during the acceleration process, with a friction coefficient of
µ = 0.3. Figures 7 and 8, respectively, depict the waterfall plots of the response at the disk3
position under the influence of rubbing stiffness for the λ = 1.5 and λ = −1.5 conditions.
When the speed ratio is λ = 1.5, it can be observed that there are two prominent frequency
amplitudes in all three operating conditions, fL and fH, which are the rotational frequencies
of the LP and HP rotors. In the absence of rubbing, the system exhibits only these two
frequency components. The amplitude at the fH reaches its peak near the third critical speed
of ΩLP = 7425 rpm caused by the HP rotor. When the rub-impact fault occurs, with the
increase of the rub-impact stiffness, the peak amplitude shifts noticeably to higher speeds and
decreases. Considering the fault as part of the system structure, increasing the rub-impact
stiffness is equivalent to increasing the system stiffness, resulting in the shift of the critical
speed. It also has a certain inhibitory effect on high-frequency vibration displacement. In
addition to the dual-rotor rotation excitation frequency, there are also a small number of other
harmonic and combination frequency components. These frequencies are mainly multiples
of the LP rotor excitation, as indicated in Figure 7a. As the rubbing stiffness increases, the
amplitudes of the other harmonic components increase, except for the excitation frequency of
the HP rotor, with the fH − fL component showing the most significant increase. Figure 7d
shows the waterfall plot of the displacement of disk3 as the rub-impact stiffness changes
when ΩLP = 7680. From this plot, it is more evident that fH decreases as the rub-impact
stiffness increases. When the speed ratio is λ = −1.5, fL and fH still dominate. This is the
same as when λ = 1.5. Increasing the rubbing stiffness leads to a decrease in the amplitude
of fH, and the same applies to other frequency components. The difference lies in the fact
that, under counter-rotation conditions, the overall amplitude of fL is lower than that under
co-rotation conditions, while fH is generally higher, indicating more severe vibration of
the HP rotor. The amplitudes of other harmonic and combination frequency components
also increase with an increasing rubbing stiffness, but the peak amplitude of fH − fL shifts
noticeably and increases significantly compared to the co-rotation condition.

Figure 7. 3D waterfall plots for the co-rotation dual rotor at disk3: (a) krub = 5e6, (b) krub = 7e6,
(c) krub = 9e6, and (d) ΩLP = 7680.
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Figure 8. 3D waterfall plots for the counter-rotation dual rotor at disk3: (a) krub = 5e6, (b) krub = 7e6,
and (c) krub = 9e6.

3.2.2. Impact of Friction Coefficient on the System

Compared to the rubbing stiffness, the friction coefficient has a more significant impact
on the system. Figures 9 and 10 show the waterfall plots of the system response at the
disk3 position under conditions of λ = 1.5 and λ = −1.5, respectively, with different
rubbing friction coefficients of µ = 0.5 and µ = 0.7 and a stiffness of krub = 5e6 in
comparison with Figures 7a and 8a. Under the condition of co−rotation, when µ = 0.5,
the waterfall plot shows a more complex combination of frequency components, such
as 2 fH + fL and fH + 3 fL, indicating that, with the increase of the friction coefficient,
the coupled vibration of the dual rotors becomes more diverse. Throughout the entire
speed-increase process, there has been a vibration amplitude at a frequency of 120 Hz,
which is caused by self-excited vibration between the shafts. When the rotor speed reaches
the self-excited vibration frequency, resonance occurs, resulting in a significant vibration-
displacement response. As shown in Figure 8a, when the LP rotor’s rotational frequency
fL reaches 120 Hz, which corresponds to a speed of 7200 rpm, the vibration amplitude
is very high, exceeding the amplitude of fH throughout the entire acceleration process.
This frequency is close to the second critical speed caused by the LP rotor, as analyzed
earlier. It indicates that the excitation energy of the LP rotor can be transmitted to the HP
rotor through inter-shaft rubbing and inter-shaft bearing. When µ = 0.7, in the range of
7300–7500 rpm, the region of self-excited vibration expands. The positive work done by
the friction force on the rotor may surpass the energy dissipation produced by the rotor’s
original damping, resulting in a sharp increase in vibration amplitude and a high risk of
instability. In other speed ranges, the response is similar to that when µ = 0.5, as shown in
the yellow and green waterfall plots in Figure 8b. With an increase in the friction coefficient,
the amplitude of other frequency components also increases accordingly. Under counter-
rotation conditions, as the friction coefficient increases, the amplitude of each frequency
changes, but not as significantly as under co-rotation conditions. There is no occurrence
of self-excited vibration during the increase in speed, thus avoiding excessive vibration
amplitudes caused by resonance. This indicates that, when the HP rotor rotates much
faster than the LP rotor during counter-rotation, the relative velocity at the contact point is
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high, and the friction force always does negative work on both rotors, making the system
less prone to instability. Therefore, overall, with the increase in the friction coefficient, the
stability of the dual-rotor system under counter-rotation conditions is significantly better
than under co-rotation conditions.

