

Article The Equivalence of Two Modes of Order Convergence

Tao Sun¹ and Nianbai Fan^{2,*}

- ¹ College of Mathematics and Physics, Hunan University of Arts and Science, Changde 415000, China; suntao@huas.edu.cn
- ² School of Computer Science and Engineering, Hunan University of Information Technology, Changsha 410151, China
- * Correspondence: nbfan620310@hnu.edu.cn

Abstract: It is well known that if a poset satisfies Property A and its dual form, then the *o*-convergence and o_2 -convergence in the poset are equivalent. In this paper, we supply an example to illustrate that a poset in which the *o*-convergence and o_2 -convergence are equivalent may not satisfy Property A or its dual form, and carry out some further investigations on the equivalence of the *o*-convergence and o_2 -convergence. By introducing the concept of the local Frink ideals (the dually local Frink ideals) and establishing the correspondence between ID-pairs and nets in a poset, we prove that the *o*-convergence and o_2 -convergence of nets in a poset are equivalent if and only if the poset is ID-doubly continuous. This result gives a complete solution to the problem of E.S. Wolk in two modes of order convergence, which states under what conditions for a poset the *o*-convergence and o_2 -convergence in the poset are equivalent.

Keywords: order convergence; local Frink ideal (dually local Frink ideal); ID-doubly continuous poset

MSC: 06A06; 06B10

1. Introduction

Let *P* be a poset and $(x_i)_{i \in I}$ a net on an up-directed set *I* with value in the poset *P*. The concept of order convergence of nets in a poset *P* was introduced by Birkhoff [1], Mcshane [2], Frink [3], Rennie [4] and Ward [5]. It is worth noting that the authors may have attached different meanings to the order convergence. Following the formulation of Wolk [6], we correspond to the following two modes of order convergence:

Definition 1 ([1–3]). A net $(x_i)_{i \in I}$ in a poset *P* is said to o-converge to an element $x \in P$ (in symbol $(x_i)_{i \in I} \xrightarrow{o} x$) if there exist subsets *M* and *N* of *P* such that

(A0) *M* is up-directed and *N* is down-directed;

```
(B0) \sup M = x = \inf N;
```

(C0) For every $m \in M$ and $n \in N$, $m \leq x_i \leq n$ holds eventually, i.e., there is $i_0 \in I$ such that $m \leq x_i \leq n$ for all $i \geq i_0$.

Definition 2 ([4–6]). A net $(x_i)_{i \in I}$ in a poset *P* is said to o_2 -converge to an element $x \in P$ (in symbol $(x_i)_{i \in I} \xrightarrow{o_2} x$) if there exist subsets *M* and *N* of *P* such that

(A2) sup $M = x = \inf N$; (B2) For every $m \in M$ and $n \in N$, $m \leq x_i \leq n$ holds eventually.

A research topic concerning the *o*-convergence and o_2 -convergence, which are closely related to our work, is from the topological aspect. The *o*-convergence in a poset *P* may not be topological, i.e., there does not exist a topology τ on the poset *P* such that the *o*-convergent class and the convergent class with respect to the topology τ are equivalent. In [7], based on the introduction of Condition(*) and the double continuity for posets,

Citation: Sun, T.; Fan, N. The Equivalence of Two Modes of Order Convergence. *Mathematics* **2024**, 12, 1438. https://doi.org/10.3390/ math12101438

Academic Editor: Antonio Di Nola

Received: 22 March 2024 Revised: 20 April 2024 Accepted: 2 May 2024 Published: 7 May 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Zhou and Zhao proved that, for a double continuous poset *P* with Condition(*), the *o*-convergence in the poset *P* is topological. As a further result, Condition (\triangle), a weaker condition than Condition(*), and the \mathcal{O} -doubly continuous posets were defined in [8]. It was shown that, for a poset *P* with Condition (\triangle), the *o*-convergence in the poset *P* is topological if and only if the poset *P* is \mathcal{O} -doubly continuous. Following the ideal in [8], Sun and Li [9] studied the B-topology on posets and found that the *o*-convergence in a poset *P* is topological if and only if the poset *P* is *S**-doubly continuous, which demonstrates the equivalence between the *o*-convergence being topological and the *S**-double continuity of a poset. Moreover, the ideal-*o*-convergence, a generalized form of *o*-convergence established via ideals, was defined in posets by Georgiou et al. [10,11]. Also, the authors obtained that the ideal-*o*-convergence in a poset *P* is topological if and only if the previous results on the *o*-convergence.

