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Abstract

:

It is well known that if a poset satisfies Property A and its dual form, then the o-convergence and   o 2  -convergence in the poset are equivalent. In this paper, we supply an example to illustrate that a poset in which the o-convergence and   o 2  -convergence are equivalent may not satisfy Property A or its dual form, and carry out some further investigations on the equivalence of the o-convergence and   o 2  -convergence. By introducing the concept of the local Frink ideals (the dually local Frink ideals) and establishing the correspondence between ID-pairs and nets in a poset, we prove that the o-convergence and   o 2  -convergence of nets in a poset are equivalent if and only if the poset is ID-doubly continuous. This result gives a complete solution to the problem of E.S. Wolk in two modes of order convergence, which states under what conditions for a poset the o-convergence and   o 2  -convergence in the poset are equivalent.
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1. Introduction


Let P be a poset and    (  x i  )   i ∈ I    a net on an up-directed set I with value in the poset P. The concept of order convergence of nets in a poset P was introduced by Birkhoff [1], Mcshane [2], Frink [3], Rennie [4] and Ward [5]. It is worth noting that the authors may have attached different meanings to the order convergence. Following the formulation of Wolk [6], we correspond to the following two modes of order convergence:



Definition 1

([1,2,3]). A net    (  x i  )   i ∈ I    in a poset P is said to o-converge to an element   x ∈ P   (in symbol     (  x i  )   i ∈ I    → o  x  ) if there exist subsets M and N of P such that




	(A0)

	
M is up-directed and N is down-directed;




	(B0)

	
  sup M = x = inf N  ;




	(C0)

	
For every   m ∈ M   and   n ∈ N  ,   m ⩽  x i  ⩽ n   holds eventually, i.e., there is    i 0  ∈ I   such that   m ⩽  x i  ⩽ n   for all   i ≧  i 0   .











Definition 2

([4,5,6]). A net    (  x i  )   i ∈ I    in a poset P is said to   o 2  -converge to an element   x ∈ P   (in symbol     (  x i  )   i ∈ I    →  o 2   x  ) if there exist subsets M and N of P such that




	(A2)

	
  sup M = x = inf N  ;




	(B2)

	
For every   m ∈ M   and   n ∈ N  ,   m ⩽  x i  ⩽ n   holds eventually.











A research topic concerning the o-convergence and   o 2  -convergence, which are closely related to our work, is from the topological aspect. The o-convergence in a poset P may not be topological, i.e., there does not exist a topology  τ  on the poset P such that the o-convergent class and the convergent class with respect to the topology  τ  are equivalent. In [7], based on the introduction of Condition(*) and the double continuity for posets, Zhou and Zhao proved that, for a double continuous poset P with Condition(*), the o-convergence in the poset P is topological. As a further result, Condition (Δ), a weaker condition than Condition(*), and the  O -doubly continuous posets were defined in [8]. It was shown that, for a poset P with Condition (Δ), the o-convergence in the poset P is topological if and only if the poset P is  O -doubly continuous. Following the ideal in [8], Sun and Li [9] studied the B-topology on posets and found that the o-convergence in a poset P is topological if and only if the poset P is   S *  -doubly continuous, which demonstrates the equivalence between the o-convergence being topological and the   S *  -double continuity of a poset. Moreover, the ideal-o-convergence, a generalized form of o-convergence established via ideals, was defined in posets by Georgiou et al. [10,11]. Also, the authors obtained that the ideal-o-convergence in a poset P is topological if and only if the poset P is   S *  -doubly continuous. This generalized the previous results on the o-convergence.



On the other hand, the   o 2  -convergence is also not topological generally. To characterize these posets so that the   o 2  -convergence is topological, Zhao and Li [12] studied the notions of  α -double continuous posets and   α *  -double continuous posets. Under some additional conditions, the   o 2  -convergence in these posets is topological. Ulteriorly, Li and Zou [13] proposed the concept of   O 2  -doubly continuous posets and showed that the   o 2  -convergence in a poset P is topological if and only if the poset P is   O 2  -doubly continuous, meaning that they gave a sufficient and necessary condition for the   o 2  -convergence to be topological. Further, Georgiou et al. [14] extended the   o 2  -convergence to be the ideal-  o 2  -convergence via ideals, and showed that the   O 2  -double continuity can equivalently characterize such a convergence to be topological.



From the order-theoretical aspect, by the definitions, one can readily verify that the o-convergence implies the   o 2  -convergence, i.e., if a net    (  x i  )   i ∈ I    in a poset P o-converges to an element   x ∈ P  , then it   o 2  -converges to x. However, the converse implication is not true. This fact can be demonstrated by the example in [6]. Hence, in [6], Wolk posed the following fundamental problem:



Problem 1.

Under what conditions for a poset P do the o-convergence and   o 2  -convergence in P agree?





A well-known result on this problem is that the o-convergence and   o 2  -convergence in a lattice are equivalent. Then, Wolk [6] obtained a result on the characterization of posets for the associated o-inf convergence (a counterpart of o-convergence) and   o 2  -inf convergence (a counterpart of   o 2  -convergence) being equivalent, which provides an approximate solution to the fundamental problem, using the concepts of Frink ideals and dual Frank ideals [15].



Motivated by these results toward the problem mentioned above, in this paper, we continue to make some further investigations on the o-convergence and   o 2  -convergence, hoping to clarify the order-theoretical condition of a poset P, which is sufficient and necessary for the o-convergence and   o 2  -convergence to be equivalent.



To this end, in Section 2, following the Frink ideal (the dual Frink ideal), the concepts of local Frink ideals (dually local Frink ideals) and ID-pairs in posets are further proposed, and then the relationship between ID-pairs and nets is presented. Section 3 is devoted to the order-theoretical characterization of the local Frink ideal (the dually local Frink ideal) generated by a general set. Using this characterization, we prove that the ID-double continuity is the precise feature for those posets for which the two modes of order convergence are equivalent.



For the unexplained notions and concepts, one can refer to [6,16,17].




2. Local Frink Ideal (Dually Local Frink Ideal) in Posets


We appoint some conventional notations to be used in the sequel. Let X be a set. We take   F ⊑ X   to mean that F is a finite subset of the set X, including the empty set ∅. Given a poset P and   K , L ⊆ P  . The notations   K u   and   L l   are used to denote the set of all upper bounds of K and the set of all lower bounds of L, respectively, i.e.,    K u  =  { y ∈ P :  ( ∀ p ∈ K )   y ⩾ p }    and    L l  =  { z ∈ P :  ( ∀ p ∈ L )   z ⩽ p }   . Particularly, if the sets K and L are all reduced to be a singleton   { y }  , then the notations   ↑ y   and   ↓ y   are reserved to denote the sets    { y }  u   and    { y }  l  , respectively.



Since the Frink ideal (the dual Frink ideal) in posets plays a fundamental role in the discussion of this section, we first review its definition.



Definition 3

([15]). Let P be a poset.




	(1)

	
A subset K of the poset P is called a Frink ideal if, for every   F ⊑ K  , we have     (  F u  )  l  ⊆ K  . Furthermore, a Frink ideal K is said to be normal if     (  K u  )  l  = K  .




	(2)

	
A subset L of the poset P is called a dual Frink ideal if, for every   S ⊑ L  , we have     (  S l  )  u  ⊆ L  . Furthermore, a dual Frink ideal L is said to be normal if     (  L l  )  u  = L  .











Based on the Frink ideal (the dual Frink ideal), we further define the local Frink ideal (the dually local Frink ideal) in posets.