Figure 9. 3D waterfall plots for the co-rotation dual rotor at disk3: (a) µ = 0.5 and (b) µ = 0.7.

Figure 10. 3D waterfall plots for the counter-rotation dual rotor at disk3: (a) µ = 0.5 and (b) µ = 0.7.

To further investigate the influence of the friction coefficient on the vibration response
characteristics of a co-rotating dual-rotor system, a comparative analysis was conducted
based on the time-domain waveforms, frequency spectra, steady-state rub-impact force
plots, and relative speed at the rub-impact point. Figure 11 shows the rub-impact response
at the disk2 and disk3 positions under co-rotation conditions at a fixed speed of 7200 rpm,
with a rub-impact stiffness of krub = 5e6 and friction coefficients of µ = 0.3, µ = 0.5, and
µ = 0.7. It also depicts the rub-impact force acting on the LP rotor and the relative speed at
the rub-impact point. From the spectrum, it can be observed that the frequency components
of the HP and LP rotors are generally the same, with differences in the amplitude. With
an increase in the friction coefficient, the vibration amplitude of the LP rotor increases
significantly, whether observed at the LP or HP rotor. There are accompanying frequencies
around each order, mainly caused by resonance with self-excited vibration. The time-
domain waveform shows clear impact signals, indicating the system’s instability. The plot
of the rubbing force vividly illustrates this instability. At 7200 rpm, the friction force acting
on the LP rotor is negative. According to the derivation of the rubbing-force model in
Section 2, when the friction force is positive, it does negative work on the rotor motion.
Therefore, in this operating condition, the friction force does positive work on the LP rotor,
which is consistent with the above analysis. When µ = 0.3, both the rubbing normal force
and rubbing tangential force vary periodically over time, with periods of zero values. This
indicates that rubbing is intermittent, with the rotor repeatedly contacting and separating.
When µ = 0.5 and µ = 0.7, the rubbing occurs intermittently within the cycle, accompanied
by sustained rubbing.
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Figure 11. Vibration responses of the co-rotation dual-rotor system for 7200 rpm, inter-shaft rub
impact with krub = 5e6, (a) µ = 0.3, (b) µ = 0.5, and (c) µ = 0.7.

4. Analysis of Inter-Shaft Rub-Impact Fault Whirl Behavior Based on
Full-Spectrum Method

Rotor whirl is the combination of the rotor’s self-rotation and precession. When
the precession direction is the same as the rotation direction, it is called forward whirl.
Otherwise, it is called backward whirl. When the rotor undergoes backward whirl, it can
lead to more severe system vibration and decreased stability. Therefore, investigating
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the direction of the whirl during inter-shaft rub-impact faults is particularly important.
This paper applies the full-spectrum method to study the whirl behavior of a dual-rotor
system with inter-shaft rub-impact faults. The full-spectrum method was first proposed by
Bently. For a detailed introduction to the theory and derivation process of the full-spectrum
method, please refer to [17].

In the full-spectrum plot, for the LP rotor, the frequency component on the positive
half-frequency axis corresponds to the forward precession component, while the frequency
component on the negative half-frequency axis corresponds to the backward precession
component. For the HP rotor, when both rotors rotate in the same direction, the determina-
tion method is the same as for the LP rotor; when both rotors rotate in opposite directions,
the determination method is opposite. By comparing the amplitudes of the forward and
backward precession components under the main frequency component, the rotor’s whirl
direction can be determined.