On the other hand, the o_2 -convergence is also not topological generally. To characterize these posets so that the o_2 -convergence is topological, Zhao and Li [12] studied the notions of α -double continuous posets and α^* -double continuous posets. Under some additional conditions, the o_2 -convergence in these posets is topological. Ulteriorly, Li and Zou [13] proposed the concept of O_2 -doubly continuous posets and showed that the o_2 -convergence in a poset *P* is topological if and only if the poset *P* is O_2 -doubly continuous, meaning that they gave a sufficient and necessary condition for the o_2 -convergence to be topological. Further, Georgiou et al. [14] extended the o_2 -convergence to be the ideal- o_2 -convergence via ideals, and showed that the O_2 -double continuity can equivalently characterize such a convergence to be topological.

From the order-theoretical aspect, by the definitions, one can readily verify that the *o*-convergence implies the *o*₂-convergence, i.e., if a net $(x_i)_{i \in I}$ in a poset *P o*-converges to an element $x \in P$, then it *o*₂-converges to *x*. However, the converse implication is not true. This fact can be demonstrated by the example in [6]. Hence, in [6], Wolk posed the following fundamental problem:

Problem 1. Under what conditions for a poset P do the o-convergence and o₂-convergence in P agree?

A well-known result on this problem is that the *o*-convergence and o_2 -convergence in a lattice are equivalent. Then, Wolk [6] obtained a result on the characterization of posets for the associated *o*-inf convergence (a counterpart of *o*-convergence) and o_2 -inf convergence (a counterpart of *o*_2-convergence) being equivalent, which provides an approximate solution to the fundamental problem, using the concepts of Frink ideals and dual Frank ideals [15].

Motivated by these results toward the problem mentioned above, in this paper, we continue to make some further investigations on the *o*-convergence and o_2 -convergence, hoping to clarify the order-theoretical condition of a poset *P*, which is sufficient and necessary for the *o*-convergence and o_2 -convergence to be equivalent.

To this end, in Section 2, following the Frink ideal (the dual Frink ideal), the concepts of local Frink ideals (dually local Frink ideals) and ID-pairs in posets are further proposed, and then the relationship between ID-pairs and nets is presented. Section 3 is devoted to the order-theoretical characterization of the local Frink ideal (the dually local Frink ideal) generated by a general set. Using this characterization, we prove that the ID-double continuity is the precise feature for those posets for which the two modes of order convergence are equivalent.

For the unexplained notions and concepts, one can refer to [6,16,17].

2. Local Frink Ideal (Dually Local Frink Ideal) in Posets

We appoint some conventional notations to be used in the sequel. Let *X* be a set. We take $F \sqsubseteq X$ to mean that *F* is a finite subset of the set *X*, including the empty set \emptyset . Given a poset *P* and *K*, $L \subseteq P$. The notations K^u and L^l are used to denote the set of all upper bounds of *K* and the set of all lower bounds of *L*, respectively, i.e., $K^u = \{y \in P : (\forall p \in K) \ y \ge p\}$

and $L^{l} = \{z \in P : (\forall p \in L) \ z \leq p\}$. Particularly, if the sets *K* and *L* are all reduced to be a singleton $\{y\}$, then the notations $\uparrow y$ and $\downarrow y$ are reserved to denote the sets $\{y\}^{u}$ and $\{y\}^{l}$, respectively.

Since the Frink ideal (the dual Frink ideal) in posets plays a fundamental role in the discussion of this section, we first review its definition.

Definition 3 ([15]). *Let P be a poset.*

- (1) A subset K of the poset P is called a Frink ideal if, for every $F \sqsubseteq K$, we have $(F^u)^l \subseteq K$. Furthermore, a Frink ideal K is said to be normal if $(K^u)^l = K$.
- (2) A subset L of the poset P is called a dual Frink ideal if, for every $S \sqsubseteq L$, we have $(S^l)^u \subseteq L$. Furthermore, a dual Frink ideal L is said to be normal if $(L^l)^u = L$.