Definition 4.

Let P be a poset and   K , L ⊆ P  .




	(1)

	
The subset K is called a local Frink ideal in  Li f, for every   F ⊑ K   and every   S ⊑ L  , we have     (  F u  ⋂  S l  )  l  ⊆ K  .




	(2)

	
The subset L is called a dually local Frink ideal in  K if, for every   F ⊑ K   and every   S ⊑ L  , we have     (  F u  ⋂  S l  )  u  ⊆ L  .











Example 1.

Let  R  be the set of all real numbers, in its usual order, and let   a ∈ R  . If we take   K = ( − ∞ , a ]   and   L = [ a , + ∞ )  , then, by Definition 4, the interval K is a local Frink ideal in L and the interval L is a dually local Frink ideal in K.





Given a poset P and   K , L ⊆ P  . We simply denote by   L ( L )   the family of all local Frink ideals in L and, by   D ( K )  , the family of all dually local Frink ideals in K.



Remark 1.

Let P be a poset and   K , L ⊆ P  . Then,




	(1)

	
From the logic viewpoint, it is reasonable to stipulate that    ∅ u  =  ∅ l  = P  . Thus, for every   L ⊆ P   and every   K ∈ L ( L )  , we have   ⊥ ∈ K   if the poset P has the least element ⊥. Dually, for every   K ⊆ P   and every   L ∈ D ( K )  , we have   ⊤ ∈ L   if the greatest element ⊤ exists in the poset P.




	(2)

	
If   K ∈ L ( L )  , then   K ∈ L (  L 0  )   for every    L 0  ⊆ L  . And, dually, if   L ∈ D ( K )  , then   L ∈ D (  K 0  )   for every    K 0  ⊆ K  .




	(3)

	
The subset K is a Frink ideal if and only if   K ∈ L ( ∅ )  . And, dually, the subset L is a dual Frink ideal if and only if   L ∈ D ( ∅ )  .











Proposition 1.

Let P be a poset and   K , L ⊆ P  .




	(1)

	
If   K ∈ L ( L )  , then the subset K is a Frink ideal.




	(2)

	
If   L ∈ D ( K )  , then the subset L is a dual Frink ideal.











Proof. 

(1): Suppose that   K ∈ L ( L )  . Then, we have     (  F u  ⋂  S l  )  l  ⊆ K   for every   F ⊑ K   and   S ⊑ L  . This implies that     (  F u  )  l  ⊆   (  F u  ⋂  S l  )  l  ⊆ K  . Thus, we conclude that     (  F u  )  l  ⊆ K   for every   F ⊑ K  . This shows that the subset K is a Frink ideal.



(2): The proof is similar to that of (1). □





However, the converse implications of Proposition 1 may not be true. This fact can be clarified in Example 7.



Definition 5.

Let P be a poset. A pair   ( K , L )   consisting of subsets K and L of P is called an ID-pair in P if   K ∈ L ( L )   and   L ∈ D ( K )  . Moreover, an ID-pair   ( K , L )   in P is said to be nontrivial if one of the following conditions is exactly satisfied:




	(1)

	
  | P | = 1  , where   | P |   denotes the cardinal of the poset P;




	(2)

	
  | P | ≥ 2   and   ( K , L ) ≠ ( P , P )  .











Example 2.

Let   P = { a , b } ⋃ { ⊥ , ⊤ }  , with the partial order ≤ defined by




	
  ⊥ ⩽ a ⩽ ⊤  ;



	
  ⊥ ⩽ b ⩽ ⊤  .








Take   K = { ⊥ }   and   L = { ⊤ }  . Then, it is easy to see from Definitions 4 and 5 that the pair   ( K , L ) = ( { ⊥ } , { ⊤ } )   is a nontrivial ID-pair.





Proposition 2.

Let   ( K , L )   be an ID-pair in a poset P. Then, the ID-pair   ( K , L )   is nontrivial if and only if    F u  ⋂  S l  ≠ ∅   for every   F ⊑ K   and every   S ⊑ L  .





Proof. 

(⇒): Let   ( K , L )   be a nontrivial ID-pair in a poset P. We consider the following cases:




	(i)

	
  | P | = 1  , i.e., the poset   P = { p }   contains only one element p.



It is easy to check that    F u  ⋂  S l  =  { p }  ≠ ∅   for every   F ⊑ K   and every   S ⊑ L  .




	(ii)

	
  | P | ≥ 2  .



Suppose that     (  F 0  )  u  ⋂   (  S 0  )  l  = ∅   for some    F 0  ⊑ K   and    S 0  ⊑ L  . Then, we have     [   (  F 0  )  u  ⋂   (  S 0  )  l  ]  l  = P ⊆ K   and     [   (  F 0  )  u  ⋂   (  S 0  )  l  ]  u  = P ⊆ L   since   ( K , L )   is an ID-pair in the poset P. This implies that   ( K , L ) = ( P , P )  , which is a contradiction to the assumption that the ID-pair   ( K , L )   is nontrivial. Hence, we have that    F u  ⋂  S l  ≠ ∅   for every   F ⊑ K   and every   S ⊑ L  .









By (i) and (ii), we conclude that    F u  ⋂  S l  ≠ ∅   for every   F ⊑ K   and every   S ⊑ L  .



(⇐): Suppose that   ( K , L )   is an ID-pair such that    F u  ⋂  S l  ≠ ∅   for every   F ⊑ K   and every   S ⊑ L  . If   ( K , L ) ≠ ( P , P )  , then the ID-pair   ( K , L )   is nontrivial by Definition 5. If   ( K , L ) = ( P , P )  , i.e.,   K = L = P  , then, by the assumption, we have     { p }  u  ⋂   { q }  l  = ↑ p ⋂ ↓ q ≠ ∅   and     { q }  u  ⋂   { p }  l  = ↑ q ⋂ ↓ p ≠ ∅   for all   p , q ∈ P  . It follows that   p = q   for all   p , q ∈ P  . Hence, we conclude that   | P | = 1  . This shows, by Definition 5, that the ID-pair   ( K , L )   is nontrivial. □





In fact, given a poset P and a Frink ideal K (resp. a dual Frink ideal L) of the poset P, we can select a subset L (resp. a subset K) of P such that the pair   ( K , L )   is a nontrivial ID-pair.



Theorem 1.

Let P be a poset.




	(1)

	
If K is a Frink ideal of the poset P, then the pair   ( K , L )   is a nontrivial ID-pair for some subset L of the poset P;




	(2)

	
If L is a dual Frink ideal of the poset P, then the pair   ( K , L )   is a nontrivial ID-pair for some subset K of the poset P.











Proof. 

(1): Suppose that K is a Frink ideal of P. Set   L = ⋃ {   (  F u  )  u  : F ⊑ K }  . Now, we process to show that the pair   ( K , L )   is an ID-pair. Let    F 0  ⊑ K   and    S 0  ⊑ L  . We consider the following two cases:




	(i)

	
   S 0  = ∅  .



Since K is a Frink ideal, by the definition of L, we have


    [   (  F 0  )  u  ∩   (  S 0  )  l  ]  l  =   [   (  F 0  )  u  ∩ P ]  l  =   [   (  F 0  )  u  ]  l  ⊆ K ,  











and


    [   (  F 0  )  u  ∩   (  S 0  )  l  ]  u  =   [   (  F 0  )  u  ∩ P ]  u  =   [   (  F 0  )  u  ]  u  ⊆ L .  