4.1. Analysis of Whirl Behavior in Unbalanced Dual-Rotor Systems

To verify the feasibility of this method, a whirl direction analysis is conducted on a
system with unbalanced excitation only. Figure 12 shows the full-spectrum waterfall plot
of the LP-turbine disk2 for the high-low rotor-speed ratio of λ = 1.5 and λ = −1.5. When
there is no rub impact, the frequency components in Figure 11 are relatively simple, with
NL and NH representing the rotational frequencies of the LP and HP rotors, respectively.
When λ = 1.5, NL and NH exist only on the positive half-frequency axis, and there are no
frequency components on the negative half-frequency axis. This indicates that, throughout
the rotor acceleration process, disk2 maintains a state of prograde precession. When
λ = −1.5, NL is located on the positive half-frequency axis, and NH is located on the
negative half-frequency axis. When the LP rotor speed is ΩLP = 9600 rpm, the amplitude
of NL exceeds that of NH. This indicates that, before 9600 rpm, the precession direction of
disk2 is mainly influenced by the unbalanced excitation of the HP rotor, showing retrograde
precession. After the speed reaches 9600 rpm, the precession direction of disk2 changes to
prograde precession.

Figure 12. Full-spectrum waterfall diagram of disk2 (a) λ = 1.5 and (b) λ = −1.5.

To further verify the accuracy of the above rules, significant rotation-speed conditions
were selected to analyze the LP-turbine disk2 at constant rotation speeds. Figure 13 shows
the fixed rotation-speed spectrum of disk2 at ΩLP = 7200 rpm and ΩLP = 9600 rpm under
the co-rotation condition for the dual-rotor system. Figure 14 shows the orbit diagram of
disk2 at ΩLP = 7200 rpm and ΩLP = 9600 rpm under the co-rotation condition for the
dual-rotor system. The conclusion is consistent with the previous analysis. When λ = 1.5,
the rotor undergoes a forward whirl at a constant speed, but with different magnitudes of
the main frequency component. This indicates a change in the dominant excitation, causing
the rotor to undergo a forward whirl at ΩLP = 9600 rpm, mainly due to NL. In the orbit
diagram, red and green dots are marked on the trajectory, corresponding to the axial motion
positions of the center at time t and t + 2dt, respectively, where dt is the calculation step size.
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The position of the marked points indicates that the center of disk2 moves counterclockwise,
which is in the same direction as the LP rotor’s rotation, indicating a forward whirl.

Figure 13. Full-spectrum diagrams of disk2 at different speeds when λ = 1.5: (a) ΩLP = 7200 rpm
and (b) ΩLP = 9600 rpm.

Figure 14. Axial trajectory diagrams of disk2 at different speeds when λ = 1.5: (a) ΩLP = 7200 rpm
and (b) ΩLP = 9600 rpm.

Figure 15 shows the fixed rotation-speed spectrum of disk2 at ΩLP = 7200 rpm and
ΩLP = 9600 rpm under the counter-rotation condition for the dual-rotor system. Figure 16
shows the orbit diagram of disk2 at ΩLP = 7200 rpm and ΩLP = 9600 rpm under the
counter-rotation condition for the dual-rotor system. By comparing the full spectrum and
orbit diagram at ΩLP = 7200 rpm, it is found that the center of disk2 moves clockwise,
which is opposite to the direction of rotation, indicating a reverse whirl. At ΩLP = 9600 rpm,
disk2 returns to a forward whirl. The conclusion of this study is consistent with the previous
research by Kang et al. [16], confirming the effectiveness of this method.

Figure 15. Full-spectrum diagrams of disk2 at different speeds when λ = −1.5: (a) ΩLP = 7200 rpm
and (b) ΩLP = 9600 rpm.
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Figure 16. Axial trajectory diagrams of disk2 at different speeds when λ = −1.5: (a) ΩLP = 7200 rpm
and (b) ΩLP = 9600 rpm.

4.2. Analysis of Whirl Behavior in Dual-Rotor Systems with Inter-Shaft Rub-Impact Faults

In aircraft engines, counter-rotating dual-rotor configurations significantly improve
rotor gyroscopic torque effects and enhance maneuvering flight performance. They also
allow for a reduction in the number of guide vanes in the LP turbine, theoretically enabling
the elimination of the LP-turbine guide apparatus, thus reducing the overall weight of the
engine. Therefore, counter-rotating dual-rotor engine technology is an important trend in
the development of aircraft engines. This section focuses on studying the effect of fault
excitation on whirl behavior in counter-rotating dual-rotor systems when inter-shaft rub-
impact faults occur between the rotors. As is well known, inter-shaft rub-impact faults
between rotors can lead to a reverse whirl of the rotor. Kang et al. [17] found in their
study that reverse whirl caused by rotor–stator rub impact includes not only frequency
components due to unbalanced excitation but also significantly large negative reverse whirl
frequencies. However, in this study, the inter-shaft rub-impact excitation does not directly
act on the disk position. The whirl of the disk is likely to be predominantly influenced
by the unbalanced excitation rather than the inter-shaft rub-impact excitation. This paper
verifies this using simulation methods.