Based on the Frink ideal (the dual Frink ideal), we further define the local Frink ideal (the dually local Frink ideal) in posets.

Definition 4. *Let P be a poset and* $K, L \subseteq P$ *.*

- (1) The subset K is called a local Frink ideal in L if, for every $F \sqsubseteq K$ and every $S \sqsubseteq L$, we have $(F^u \cap S^l)^l \subseteq K$.
- (2) The subset *L* is called a dually local Frink ideal in *K* if, for every $F \sqsubseteq K$ and every $S \sqsubseteq L$, we have $(F^u \cap S^l)^u \subseteq L$.

Example 1. Let \mathbb{R} be the set of all real numbers, in its usual order, and let $a \in \mathbb{R}$. If we take $K = (-\infty, a]$ and $L = [a, +\infty)$, then, by Definition 4, the interval K is a local Frink ideal in L and the interval L is a dually local Frink ideal in K.

Given a poset *P* and *K*, $L \subseteq P$. We simply denote by $\mathfrak{L}(L)$ the family of all local Frink ideals in *L* and, by $\mathfrak{D}(K)$, the family of all dually local Frink ideals in *K*.

Remark 1. Let *P* be a poset and $K, L \subseteq P$. Then,

- (1) From the logic viewpoint, it is reasonable to stipulate that $\emptyset^u = \emptyset^l = P$. Thus, for every $L \subseteq P$ and every $K \in \mathfrak{L}(L)$, we have $\bot \in K$ if the poset P has the least element \bot . Dually, for every $K \subseteq P$ and every $L \in \mathfrak{D}(K)$, we have $\top \in L$ if the greatest element \top exists in the poset P.
- (2) If $K \in \mathfrak{L}(L)$, then $K \in \mathfrak{L}(L_0)$ for every $L_0 \subseteq L$. And, dually, if $L \in \mathfrak{D}(K)$, then $L \in \mathfrak{D}(K_0)$ for every $K_0 \subseteq K$.
- (3) The subset K is a Frink ideal if and only if $K \in \mathfrak{L}(\emptyset)$. And, dually, the subset L is a dual Frink ideal if and only if $L \in \mathfrak{D}(\emptyset)$.

Proposition 1. *Let P be a poset and* $K, L \subseteq P$ *.*

- (1) If $K \in \mathfrak{L}(L)$, then the subset K is a Frink ideal.
- (2) If $L \in \mathfrak{D}(K)$, then the subset L is a dual Frink ideal.

Proof. (1): Suppose that $K \in \mathfrak{L}(L)$. Then, we have $(F^u \cap S^l)^l \subseteq K$ for every $F \sqsubseteq K$ and $S \sqsubseteq L$. This implies that $(F^u)^l \subseteq (F^u \cap S^l)^l \subseteq K$. Thus, we conclude that $(F^u)^l \subseteq K$ for every $F \sqsubseteq K$. This shows that the subset K is a Frink ideal.

(2): The proof is similar to that of (1). \Box

However, the converse implications of Proposition 1 may not be true. This fact can be clarified in Example 7.

Definition 5. Let P be a poset. A pair (K, L) consisting of subsets K and L of P is called an ID-pair in P if $K \in \mathfrak{L}(L)$ and $L \in \mathfrak{D}(K)$. Moreover, an ID-pair (K, L) in P is said to be nontrivial if one of the following conditions is exactly satisfied:

- (1) |P| = 1, where |P| denotes the cardinal of the poset *P*;
- (2) $|P| \ge 2$ and $(K, L) \ne (P, P)$.

Example 2. Let $P = \{a, b\} \cup \{\bot, \top\}$, with the partial order \leq defined by

- $\bot \leqslant a \leqslant \top$;
- $\bot \leqslant b \leqslant \top$.