	(ii)

	
   S 0  =  {  s 1  ,  s 2  , … ,  s m  }  ≠ ∅  .



By the definition of L, there exists    F i  ⊑ K   such that    s i  ∈   [   (  F i  )  u  ]  u    for every   i ∈ { 1 , 2 , … , m }  . This means that     (  F i  )  u  ⊆ ↓  s i    for every   i ∈ { 1 , 2 , … , m }  . Thus, we have     (  F 1  ∪  F 2  ∪ … ∪  F m  )  u  ⊆   (  S 0  )  l   , which implies that


       (   (  F 0  )  u  ∩   (  S 0  )  l  )  l  ⊆      [   (  F 0  ∪  F 1  ∪  F 2  ∪ … ∪  F m  )  u  ∩   (  S 0  )  l  ]  l      =     [   (  F 0  ∪  F 1  ∪  F 2  ∪ … ∪  F m  )  u  ]  l      ⊆    K ,     











and


       (   (  F 0  )  u  ∩   (  S 0  )  l  )  u  ⊆      [   (  F 0  ∪  F 1  ∪  F 2  ∪ … ∪  F m  )  u  ∩   (  S 0  )  l  ]  u      =     [   (  F 0  ∪  F 1  ∪  F 2  ∪ … ∪  F m  )  u  ]  u      ⊆    L .     

















The combination of (i) and (ii) shows that the pair   ( K , L )   is an ID-pair in P. Finally, we prove that the ID-pair   ( K , L )   is nontrivial. Assume that   ( K , L ) = ( P , P )  . Let   x , y ∈ L = P  . Then, by the definition of L, there exists    F y  ⊑ P   such that   y ∈   [   (  F y  )  u  ]  u   , which implies that     (  F y  )  u  ⊆ ↓ y  . Since     (  { x }  ∪  F y  )  u  ⊆   (  F y  )  u  ⊆ ↓ y  , we have   x ∈ ↓ y  , i.e.,   x ⩽ y  . Similarly, we can prove that   y ⩽ x  . This means that   x = y  , and thus we have   | P | = 1  . By Definition 5, it follows that the ID-pair   ( K , L )   is nontrivial.



(2): By a similar verification to that of (1). □





Example 3.

Let P be a chain, i.e., for all   x , y ∈ P  , either   x ⩽ y   or   y ⩽ x  . For every   x ∈ P  , by Definition 4 we have that the set   ↓ x   is a Frink ideal. Obviously, by Definitions 4 and 5, the set   ↑ x   can be selected such that the pair   ( ↓ x , ↑ x )   is a nontrivial ID-pair in P.





Given a poset P and a net    (  x i  )   i ∈ I    in the poset P, an element   p ∈ P   is called an eventually lower bound of the net    (  x i  )   i ∈ I    provided that there exists    i 0  ∈ I   such that    x i  ⩾ p   for all   i ≧  i 0   . An eventually upper bound of the net    (  x i  )   i ∈ I    is defined dually. Following the notations of Wolk [6], we also take the symbols   P x   and   Q x   to mean the set of all eventually lower bounds of the net    (  x i  )   i ∈ I    and the set of all eventually upper bounds of the net    (  x i  )   i ∈ I   , respectively. If we denote    E x   (  i 0  )  =  {  x i  ∈ P : i ≧  i 0  }   , then    P x  = ⋃  {   [  E x   ( i )  ]  l  : i ∈ I }    and    Q x  = ⋃  {   [  E x   ( i )  ]  u  : i ∈ I }   . For a set X, the symbol   Y ⊂ X   means that Y is a proper subset of the set X, i.e.,   Y ⊆ X   and   Y ≠ X  . In the following, we always take   ≥ o   to represent the ordinary order on  N , the set of all positive integers.



Now, we can establish a correspondence between the nets and the ID-pairs:



Theorem 2.

Let P be a poset. Then, a pair   ( K , L )   in P is a nontrivial ID-pair if and only if there exists a net    (  x i  )   i ∈ I    in P such that    P x  = K   and    Q x  = L  .





Proof. 

(⇐): Let   ( K , L )   be a pair of subsets of the poset P. Suppose also that    (  x i  )   i ∈ I    is a net in the P such that    P x  = K   and    Q x  = L  . For every   F ⊑  P x  = K   and every   S ⊑  Q x  = L  , we consider the following cases:




	(i)

	
  F = S = ∅  .



Since   F = ∅   and   S = ∅  , we have that    E x   ( i )  ⊆  F u  ⋂  S l  = P ≠ ∅   for all   i ∈ I  . This implies that     (  F u  ⋂  S l  )  l  ⊆   [  E x   ( i )  ]  l    and     (  F u  ⋂  S l  )  u  ⊆   [  E x   ( i )  ]  u    for all   i ∈ I  . Hence,     (  F u  ⋂  S l  )  l  ⊆  P x    and     (  F u  ⋂  S l  )  u  ⊆  Q x   .




	(ii)

	
  F = ∅ ⊑  P x    and   S =  {  s 1  ,  s 2  , … ,  s n  }  ⊑  Q x   .



Since   S =  {  s 1  ,  s 2  , … ,  s n  }  ⊑  Q x   , for every   1  ≤ o  t  ≤ o  n  , there exists    i t  ∈ I   such that    E x   (  i t  )  ⊆ ↓  s t   . Take    i 0  ∈ I   such that    i 0  ≧  i t    for all   1  ≤ o  t  ≤ o  n  . Then, we have    E x   (  i 0  )  ⊆ ⋂  {  E x   (  i t  )  : 1  ≤ o  t  ≤ o  n }  ⊆ ⋂  { ↓  s t  : 1  ≤ o  t  ≤ o  n }  =  S l   , which implies that    E x   (  i 0  )  ⊆  F u  ⋂  S l  =  S l  ≠ ∅  ,     (  F u  ⋂  S l  )  l  ⊆   [  E x   (  i 0  )  ]  l    and     (  F u  ⋂  S l  )  u  ⊆   [  E x   (  i 0  )  ]  u   . It follows that     (  F u  ⋂  S l  )  l  ⊆  P x    and     (  F u  ⋂  S l  )  u  ⊆  Q x   .




	(iii)

	
  F =  {  e 1  ,  e 2  , … ,  e m  }  ⊑  P x    and   S = ∅ ⊑  Q x   .



By a similar verification to that of (ii), we can also prove that    F u  ⋂  S l  ≠ ∅  ,     (  F u  ⋂  S l  )  l  ⊆  P x    and     (  F u  ⋂  S l  )  u  ⊆  Q x   .




	(iv)

	
  F =  {  e 1  ,  e 2  , … ,  e m  }  ⊑  P x    and   S =  {  s 1  ,  s 2  , … ,  s n  }  ⊑  Q x   .



Since   F =  {  e 1  ,  e 2  , … ,  e m  }  ⊑  P x    and   S =  {  s 1  ,  s 2  , … ,  s n  }  ⊑  Q x   , there exist    i r  ,  i t  ∈ I   such that    E x   (  i r  )  ⊆ ↑  e r    and    E x   (  i t  )  ⊆ ↓  s t    for all   1  ≤ o  r  ≤ o  m   and   1  ≤ o  t  ≤ o  n  . Take    i 0  ∈ I   such that    i 0  ≧  i r  ,  i t    for all   1  ≤ o  r  ≤ o  m   and   1  ≤ o  t  ≤ o  n  . Then, we have    E x   (  i 0  )  ⊆ ⋂  { ↑  e r  : 1  ≤ o  r  ≤ o  m }  ⋂ ⋂  { ↓  s t  : 1  ≤ o  t  ≤ o  n }  =  F u  ⋂  S l   , which implies that    F u  ⋂  S l  ≠ ∅  ,     (  F u  ⋂  S l  )  l  ⊆   [  E x   (  i 0  )  ]  l    and     (  F u  ⋂  S l  )  u  ⊆   [  E x   (  i 0  )  ]  u   . Thus,     (  F u  ⋂  S l  )  l  ⊆  P x    and     (  F u  ⋂  S l  )  u  ⊆  Q x   .