Figure 17 shows the full-spectrum waterfall plots of the LP-compressor disk (disk1),
LP-turbine disk (disk2), HP-compressor disk (disk3), and HP-turbine disk (disk4) when
inter-shaft rub impact occurs. The speed ratio is λ = 1.5, the rub-impact stiffness is
krub = 5e6, and the friction coefficient is µ = 0.3. The occurrence of rub-impact faults will
generate other sub-harmonics and harmonics, as verified in Section 3. Upon conducting
a full-spectrum analysis of the signals, it can be observed that frequency components
caused by rubbing are present on both the positive and negative semi-frequency axes.
As shown in Figure 16a, fbw and ffw, respectively, represent the frequencies of backward
whirl and forward whirl caused by rubbing. In Figure 16b,c, the amplitudes of fbw and
ffw are relatively small, indicating that the excitation of the disk’s whirl motion at this
location is still mainly dominated by the unbalanced excitation. The other frequency
components only have a minor influence on the whirl direction. However, in Figure 16a,
the LP-compressor disk (disk1) exhibits multiple changes in whirl direction throughout
the acceleration process. Before ΩLP = 5280 rpm, the amplitude of NH on the negative
half-frequency axis is higher than the amplitude of NL on the positive half-frequency axis,
indicating that disk1 is undergoing reverse whirl. During the acceleration from 5760 rpm
to 7680 rpm, the unbalanced excitation of the LP rotor dominates, causing disk1 to whirl
in the positive direction. Near ΩLP = 7680 rpm, the amplitude of fbw, which has the
same frequency ratio as NL but is located on the negative half-frequency axis, rises sharply
and exceeds the NL. In this speed range, disk1 undergoes reverse whirl. In Figure 7a of
Section 3, it can be seen that, when ΩLP = 7680 rpm, the amplitude of NH reaches its
peak. This peak frequency is attributed to the dynamic coupling of the dual-rotor system
caused by inter-shaft rub impact. Subsequently, the amplitude of NL rises again, exceeding
fbw, and disk1 returns to forward whirl. To provide a more intuitive representation of the
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whirl direction changes of disk1, fixed-speed full-spectrum and axial trajectory analyses
are conducted for these selected speed conditions, as shown in Figures 18 and 19. The
changes from reverse whirl motion to forward motion, then back to reverse, and finally to
the forward motion of disk1 can be observed from the variations in the peak values in the
full-spectrum graph.

Figure 17. Full-spectrum waterfall diagram of the dual rotor with inter-shaft rub impact: (a) LP-
compressor disk1, (b) LP-turbine disk2, (c) HP-compressor disk3, and (d) HP-turbine disk4.

Figure 18. Full-spectrum diagrams of disk1 at different speeds with inter-shaft rub impact:
(a) ΩLP = 5280 rpm, (b) ΩLP = 6280 rpm, (c) ΩLP = 7680 rpm, and (d) ΩLP = 10600 rpm.
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Figure 19. Axial trajectory diagrams of disk1 at different speeds with inter-shaft rub impact:
(a) ΩLP = 5280 rpm, (b) ΩLP = 6280 rpm, (c) ΩLP = 7680 rpm, and (d) ΩLP = 10600 rpm.

The analysis of the above data reveals that inter-shaft rub impact primarily affects the
whirl behavior of the LP-compressor disk1, with its impact on the whirl behavior of other
disks being smaller compared to the effect of unbalanced excitation.

5. Inter-Shaft Rub-Impact Test

Using the existing laboratory facilities, experimental research was conducted on inter-
shaft rub-impact faults under a constant rotational speed. Figure 20 shows the dual-rotor
test rig with inter-shaft rub-impact faults. The highlighted section in the figure is the HP
disk, corresponding to disk3 in the simulation model. An eddy-current displacement sensor
is installed above the disk to capture the vertical vibration-displacement signal of the disk.
The signal-acquisition system is located at the bottom left of the figure. Signals are stored in
the computer via a data-acquisition device. The high-pressure rotor is driven by the motor
through a belt. This test rig can only accommodate the operating condition of co-rotation
of the HP rotor and LP rotor.