Take $K = \{\bot\}$ *and* $L = \{\top\}$ *. Then, it is easy to see from Definitions* 4 *and* 5 *that the pair* $(K, L) = (\{\bot\}, \{\top\})$ *is a nontrivial ID-pair.*

Proposition 2. Let (K, L) be an ID-pair in a poset P. Then, the ID-pair (K, L) is nontrivial if and only if $F^u \cap S^l \neq \emptyset$ for every $F \sqsubseteq K$ and every $S \sqsubseteq L$.

Proof. (\Rightarrow): Let (*K*, *L*) be a nontrivial ID-pair in a poset *P*. We consider the following cases:

- (i) |P| = 1, i.e., the poset $P = \{p\}$ contains only one element p. It is easy to check that $F^u \cap S^l = \{p\} \neq \emptyset$ for every $F \sqsubseteq K$ and every $S \sqsubseteq L$.
- (ii) $|P| \ge 2$.

Suppose that $(F_0)^u \cap (S_0)^l = \emptyset$ for some $F_0 \sqsubseteq K$ and $S_0 \sqsubseteq L$. Then, we have $[(F_0)^u \cap (S_0)^l]^l = P \subseteq K$ and $[(F_0)^u \cap (S_0)^l]^u = P \subseteq L$ since (K, L) is an ID-pair in the poset P. This implies that (K, L) = (P, P), which is a contradiction to the assumption that the ID-pair (K, L) is nontrivial. Hence, we have that $F^u \cap S^l \neq \emptyset$ for every $F \sqsubseteq K$ and every $S \sqsubseteq L$.

By (i) and (ii), we conclude that $F^u \cap S^l \neq \emptyset$ for every $F \sqsubseteq K$ and every $S \sqsubseteq L$.

(⇐): Suppose that (K, L) is an ID-pair such that $F^u \cap S^l \neq \emptyset$ for every $F \sqsubseteq K$ and every $S \sqsubseteq L$. If $(K, L) \neq (P, P)$, then the ID-pair (K, L) is nontrivial by Definition 5. If (K, L) = (P, P), i.e., K = L = P, then, by the assumption, we have $\{p\}^u \cap \{q\}^l = \uparrow p \cap \downarrow q \neq \emptyset$ and $\{q\}^u \cap \{p\}^l = \uparrow q \cap \downarrow p \neq \emptyset$ for all $p, q \in P$. It follows that p = q for all $p, q \in P$. Hence, we conclude that |P| = 1. This shows, by Definition 5, that the ID-pair (K, L) is nontrivial. \Box

In fact, given a poset *P* and a Frink ideal *K* (resp. a dual Frink ideal *L*) of the poset *P*, we can select a subset *L* (resp. a subset *K*) of *P* such that the pair (K, L) is a nontrivial ID-pair.

Theorem 1. *Let P be a poset.*

- (1) If *K* is a Frink ideal of the poset *P*, then the pair (*K*, *L*) is a nontrivial ID-pair for some subset *L* of the poset *P*;
- (2) If *L* is a dual Frink ideal of the poset *P*, then the pair (*K*, *L*) is a nontrivial ID-pair for some subset *K* of the poset *P*.

Proof. (1): Suppose that *K* is a Frink ideal of *P*. Set $L = \bigcup \{ (F^u)^u : F \sqsubseteq K \}$. Now, we process to show that the pair (K, L) is an ID-pair. Let $F_0 \sqsubseteq K$ and $S_0 \sqsubseteq L$. We consider the following two cases:

(i) $S_0 = \emptyset$.

Since *K* is a Frink ideal, by the definition of *L*, we have

$$[(F_0)^u \cap (S_0)^l]^l = [(F_0)^u \cap P]^l = [(F_0)^u]^l \subseteq K,$$

and

$$[(F_0)^u \cap (S_0)^l]^u = [(F_0)^u \cap P]^u = [(F_0)^u]^u \subseteq L$$

(ii) $S_0 = \{s_1, s_2, \dots, s_m\} \neq \emptyset$.