By (i)–(iv), Definition 4 and Proposition 2, we conclude that the pair    (  P x  ,  Q x  )  =  ( K , L )    is a nontrivial ID-pair in the poset P.



(⇒): Assume that the pair   ( K , L )   is a nontrivial ID-pair in the poset P. We take the following cases into consideration:




	(v)

	
Either the set K or the set L is infinite.



Without loss of generality, we can assume that the set K is infinite. As the ID-pair   ( K , L )   is nontrivial, we have that    F u  ⋂  S l  ≠ ∅   for every   F ⊑ K   and every   S ⊑ L   by Proposition 2. Let   κ F S   be the cardinal, linearly ordered by   ≥ F S  , of the set    F u  ⋂  S l   , and    a F S  :  κ F S  →  F u  ⋂  S l    be a one-to-one function from   κ F S   onto    F u  ⋂  S l    for every   F ⊑ K   and every   S ⊑ L  . Put   I = {  ( F , S , λ )  : F ⊑ K , S ⊑ L , λ ∈  κ F S  }  . For any    (  F 1  ,  S 1  ,  λ 1  )  ,  (  F 2  ,  S 2  ,  λ 2  )  ∈ I  , we define    (  F 2  ,  S 2  ,  λ 2  )  ≧  (  F 1  ,  S 1  ,  λ 1  )    if and only if one of the following conditions is satisfied:




	(1)

	
   F 1  =  F 2   ,    S 1  =  S 2    and    λ 2   ≥  F 1   S 1    λ 1   ;




	(2)

	
   F 1  ⊂  F 2    and    S 1  ⊆  S 2   .









Now, one can readily check that the ordered set I is up-directed. Let the net    (  x i  )   i ∈ I    in the poset P be defined by    x  ( F , S , λ )   =  a F S   ( λ )    for every   ( F , S , λ ) ∈ I  . Next, we proceed to prove that    P x  = K   and    Q x  = L  . Let   p ∈  P x   . Then, there exists   (  F 1  ,  S 1  ,  λ 1  ) ∈ I   such that   p ∈   [  E x   (  (  F 1  ,  S 1  ,  λ 1  )  )  ]  l   . Take    S 2  =  S 1    and    F 2  ⊑ K   with    F 1  ⊂  F 2   . Then, we have     [   (  F 2  )  u  ⋂   (  S 2  )  l  ]  l  ⊆ K   since the pair   ( K , L )   is a nontrivial ID-pair. According to the definition of I, it follows that    (  F 2  ,  S 2  ,  λ 2  )  ≧  (  F 1  ,  S 1  ,  λ 1  )    for every    λ 2  ∈  κ  F 2   S 2    , which implies that    x  (  F 2  ,  S 2  ,  λ 2  )   =  a  F 2   S 2    (  λ 2  )  ∈  E x   (  (  F 1  ,  S 1  ,  λ 1  )  )    for every    λ 2  ∈  κ  F 2   S 2    . Hence, we conclude that     (  F 2  )  u  ⋂   (  S 2  )  l  ⊆  E x   (  (  F 1  ,  S 1  ,  λ 1  )  )   . This shows that   p ∈   [  E x   (  (  F 1  ,  S 1  ,  λ 1  )  )  ]  l  ⊆   [   (  F 2  )  u  ⋂   (  S 2  )  l  ]  l  ⊆ K  . Thus,    P x  ⊆ K  . Conversely, let   q ∈ K  . Set    F 0  =  { q }  ⊑ K   and    S 0  = ∅ ⊑ L  . Then, by the definition of I, it is easy to see that   (  F 0  ,  S 0  ,  λ 0  ) ∈ I   for all    λ 0  ∈  κ  F 0   S 0    . For every   ( F , S , λ ) ∈ I   with    ( F , S , λ )  ≧  (  F 0  ,  S 0  ,  λ 0  )   , by the definition of I, we have    F 0  ⊆ F   and    S 0  ⊆ S  , which implies that    F u  ⋂  S l  ⊆   (  F 0  )  u  ⋂   (  S 0  )  l  = ↑ q  . It follows that    x  ( F , S , λ )   =  a F S   ( λ )  ∈  F u  ⋂  S l  ⊆ ↑ q   for every    ( F , S , λ )  ≧  (  F 0  ,  S 0  ,  λ 0  )   . This means that   q ∈  P x   . Hence, we conclude that   K ⊆  P x   . This shows that    P x  = K  . It can be similarly proved that    Q x  = L  .




	(vi)

	
Both the sets K and L are finite.



Since the pair   ( K , L )   is a nontrivial ID-pair in the poset P, it follows that    K u  ⋂  L l  ≠ ∅  ,     (  K u  ⋂  L l  )  l  ⊆ K   and     (  K u  ⋂  L l  )  u  ⊆ L  . Let   κ K L  , well ordered by   ≥ K L  , denote the cardinal of the set    K u  ⋂  L l   , and    a K L  :  κ K L  →  K u  ⋂  L l    be a one-to-one function from the cardinal   κ K L   onto the set    K u  ⋂  L l   . Set   I = {  ( n , λ )  : n ∈ N , λ ∈  κ K L  }  . For any    (  n 1  ,  λ 1  )  ,  (  n 2  ,  λ 2  )  ∈ I  , we define    (  n 2  ,  λ 2  )  ≧  (  n 1  ,  λ 1  )    if and only if one of the following conditions is satisfied:




	(3)

	
   n 1  =  n 2    and    λ 2   ≥ K L   λ 1   ;




	(4)

	
   n 1  ≠  n 2    and    n 2   ≥ o   n 1   .









It can easily be checked that the ordered I is up-directed. Let    (  x i  )   i ∈ I    be the net in the poset P by defining    x  ( n , λ )   =  a K L   ( λ )  ∈  K u  ⋂  L l    for all   λ ∈  κ K L   . Now, it remains to show that   K =  P x    and   L =  Q x   . Let   q ∈ K  . Then, we have    K u  ⋂  L l  ⊆ ↑ q  . By the definition of the net    (  x i  )   i ∈ I   , it follows that    x  ( n , λ )   =  a K L   ( λ )  ∈  K u  ⋂  L l  ⊆ ↑ q   for all   ( n , λ ) ∈ I  . This means that   q ∈   [  E x   (  ( n , λ )  )  ]  l    for all   ( n , λ ) ∈ I  . Hence, we conclude that   q ∈  P x   , which shows that   K ⊆  P x   . Conversely, let   p ∈  P x   . Then, there exists   (  n 0  ,  λ 0  ) ∈ I   such that   p ∈   [  E x   (  (  n 0  ,  λ 0  )  )  ]  l   . Since    (  n 0  + 1 , λ )  ≧  (  n 0  ,  λ 0  )   , for all   λ ∈  κ K L   , it follows that    x  (  n 0  + 1 , λ )   =  a K L   ( λ )  ∈  K u  ⋂  L l    for all   λ ∈  κ K L   . This implies that    K u  ⋂  L l  ⊆  E x   (  (  n 0  ,  λ 0  )  )   . Hence, we have   p ∈   [  E x   (  (  n 0  ,  λ 0  )  )  ]  l  ⊆   (  K u  ⋂  L l  )  l  ⊆ K  . This shows that    P x  ⊆ K  . Therefore,    P x  = K  . A similar verification can show that    Q x  = L  .