Figure 20. Dual-rotor test rig with inter-shaft rub impact.
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When the LP rotor speed is 7200 rpm, with a speed ratio λ = 1.5, the HP rotor speed is
10,800 rpm. The vibration-displacement response of the HP disk when a rub-impact fault
occurs is shown in Figure 21.

Figure 21. Displacement response of HP disk at constant speed: (a) time-domain plot and
(b) frequency-domain plot.

In Figure 21a, due to the presence of environmental noise and equipment interference
during the experimental process, the fault characteristics in the time-domain plot are not
very distinct. Performing an FFT transformation on the signal yields the frequency-domain
plot shown in Figure 21b. In the frequency-domain plot, the main frequency components
have been identified, including the rotational frequencies fL and fH of the LP rotor and HP
rotor, as well as the combination frequencies and harmonics, such as fH − fL, 2 fL, fH + fL,
2 fH , fH + 2 fL, 2 fH + fL, and fH + 3 fL. The experimental results are in good agreement
with the simulation results.

6. Conclusions

This study focuses on the nonlinear vibration characteristics of a dual-rotor coupled
system with inter-shaft rub-impact faults and their effects on rotor-whirl behavior. First, a
dynamic model of the dual-rotor system is established using the finite element method,
and the mechanism of inter-shaft rub-impact faults is analyzed to develop a mathematical
model. Next, the impact of rub-impact stiffness and friction coefficient on the system’s
vibration characteristics is analyzed using the established model, with a focus on Campbell
diagrams, 3D waterfall plots, time-frequency plots, and steady-state rub-impact force plots.
Furthermore, the whirl behavior of the dual-rotor system under different inter-shaft rub-
impact conditions is analyzed based on full-spectrum theory. Finally, an experimental test
was conducted under constant speed conditions on the dual-rotor system with inter-shaft
rub impact, validating the key conclusions drawn from the vibration characteristics analysis
in Section 3. The main conclusions are as follows:

(1) The occurrence of inter-shaft rub-impact faults is equivalent to increasing the structural
stiffness of the rotor system, leading to a shift in the system’s resonance speed points.
This viewpoint is also explicitly reflected in reference [21]. In the displacement
response spectrum of the HP-compressor disk, multiple frequency and combination
frequency components, such as fH − fL, 2 fL, fH + fL, 2 fH , fH + 2 fL, 2 fH + fL, and
fH + 3 fL appear. In Section 5 of this paper, this finding was verified through the test;

(2) As the inter-shaft rub-impact stiffness increases, the amplitude of the high-pressure
rotor’s whirl frequency fH shows a decreasing trend. This indicates that, under stable
rotor operation, inter-shaft rub-impact faults constrain the vibration displacement of
the high-pressure rotor. Compared to the rub-impact stiffness, the friction coefficient
has a more pronounced effect on the response variation. When the dual rotors are
in a state of co-rotation, with an increase in the friction coefficient, inter-shaft rub
impact is no longer limited to intermittent rubbing; instead, continuous rubbing will
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occur within each rub cycle. This can easily lead to a self-excited vibration of the rotor.
When the self-excited vibration frequency is the same as the rotational frequency,
the amplitude will increase sharply, directly causing the system to become unstable,
which poses a significant risk to the system;

(3) Under unbalanced excitation, the full-spectrum graph of the dual-rotor system shows
only NL and NH frequency components. In a co-rotating dual-rotor system, no
backward whirl behavior occurs during acceleration, while in a counter-rotating
dual-rotor system, backward whirl behavior does occur. This finding is validated by
comparing it with the shaft center trajectory graph. The results obtained in this study
exhibit a high degree of consistency with those in reference [16];

(4) The inter-shaft rub-impact fault has the most significant impact on the whirl behavior
of the LP-compressor disk1, while the full-spectrum response of other disks is still
dominated by unbalanced excitation. During the acceleration of the LP rotor from
1000 rpm to 12,000 rpm, disk1 undergoes multiple changes in the whirl direction. The
inter-shaft rub-impact fault makes the dynamic coupling of the dual-rotor system
more complex, which is a significant factor in generating high-amplitude backward
whirl frequencies.
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