By the definition of *L*, there exists $F_i \sqsubseteq K$ such that $s_i \in [(F_i)^u]^u$ for every $i \in \{1, 2, ..., m\}$. This means that $(F_i)^u \subseteq \downarrow s_i$ for every $i \in \{1, 2, ..., m\}$. Thus, we have $(F_1 \cup F_2 \cup \cdots \cup F_m)^u \subseteq (S_0)^l$, which implies that

$$((F_0)^u \cap (S_0)^l)^l \subseteq [(F_0 \cup F_1 \cup F_2 \cup \dots \cup F_m)^u \cap (S_0)^l]^l$$
$$= [(F_0 \cup F_1 \cup F_2 \cup \dots \cup F_m)^u]^l$$
$$\subseteq K,$$

and

$$((F_0)^u \cap (S_0)^l)^u \subseteq [(F_0 \cup F_1 \cup F_2 \cup \dots \cup F_m)^u \cap (S_0)^l]^u$$
$$= [(F_0 \cup F_1 \cup F_2 \cup \dots \cup F_m)^u]^u$$
$$\subseteq L.$$

The combination of (i) and (ii) shows that the pair (K, L) is an ID-pair in P. Finally, we prove that the ID-pair (K, L) is nontrivial. Assume that (K, L) = (P, P). Let $x, y \in L = P$. Then, by the definition of L, there exists $F_y \sqsubseteq P$ such that $y \in [(F_y)^u]^u$, which implies that $(F_y)^u \subseteq \downarrow y$. Since $(\{x\} \cup F_y)^u \subseteq (F_y)^u \subseteq \downarrow y$, we have $x \in \downarrow y$, i.e., $x \leq y$. Similarly, we can prove that $y \leq x$. This means that x = y, and thus we have |P| = 1. By Definition 5, it follows that the ID-pair (K, L) is nontrivial.

(2): By a similar verification to that of (1). \Box

Example 3. Let *P* be a chain, i.e., for all $x, y \in P$, either $x \leq y$ or $y \leq x$. For every $x \in P$, by Definition 4 we have that the set $\downarrow x$ is a Frink ideal. Obviously, by Definitions 4 and 5, the set $\uparrow x$ can be selected such that the pair $(\downarrow x, \uparrow x)$ is a nontrivial ID-pair in *P*.

Given a poset *P* and a net $(x_i)_{i \in I}$ in the poset *P*, an element $p \in P$ is called an *eventually lower bound* of the net $(x_i)_{i \in I}$ provided that there exists $i_0 \in I$ such that $x_i \ge p$ for all $i \ge i_0$. An *eventually upper bound* of the net $(x_i)_{i \in I}$ is defined dually. Following the notations of Wolk [6], we also take the symbols P_x and Q_x to mean the set of all eventually lower bounds of the net $(x_i)_{i \in I}$ and the set of all eventually upper bounds of the net $(x_i)_{i \in I}$, respectively. If we denote $E_x(i_0) = \{x_i \in P : i \ge i_0\}$, then $P_x = \bigcup\{[E_x(i)]^l : i \in I\}$ and $Q_x = \bigcup\{[E_x(i)]^u : i \in I\}$. For a set *X*, the symbol $Y \subset X$ means that *Y* is a proper subset of the set *X*, i.e., $Y \subseteq X$ and $Y \ne X$. In the following, we always take \ge_0 to represent the ordinary order on \mathbb{N} , the set of all positive integers.

Now, we can establish a correspondence between the nets and the ID-pairs:

Theorem 2. Let P be a poset. Then, a pair (K, L) in P is a nontrivial ID-pair if and only if there exists a net $(x_i)_{i \in I}$ in P such that $P_x = K$ and $Q_x = L$.

Proof. (\Leftarrow): Let (*K*, *L*) be a pair of subsets of the poset *P*. Suppose also that $(x_i)_{i \in I}$ is a net in the *P* such that $P_x = K$ and $Q_x = L$. For every $F \sqsubseteq P_x = K$ and every $S \sqsubseteq Q_x = L$, we consider the following cases:

(i) $F = S = \emptyset$.