By (v) and (vi), we can conclude that there exists a net    (  x i  )   i ∈ I    in the poset P such that    P x  = K   and    Q x  = L  . Thus, the proof is completed. □





Example 4.

Let   P =  { ⊤ }  ⋃  {  a 1  ,  a 2  , … ,  a n  , … }    with the partial order ≤ defined by




	
   ( ∀ n )    a n  ⩽ ⊤  .








Consider the net    (  x n  )   n ∈ N    defined by


    ( ∀ n ∈ N )    x n  =  a n  ,   








where the up-directed set  N  is the set of all positive integers in its usual order. By the definition of the net    (  x n  )   n ∈ N   , we have    P x  = ∅   and    Q x  =  { ⊤ }   . On the other hand, it follows from Definition 4 and Definition 5 that the pair   ( ∅ , { ⊤ } )   is a nontrivial ID-pair. This demonstrates Theorem 2 in the case.





The combination of Proposition 1 and Theorems 1 and 2 indicates that the eventually lower bounds   P x   and eventually upper bounds   Q x   of a net    (  x i  )   i ∈ I    are precisely a Frink ideal and a dual Frink ideal, respectively (see Corollary 1). However, they are not independent. Theorem 2 clarifies the correlation between the Frink ideal   P x   and the dual Frink ideal   Q x   from the point of view of order; that is, the Frink ideal   P x   and the dual Frink ideal   Q x   must be matched as a nontrivial ID-pair. Also, this is the initial motivation of introducing the local Frink ideal (the dually local Frink ideal) and ID-pair for posets in the sequel.



Corollary 1

([6]). Let P be a poset and   K , L ⊆ P  . Then,




	(1)

	
The subset K is a Frink ideal if and only if    P x  = K   for some net    (  x i  )   i ∈ I    in the poset P;




	(2)

	
The subset L is a dual Frink ideal if and only if    Q y  = L   for some net    (  y j  )   j ∈ J    in the poset P.












3. ID-Doubly Continuous Posets


Given a poset P and   M , N ⊆ P  , let    L M   ( N )  =  { K ∈ L  ( N )  : M ⊆ K }   . Then, one can readily verify by Definition 4 that the intersection   ⋂  L M   ( N )    contains the set M and is again a local Frink ideal in the set N. This local Frink ideal is called the local Frink ideal generated by the set M and denoted by   I  G N   ( M )   . Thedually local Frink ideal generated by the set N is defined dually, and denoted by   D  G M   ( N )   . Next, we clarify the structure of   I  G N   ( M )    and   D  G M   ( N )   :



Proposition 3.

Let P be a poset and   M , N ⊆ P  . Then,




	(1)

	
  I  G N   ( M )  =  { p ∈ P :  ( ∃  M 0  ⊑ M )    ( ∃  N 0  ⊑ N )     (  M 0  )  u  ⋂   (  N 0  )  l  ⊆ ↑ p }   ;




	(2)

	
  D  G M   ( N )  =  { q ∈ P :  ( ∃  M 00  ⊑ M )    ( ∃  N 00  ⊑ N )     (  M 00  )  u  ⋂   (  N 00  )  l  ⊆ ↓ q }   .











Proof. 

(1): Denote the set   { p ∈ P :  ( ∃  M 0  ⊑ M )    ( ∃  N 0  ⊑ N )     (  M 0  )  u  ⋂   (  N 0  )  l  ⊆ ↑ p }   by    M ¯  N  . Then, it is easy to see that   M ⊆   M ¯  N   . Now, we proceed to prove that     M ¯  N  ∈ L  ( N )   . Let   F ⊑   M ¯  N    and   S ⊑ N  . We should consider the following cases:




	(i)

	
  F = ∅  .



Since   F = ∅  , it follows that     (  M a  )  u  ⋂  S l  ⊆  F u  ⋂  S l  =  S l    for all    M a  ⊑ M  , which implies that     (  F u  ⋂  S l  )  l  ⊆   [   (  M a  )  u  ⋂  S l  ]  l    for all    M a  ⊑ M  . This means that     (  M a  )  u  ⋂  S l  ⊆ ↑  p ′    for all    p ′  ∈   (  F u  ⋂  S l  )  l   . Hence, we infer that     (  F u  ⋂  S l  )  l  ⊆   M ¯  L   .




	(ii)

	
  F = {  e 1  ,  e 2  , … ,  e m  } ≠ ∅  .



It follows by the definition of    M ¯  N   that, for every   1  ≤ o  r  ≤ o  m  , there exist    M r  ⊑ M   and    N r  ⊑ N   such that     (  M r  )  u  ⋂   (  N r  )  l  ⊆ ↑  e r   . Take    M F  = ⋃  {  M r  : 1  ≤ o  r  ≤ o  m }    and    N F  = ⋃  {  N r  : 1  ≤ o  r  ≤ o  m }  ⋃ S  . Then, we have that    M F  ⊑ M  ,    N F  ⊑ N   and


       (  M F  )  u  ⋂   (  N F  )  l  =     ⋂  {   (  M r  )  u  ⋂   (  N r  )  l  : 1  ≤ o  r  ≤ o  m }  ⋂  S l       ⊆    ⋂  { ↑  e r  : 1  ≤ o  r  ≤ o  m }  ⋂  S l       =     F u  ⋂  S l  .     











This implies that     (  F u  ⋂  S l  )  l  ⊆   [   (  M F  )  u  ⋂   (  N F  )  l  ]  l   , which means that     (  M F  )  u  ⋂   (  N F  )  l  ⊆ ↑  p ′    for all    p ′  ∈   (  F u  ⋂  S l  )  l   . Thus, we conclude that     (  F u  ⋂  S l  )  l  ⊆   M ¯  N    by the definition of    M ¯  N  .









According to (i), (ii) and Definition 4, we show that     M ¯  N  ∈ L  ( N )   .



To complete the proof, it suffices to prove that     M ¯  N  ⊆ K   for every   K ∈ L ( N )   with   M ⊆ K  . Let   p ∈   M ¯  N   . Then, by the definition of    M ¯  N  , there exist    M 0  ⊑ M   and    N 0  ⊑ N   such that     (  M 0  )  u  ⋂   (  N 0  )  l  ⊆ ↑ p  . This means that   p ∈   [   (  M 0  )  u  ⋂   (  N 0  )  l  ]  l   . Since   M ⊆ K   and   K ∈ L ( N )  , it follows that   p ∈   [   (  M 0  )  u  ⋂   (  N 0  )  l  ]  l  ⊆ K  . So, we have that     M ¯  N  ⊆ K  . Consequently, we infer that   I  G N   ( M )  =   M ¯  N  =  { p ∈ P :  ( ∃  M 0  ⊑ M )    ( ∃  N 0  ⊑ N )     (  M 0  )  u  ⋂   (  N 0  )  l  ⊆ ↑ p }   .



(2): The proof is similar to that of (1). □





Lemma 1.

Let P be a poset and   M , N ⊆ P  . Then, we have that   I  G N   ( M )  ∈ L  ( D  G M   ( N )  )    and   D  G M   ( N )  ∈ D  ( I  G N   ( M )  )   , i.e., the pair   ( I  G N   ( M )  , D  G M   ( N )  )   is an ID-pair in the poset P.





Proof. 

We only show that   I  G N   ( M )  ∈ L  ( D  G M   ( N )  )   ; the fact   D  G M   ( N )  ∈ D  ( I  G N   ( M )  )    can be similarly proved. Let   F ⊑ I  G N   ( M )    and   S ⊑ D  G M   ( N )   . We consider the following cases:




	(i)

	
  F = ∅   and   S = ∅  .



If the least element ⊥ exists in the poset P, then we have that   ⊥ ∈ I  G N   ( M )    by Remark 1. It follows that     (  F u  ⋂  S l  )  l  =  { ⊥ }  ⊆ I  G N   ( M )   . If the poset P has no least element, then     (  F u  ⋂  S l  )  l  = ∅ ⊆ I  G N   ( M )    by Remark 1 again. This shows that     (  F u  ⋂  S l  )  l  ⊆ I  G N   ( M )   .




	(ii)

	
  F = {  e 1  ,  e 2  , … ,  e m  } ≠ ∅   and   S = ∅  .



By Proposition 3, there exist    M r  ⊑ M   and    N r  ⊑ N   such that     (  M r  )  u  ⋂   (  N r  )  l  ⊆ ↑  e r    for all   1  ≤ o  r  ≤ o  m  . Take    M 0  = ⋃  {  M r  : 1  ≤ o  r  ≤ o  m }    and    N 0  = ⋃  {  N r  : 1  ≤ o  r  ≤ o  m }   . Then, we have that    M 0  ⊑ M  ,    N 0  ⊑ N   and


       (  M 0  )  u  ⋂   (  N 0  )  l  =     ⋂ {   (  M r  )  u  ⋂   (  N r  )  l  : 1  ≤ o  r  ≤ o  m }      ⊆    ⋂ { ↑  e r  : 1  ≤ o  r  ≤ o  m }      =     F u  =  F u  ⋂  S l  .     











It follows that     (  F u  ⋂  S l  )  l  ⊆   [   (  M 0  )  u  ⋂   (  N 0  )  l  ]  l   , which implies that     (  M 0  )  u  ⋂   (  N 0  )  l  ⊆ ↑ p   for all   p ∈   (  F u  ⋂  S l  )  l   . Thus, by Proposition 3, we have that   p ∈ I  G N   ( M )    for all   p ∈   (  F u  ⋂  S l  )  l   . This means that     (  F u  ⋂  S l  )  l  ⊆ I  G N   ( M )   .




	(iii)

	
  F = ∅   and   S = {  s 1  ,  s 2  , … ,  s n  } ≠ ∅  .



Proceeding as in the proof of (ii), we can again have     (  F u  ⋂  S l  )  l  ⊆ I  G N   ( M )   .




	(iv)

	
  F = {  e 1  ,  e 2  , … ,  e m  } ≠ ∅   and   S = {  s 1  ,  s 2  , … ,  s n  } ≠ ∅  .



By Proposition 3, there exist    M r F  ,  M t S  ⊑ M   and    N r F  ,  N t S  ⊑ N   such that     (  M r F  )  u  ⋂   (  N r F  )  l  ⊆ ↑  e r    and     (  M t S  )  u  ⋂   (  N t S  )  l  ⊆ ↓  s t    for all   1  ≤ o  r  ≤ o  m   and   1  ≤ o  t  ≤ o  n  . Set    M 0  = ⋃  {  M r F  : 1  ≤ o  r  ≤ o  m }  ⋃ ⋃  {  M t S  : 1  ≤ o  t  ≤ o  n }    and    N 0  = ⋃  {  N r F  : 1  ≤ o  r  ≤ o  m }  ⋃ ⋃  {  N t S  : 1  ≤ o  t  ≤ o  n }   . Then, we have that    M 0  ⊑ M  ,    N 0  ⊑ N   and


       (  M 0  )  u  ⋂   (  N 0  )  l  =     ⋂ {   (  M r F  )  u  ⋂   (  N r F  )  l  : 1  ≤ o  r  ≤ o  m }          ⋂ ⋂ {   (  M t S  )  u  ⋂   (  N t S  )  l  : 1  ≤ o  t  ≤ o  n }      ⊆    ⋂  { ↑  e r  : 1  ≤ o  r  ≤ o  m }  ⋂ ⋂  { ↓  s t  : 1  ≤ o  t  ≤ o  n }       =     F u  ⋂  S l  .     











This implies that     (  F u  ⋂  S l  )  l  ⊆   [   (  M 0  )  u  ⋂   (  N 0  )  l  ]  l   , which concludes that     (  M 0  )  u  ⋂   (  N 0  )  l  ⊆ ↑ p   for all   p ∈   (  F u  ⋂  S l  )  l   . Hence, by Proposition 3, we have     (  F u  ⋂  S l  )  l  ⊆ I  G N   ( M )   .









According to (i)–(iv) and Definition 4, we infer that   I  G N   ( M )  ∈ L  ( D  G M   ( N )  )   . □





Lemma 2.

Let P be a poset and   M , N ⊆ P  . If   sup M = x = inf N ∈ P  , then we have   sup I  G N   ( M )  = x = inf D  G M   ( N )   .





Proof. 

Let   sup M = x = inf N ∈ P  . Then, one can readily check, by Proposition 3, that   M ⊆ I  G N   ( M )  ⊆ ↓ x   and   N ⊆ D  G M   ( N )  ⊆ ↑ x  . It follows that   sup I  G N   ( M )  = x = inf D  G M   ( N )   . □





We turn to define the ID-double continuity for posets. Since the ID-double continuity has a close relationship to Property A, proposed by Wolk, we review Property A and its dual form for posets in the following:



Definition 6

([6]). A poset P has Property A if, for every non-normal Frink ideal K with   sup K = x ∈ P  , there exists an up-directed subset    K U  ⊆ K   such that   sup  K U  = x  . Dually, a poset P has Property DAif, for every non-normal dual Frink ideal L with   inf L = y ∈ P  , there exists a down-directed subset    L D  ⊆ L   such that   inf  L D  = y  .





Definition 7.

A poset P is called an ID-doubly continuous poset if, for every ID-pair   ( K , L )   in the poset P with   sup K = x = inf L ∈ P  , there exist an up-directed subset    K U  ⊆ K   and a down-directed subset    L D  ⊆ L   such that   sup  K U  = x = inf  L D   .






Example 5. (1) Every finite poset is ID-doubly continuous;



(2) Every lattice is ID-doubly continuous.



Suppose that P is a finite poset and   ( K , L )   is an ID-pair with   sup K = x = inf L ∈ P  . Then, we have that   K , L ⊑ P   and    K u  ⋂  L l  =  { x }   . Since the pair   ( K , L )   is an ID-pair, by Definition 4 and Definition 5, it follows that     (  K u  ⋂  L l  )  l  = ↓ x ⊆ K   and     (  K u  ⋂  L l  )  u  = ↑ x ⊆ L  , which implies that   x ∈ K   and   x ∈ L  . This means that the singleton   { x }   is an up-directed subset of K and also a down-directed subset of L such that   sup { x } = x = inf { x }  . So, by Definition 7, the finite poset P is ID-doubly continuous.



The fact that every lattice is ID-doubly continuous can also be readily checked by Definition 7.





Proposition 4.

Let P be a poset. If the poset P has Property A and Property DA, then it is an ID-doubly continuous poset.