Since $F = \emptyset$ and $S = \emptyset$, we have that $E_x(i) \subseteq F^u \cap S^l = P \neq \emptyset$ for all $i \in I$. This implies that $(F^u \cap S^l)^l \subseteq [E_x(i)]^l$ and $(F^u \cap S^l)^u \subseteq [E_x(i)]^u$ for all $i \in I$. Hence, $(F^u \cap S^l)^l \subseteq P_x$ and $(F^u \cap S^l)^u \subseteq Q_x$.

(ii) $F = \emptyset \sqsubseteq P_x$ and $S = \{s_1, s_2, \dots, s_n\} \sqsubseteq Q_x$. Since $S = \{s_1, s_2, \dots, s_n\} \sqsubseteq Q_x$, for every $1 \leq_o t \leq_o n$, there exists $i_t \in I$ such that $E_x(i_t) \subseteq \downarrow s_t$. Take $i_0 \in I$ such that $i_0 \ge i_t$ for all $1 \leq_o t \leq_o n$. Then, we have $E_x(i_0) \subseteq \bigcap \{E_x(i_t) : 1 \leq_o t \leq_o n\} \subseteq \bigcap \{\downarrow s_t : 1 \leq_o t \leq_o n\} = S^l$, which implies that $E_x(i_0) \subseteq F^u \bigcap S^l = S^l \neq \emptyset$, $(F^u \bigcap S^l)^l \subseteq [E_x(i_0)]^l$ and $(F^u \bigcap S^l)^u \subseteq [E_x(i_0)]^u$. It follows that $(F^u \bigcap S^l)^l \subseteq P_x$ and $(F^u \bigcap S^l)^u \subseteq Q_x$.

(iii)
$$F = \{e_1, e_2, \dots, e_m\} \sqsubseteq P_x \text{ and } S = \emptyset \sqsubseteq Q_x.$$

By a similar verification to that of (ii), we can also prove that $F^u \cap S^l \neq \emptyset$, $(F^u \cap S^l)^l \subseteq P_x$ and $(F^u \cap S^l)^u \subseteq Q_x$.

- (iv) $F = \{e_1, e_2, ..., e_m\} \sqsubseteq P_x$ and $S = \{s_1, s_2, ..., s_n\} \sqsubseteq Q_x$.
 - Since $F = \{e_1, e_2, \ldots, e_m\} \sqsubseteq P_x$ and $S = \{s_1, s_2, \ldots, s_n\} \sqsubseteq Q_x$, there exist $i_r, i_t \in I$ such that $E_x(i_r) \subseteq \uparrow e_r$ and $E_x(i_t) \subseteq \downarrow s_t$ for all $1 \leq_o r \leq_o m$ and $1 \leq_o t \leq_o n$. Take $i_0 \in I$ such that $i_0 \ge i_r, i_t$ for all $1 \leq_o r \leq_o m$ and $1 \leq_o t \leq_o n$. Then, we have $E_x(i_0) \subseteq \bigcap\{\uparrow e_r : 1 \leq_o r \leq_o m\} \bigcap \{\downarrow s_t : 1 \leq_o t \leq_o n\} = F^u \bigcap S^l$, which implies that $F^u \bigcap S^l \neq \emptyset$, $(F^u \bigcap S^l)^l \subseteq [E_x(i_0)]^l$ and $(F^u \bigcap S^l)^u \subseteq [E_x(i_0)]^u$. Thus, $(F^u \bigcap S^l)^l \subseteq P_x$ and $(F^u \bigcap S^l)^u \subseteq Q_x$.

By (i)–(iv), Definition 4 and Proposition 2, we conclude that the pair $(P_x, Q_x) = (K, L)$ is a nontrivial ID-pair in the poset *P*.

 (\Rightarrow) : Assume that the pair (K, L) is a nontrivial ID-pair in the poset *P*. We take the following cases into consideration:

(v) Either the set *K* or the set *L* is infinite.

Without loss of generality, we can assume that the set *K* is infinite. As the ID-pair (*K*, *L*) is nontrivial, we have that $F^u \cap S^l \neq \emptyset$ for every $F \sqsubseteq K$ and every $S \sqsubseteq L$ by Proposition 2. Let κ_F^S be the cardinal, linearly ordered by \geq_F^S , of the set $F^u \cap S^l$, and a_F^S : $\kappa_F^S \to F^u \cap S^l$ be a one-to-one function from κ_F^S onto $F^u \cap S^l$ for every $F \sqsubseteq K$ and every $S \sqsubseteq L$. Put $I = \{(F, S, \lambda) : F \sqsubseteq K, S \sqsubseteq L, \lambda \in \kappa_F^S\}$. For any $(F_1, S_1, \lambda_1), (F_2, S_2, \lambda_2) \in I$, we define $(F_2, S_2, \lambda_2) \ge (F_1, S_1, \lambda_1)$ if and only if one of the following conditions is satisfied:

- (1) $F_1 = F_2, S_1 = S_2 \text{ and } \lambda_2 \ge_{F_1}^{S_1} \lambda_1;$
- (2) $F_1 \subset F_2$ and $S_1 \subseteq S_2$.

Now, one can readily check that the ordered set *I* is up-directed. Let the net $(x_i)_{i \in I}$ in the poset *P* be defined by $x_{(F,S,\lambda)} = a_F^S(\lambda)$ for every $(F,S,\lambda) \in I$. Next, we proceed to prove that $P_x = K$ and $Q_x = L$. Let $p \in P_x$. Then, there exists $(F_1, S_1, \lambda_1) \in I$ such that $p \in [E_x((F_1, S_1, \lambda_1))]^l$. Take $S_2 = S_1$ and $F_2 \sqsubseteq K$ with $F_1 \subset F_2$. Then, we have $[(F_2)^u \cap (S_2)^l]^l \subseteq K$ since the pair (K, L) is a nontrivial ID-pair. According to the definition of *I*, it follows that $(F_2, S_2, \lambda_2) \ge (F_1, S_1, \lambda_1)$ for every $\lambda_2 \in \kappa_{F_2}^{S_2}$, which implies that $x_{(F_2, S_2, \lambda_2)} = a_{F_2}^{S_2}(\lambda_2) \in E_x((F_1, S_1, \lambda_1))$ for every $\lambda_2 \in \kappa_{F_2}^{S_2}$. Hence, we conclude that $(F_2)^u \cap (S_2)^l \subseteq E_x((F_1, S_1, \lambda_1))$. This shows that $p \in [E_x((F_1, S_1, \lambda_1))]^l \subseteq [(F_2)^u \cap (S_2)^l]^l \subseteq K$. Thus, $P_x \subseteq K$. Conversely, let $q \in K$. Set $F_0 = \{q\} \sqsubseteq K$ and $S_0 = \emptyset \sqsubseteq L$. Then, by the definition of *I*, it is easy to see that $(F_0, S_0, \lambda_0) \in I$ for all $\lambda_0 \in \kappa_{F_0}^{S_0}$. For every $(F, S, \lambda) \in I$ with $(F, S, \lambda) \ge (F_0, S_0, \lambda_0)$, by the definition of *I*, we have $F_0 \subseteq F$ and $S_0 \subseteq S$, which implies that $F^u \cap S^l \subseteq (F_0)^u \cap (S_0)^l = \uparrow q$. It follows that $q \in P_x$. Hence, we conclude that $K \subseteq P_x$. This shows that $P_x = K$. It can be similarly proved that $Q_x = L$.

(vi) Both the sets *K* and *L* are finite.

Since the pair (K, L) is a nontrivial ID-pair in the poset P, it follows that $K^u \cap L^l \neq \emptyset$, $(K^u \cap L^l)^l \subseteq K$ and $(K^u \cap L^l)^u \subseteq L$. Let κ_K^L , well ordered by \geq_K^L , denote the cardinal of the set $K^u \cap L^l$, and $a_K^L : \kappa_K^L \to K^u \cap L^l$ be a one-to-one function from the cardinal κ_K^L onto the set $K^u \cap L^l$. Set $I = \{(n, \lambda) : n \in \mathbb{N}, \lambda \in \kappa_K^L\}$. For any $(n_1, \lambda_1), (n_2, \lambda_2) \in I$, we define $(n_2, \lambda_2) \ge (n_1, \lambda_1)$ if and only if one of the following conditions is satisfied:

- (3) $n_1 = n_2$ and $\lambda_2 \geq_K^L \lambda_1$;
- (4) $n_1 \neq n_2$ and $n_2 \ge_o n_1$.