Proof. 

Let   ( K , L )   be an ID-pair in the poset P with   sup K = x = inf L ∈ P  . Then, by Proposition 1, the set K is a Frink ideal. If   x ∈ K  , then we have that   { x }   is an up-directed subset of K and   sup { x } = x  . If   x ∉ K  , then K is a non-normal Frink ideal since   x ∈   (  K u  )  l  = ↓ x ≠ K  . By Property A, it follows that there exists an up-directed subset    K U  ⊆ K   such that   sup  K U  = x  . A similar verification can prove that there exists a down-directed subset    L D  ⊆ L   such that   inf  L D  = x  . Hence, the poset P is ID-doubly continuous. □





In general, an ID-doubly continuous poset may not possess Property A and Property DA. For such an example, one can refer to Example 7 in Section 4.



Now, we arrive at the main result:



Theorem 3.

A poset P is ID-doubly continuous if and only if the o-convergence and   o 2  -convergence in the poset P are equivalent.





Proof. 

(⇒): Suppose that a poset P is ID-doubly continuous. To prove the equivalence between the o-convergence and   o 2  -convergence, it suffices to show that, for every net    (  x i  )   i ∈ I    in the poset P, we have


    (  x i  )   i ∈ I    →  o 2   x ∈ P ⇒   (  x i  )   i ∈ I    → o  x .  











Let     (  x i  )   i ∈ I    →  o 2   x  . Then, by Definition 2, there exist subsets   M , N ⊆ P   such that   sup M = x = inf N  , and, for every   m ∈ M   and every   n ∈ N  ,   m ⩽  x i  ⩽ n   holds eventually. This means that   M ⊆  P x    and   N ⊆  Q x   , which implies that   I  G N   ( M )  ⊆  P x    and   D  G M   ( N )  ⊆  Q x    by Remark 1 and Theorem 2. According to Lemma 1 and 2, it follows that   ( I  G N   ( M )  , D  G M   ( N )  )   is an ID-pair with   sup I  G N   ( M )  = x = inf D  G M   ( N )   . Since the poset P is ID-doubly continuous, we have that   sup  M U  = x = inf  N D    for some up-directed subset    M U  ⊆ I  G N   ( M )  ⊆  P x    and some down-directed subset    N D  ⊆ D  G M   ( N )  ⊆  Q x   . This concludes     (  x i  )   i ∈ I    → o  x  .



(⇐): Assume that the o-convergence and   o 2  -convergence in a poset P are equivalent. Let   ( K , L )   be an ID-pair in the poset P with   sup K = x = inf L ∈ P  . Since   x ∈  F u  ⋂  S l  ≠ ∅   for all   F ⊑ K   and   S ⊑ L  , the pair   ( K , L )   is a nontrivial ID-pair by Proposition 2. According to Theorem 2, there exists a net    (  x i  )   i ∈ I    in the poset P such that   K =  P x    and   L =  Q x   . Thus, we have     (  x i  )   i ∈ I    →  o 2   x  . By the hypothesis, it follows that     (  x i  )   i ∈ I    → o  x  . This means that   sup  K U  = x = inf  L D    for some up-directed subset    K U  ⊆ K =  P x    and some down-directed subset    L D  ⊆ L =  Q x   . So, the poset P is an ID-doubly continuous poset. □





By Example 5 and Theorem 3, we immediately have the following:




Example 6. (1) In every finite poset, the o-convergence and the   o 2  -convergence are equivalent;



(2) In every lattice, the o-convergence and the   o 2  -convergence are equivalent.





By Proposition 4 and Theorem 3, or by Definition 2 and Theorem 2 and 5 in [6], we readily have the following:



Corollary 2.

If a poset P has Property A and Property DA, then the o-convergence and   o 2  -convergence in the poset P are equivalent.






4. Example


In this section, we mainly give an example to clarify the following facts:




	(1)

	
A Frink ideal K of a poset P may not be a local Frink ideal in every nonempty subset L of P; Dually, a dual Frink ideal K need not be a dually local Frink ideal in every nonempty subset K of P.




	(2)

	
An ID-doubly continuous poset fails to satisfy Property A and Property DA.









Example 7.

Let   P =  { x }  ⋃  {  a 1  ,  a 2  , … ,  a n  , … }  ⋃  {  b 1  ,  b 2  , … ,  b n  , … }  ⋃  {  c 1  ,  c 2  , … ,  c n  , … }     ⋃ {  d 1  ,  d 2  , … ,  d n  , … }   (see Figure 1). Define the partial order ≤ on P by setting




	
   ↓ x =  { x }  ⋃   {  a 1  ,  a 2  , … ,  a n  , … }  ⋃  {  b 1  ,  b 2  , … ,  b n  , … }  ⋃  {  c 1  ,  c 2  , … ,  c n  , … }   ;



	
    ( ∀ n )   ↓   a n  =  {  a 1  ,  a 2  , … ,  a n  }   ;



	
    ( ∀ n )   ↓   b n  =  {  b n  }   ;



	
    ( ∀ n )   ↓   c n  =  {  c n  }  ⋃  {  a 1  ,  a 2  , … ,  a n  }  ⋃  {  b 1  ,  b 2  , … ,  b n  }   ;



	
    ( ∀ n )   ↓   d n  =  {  d n  }  ⋃  {  b 1  ,  b 2  , … ,  b n  }   .








Let   K = {  b 1  ,  b 2  , … ,  b n  , … }  . Then, the set K is a non-normal Frink ideal by Definition 3 and the definition of the poset P. However, the poset P does not process Property A since we can easily see that   sup K = x  , and   sup  K U  ≠ x   for every up-directed subset    K U  ⊆ K  . We next show that   K ∉ L ( L )   for any nonempty subset L of the poset P by analyzing the following cases:




	(i)

	
   a i  ∈ L   (resp.    b i  ∈ L  ,    c i  ∈ L  ,    d i  ∈ L  ) for some   i ∈ N  .



Take   j ∈ N   such that   j  > o  i  . Then, we have   {  b j  } ⊑ K  ,   {  a i  } ⊑ L   (resp.   {  b i  } ⊑ L  ,   {  c i  } ⊑ L  ,   {  d i  } ⊑ L  ) and     (   {  b j  }  u  ⋂   {  a i  }  l  )  l  = P ⊈ K   (resp.     (   {  b j  }  u  ⋂   {  b i  }  l  )  l  = P ⊈ K  ,     (   {  b j  }  u  ⋂   {  c i  }  l  )  l  = P ⊈ K  ,     (   {  b j  }  u  ⋂   {  d i  }  l  )  l  = P ⊈ K  ). This implies that   K ∉ L ( L )   by Definition 4.




	(ii)

	
  x ∈ L  .



It is easy to see that   {  b 1  ,  b 2  } ⊑ K  ,   { x } ⊑ L   and     (   {  b 1  ,  b 2  }  u  ⋂   { x }  l  )  l  =  {  a 1  ,  a 2  }  ⋃  {  b 1  ,  b 2  }  ⊈ K  . This implies that   K ∉ L ( L )   by Definition 4.









The combination of (i) and (ii) shows that the set K is not a local Frink ideal in any nonempty subset L of the poset P.



Now, we are going to verify that P is an ID-doubly continuous poset. Let   (  K ′  ,  L ′  )   be an ID-pair in the poset P with   sup  K ′  = p = inf  L ′   . We consider the following cases:




	(iii)

	
  p =  a i    (resp.   p =  b i  ,  c i  ,  d i   ) for some   i ∈ N  .



It is easy to see, by the definition of the poset P, that there exist    K 0  ⊑  K ′    and    L 0  ⊑  L ′    such that   sup  K 0  = inf  L 0  = p =  a i   . Since the pair   (  K ′  ,  L ′  )   is an ID-pair, we have     [   (  K 0  )  u  ⋂   (  L 0  )  l  ]  l  = ↓  a i  ⊆  K ′    and     [   (  K 0  )  u  ⋂   (  L 0  )  l  ]  u  = ↑  a i  ⊆  L ′   , i.e.,    a i  ∈  K ′    and    a i  ∈  L ′   . Take    K U ′  =  L D ′  =  {  a i  }   . Then, the set   K U ′   is an up-directed subset of the set   K ′  , the set   L D ′   is a down-directed subset of the set   L ′   and   sup  K U ′  =  a i  = inf  L D ′   .




	(iv)

	
  p = x   and   x ∈  K ′   .



Since   inf  L ′  = x  , one can readily check that    L ′  =  { x }   . Take    K U ′  =  L D ′  =  { x }   . Then, we have that the set   K U ′   is an up-directed subset of the set   K ′  , the set   L D ′   is a down-directed subset of the set   L ′   and   sup  K U ′  = x = inf  L D ′   .




	(v)

	
  p = x   and    a i  ∈  K ′    for some   i ∈ N  .



Since   inf  L ′  = x  , it is easy to see that    L ′  =  { x }   . If the set    K ′  ⋂  {  a 1  ,  a 2  , … }    is infinite, then we have that the set    K U ′  =  K ′  ⋂  {  a 1  ,  a 2  , … }    is an up-directed subset of the set   K ′  , the set    L D ′  =  { x }    is a down-directed subset of the set   L ′   and   sup  K U ′  = x = inf  L D ′   .



If the set    K ′  ⋂  {  a 1  ,  a 2  , … }    is finite, then we have that the set    K ′  ⋂  {  b 1  ,  b 2  , … }    is also finite. Otherwise, suppose that the set    K ′  ⋂  {  b 1  ,  b 2  , … }    is infinite. Then, there exists    {  b  i 1   ,  b  i 2   , … }  ⊆  K ′   . Since the pair   (  K ′  ,  L ′  )   is an ID-pair in the poset P, we have that    a  i k   ∈   (   {  b  i 1   ,  b  i k   }  u  ⋂   { x }  l  )  l    for every   k ∈ N   with   k  ≥ o  2  . This means that    {  a  i 2   ,  a  i 3   , … }  ⊆  K ′  ⋂  {  a 1  ,  a 2  , … }   , contradicting the hypothesis that the set    K ′  ⋂  {  a 1  ,  a 2  , … }    is finite. Let    {  a  j 1   ,  a  j 2   , … ,  a  j m   }  =  K ′  ⋂  {  a 1  ,  a 2  , … }    and    {  b  i 1   ,  b  i 2   ,  …  i n   }  =  K ′  ⋂  {  b 1  ,  b 2  , … }   , and let    j 0  = max  {  j 1  ,  j 2  , … ,  j m  }    and    i 0  = max  {  i 1  ,  i 2  , … ,  i n  }   . Since   sup  K ′  = x  , we also take the following cases into consideration:




	(v1)

	
  x ∈  K ′   .



In this case, we can return the verification to Case (iv).




	(v2)

	
   c  i 0   ∈  K ′    for some    i 0  ∈ N   with    i 0   < o   j 0   .



In this case, if we take    K 0  =  {  a  j 0   ,  c  i 0   }    and    L 0  =  { x }   , then we have    K 0  ⊑  K ′    and    L 0  ⊑  L ′    with   sup  K 0  = x = inf  L 0   . By a similar verification to that of Case (iii), there exist an up-directed subset   K U ′   of the set   K ′   and a down-directed subset   L D ′   of the set   L ′   such that   sup  K U ′  = x = inf  L D ′   .




	(v3)

	
   c  i 1   ∈  K ′    for some    i 1  ∈ N   with    i 1   < o   i 0   .



In this case, if we take    K 0  =  {  b  i 0   ,  c  i 1   }    and    L 0  =  { x }   , then we have    K 0  ⊑  K ′    and    L 0  ⊑  L ′    with   sup  K 0  = x = inf  L 0   . By a similar verification to that of (iii), there exist an up-directed subset   K U ′   of the set   K ′   and a down-directed subset   L D ′   of the set   L ′   such that   sup  K U ′  = x = inf  L D ′   .




	(v4)

	
   c  i 2   ,  c  i 3   ∈  K ′    for some    i 2  ,  i 3  ∈ N  .



In this case, if we take    K 0  =  {  c  i 2   ,  c  i 3   }    and    L 0  =  { x }   , then we have    K 0  ⊑  K ′    and    L 0  ⊑  L ′    with   sup  K 0  = x = inf  L 0   . By a similar verification to (iii), there exist an up-directed subset   K U ′   of the set   K ′   and a down-directed subset   L D ′   of the set   L ′   such that   sup  K U ′  = x = inf  L D ′   .










	(vi)

	
  p = x   and    c i  ∈  K ′    for some   i ∈ N  .



Since the pair   (  K ′  ,  L ′  )   is an ID-pair, we have    a i  ∈   (   {  c i  }  u  ⋂   { x }  l  )  l  ⊆  K ′   . So, we can return the verification to Case (v).




	(vii)

	
  p = x   and    b i  ∈  K ′    for some   i ∈ N  .



We consider the following cases:




	(vii1)     

	
   b i  ,  b j  ∈  K ′  ⋂  {  b 1  ,  b 2  , … }    for some   i , j ∈ N  .



Since the pair   (  K ′  ,  L ′  )   is an ID-pair, we have    a i  ∈   (   {  b i  ,  b j  }  u  ⋂   { x }  l  )  l  ⊆  K ′   . So, we can return the verification to Case (v).




	(vii2)

	
   {  b i  }  =  K ′  ⋂  {  b 1  ,  b 2  , … }   .



Since   sup  K ′  = x  , there exists   j ∈ N   such that    a j  ∈  K ′    (resp.    c j  ∈  K ′   ,   x ∈  K ′   ). So, we can return the verification to Case (v) (resp. Case (vi), Case (iv)).















By Definition 7 and the combination of Cases (iii)–(vii), we conclude that the poset P is an ID-doubly continuous poset.






5. Discussion


This paper introduced the notion of ID-pairs in posets. It was shown that the set of all eventually lower bounds and the set of all eventually upper bounds of a net in a given poset can be precisely paired to be an ID-pair. This result provides a potential approach for dealing with the general nets in posets, since some kinds of order convergent nets, such as the o-convergent nets and   o 2  -convergent nets, are uniquely determined by their eventually lower bounds sets and eventually upper bounds sets.



Furthermore, in order to characterize these posets in which the o-convergence and   o 2  -convergence are equivalent, the concept of ID-doubly continuous posets is proposed. It is proved that the equivalence of the o-convergence and   o 2  -convergence in a poset is equivalent to the ID-double continuity of the poset. This result provides a sufficient and necessary condition for the o-convergence and   o 2  -convergence to be equivalent.



However, it may be complicated to verify the ID-double continuity for some posets, such as the poset in Example 7. On the contrary, the lattices, a special kind of poset, can be easily proved to be ID-double continuous. This indicates that the ID-double continuity has some close relationships with some special kinds of posets. These relationships deserve further investigation.
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