It can easily be checked that the ordered *I* is up-directed. Let $(x_i)_{i \in I}$ be the net in the poset *P* by defining $x_{(n,\lambda)} = a_K^L(\lambda) \in K^u \cap L^l$ for all $\lambda \in \kappa_K^L$. Now, it remains to show that $K = P_x$ and $L = Q_x$. Let $q \in K$. Then, we have $K^u \cap L^l \subseteq \uparrow q$. By the definition of the net $(x_i)_{i \in I}$, it follows that $x_{(n,\lambda)} = a_K^L(\lambda) \in K^u \cap L^l \subseteq \uparrow q$ for all $(n,\lambda) \in I$. This means that $q \in [E_x((n,\lambda))]^l$ for all $(n,\lambda) \in I$. Hence, we conclude that $q \in P_x$,

which shows that $K \subseteq P_x$. Conversely, let $p \in P_x$. Then, there exists $(n_0, \lambda_0) \in I$ such that $p \in [E_x((n_0, \lambda_0))]^l$. Since $(n_0 + 1, \lambda) \ge (n_0, \lambda_0)$, for all $\lambda \in \kappa_K^L$, it follows that $x_{(n_0+1,\lambda)} = a_K^L(\lambda) \in K^u \cap L^l$ for all $\lambda \in \kappa_K^L$. This implies that $K^u \cap L^l \subseteq E_x((n_0, \lambda_0))$. Hence, we have $p \in [E_x((n_0, \lambda_0))]^l \subseteq (K^u \cap L^l)^l \subseteq K$. This shows that $P_x \subseteq K$. Therefore, $P_x = K$. A similar verification can show that $Q_x = L$.

By (v) and (vi), we can conclude that there exists a net $(x_i)_{i \in I}$ in the poset *P* such that $P_x = K$ and $Q_x = L$. Thus, the proof is completed. \Box

Example 4. Let $P = \{\top\} \cup \{a_1, a_2, \dots, a_n, \dots\}$ with the partial order \leq defined by

(∀n) a_n ≤ ⊤.
Consider the net (x_n)_{n∈ℕ} defined by

$$(\forall n \in \mathbb{N}) x_n = a_n$$

where the up-directed set \mathbb{N} is the set of all positive integers in its usual order. By the definition of the net $(x_n)_{n \in \mathbb{N}}$, we have $P_x = \emptyset$ and $Q_x = \{\top\}$. On the other hand, it follows from Definition 4 and Definition 5 that the pair $(\emptyset, \{\top\})$ is a nontrivial ID-pair. This demonstrates Theorem 2 in the case.

The combination of Proposition 1 and Theorems 1 and 2 indicates that the eventually lower bounds P_x and eventually upper bounds Q_x of a net $(x_i)_{i \in I}$ are precisely a Frink ideal and a dual Frink ideal, respectively (see Corollary 1). However, they are not independent. Theorem 2 clarifies the correlation between the Frink ideal P_x and the dual Frink ideal Q_x from the point of view of order; that is, the Frink ideal P_x and the dual Frink ideal Q_x must be matched as a nontrivial ID-pair. Also, this is the initial motivation of introducing the local Frink ideal (the dually local Frink ideal) and ID-pair for posets in the sequel.

Corollary 1 ([6]). *Let* P *be a poset and* $K, L \subseteq P$. *Then,*

- (1) The subset K is a Frink ideal if and only if $P_x = K$ for some net $(x_i)_{i \in I}$ in the poset P;
- (2) The subset L is a dual Frink ideal if and only if $Q_y = L$ for some net $(y_i)_{i \in I}$ in the poset P.

3. ID-Doubly Continuous Posets

Given a poset *P* and *M*, $N \subseteq P$, let $\mathfrak{L}_M(N) = \{K \in \mathfrak{L}(N) : M \subseteq K\}$. Then, one can readily verify by Definition 4 that the intersection $\cap \mathfrak{L}_M(N)$ contains the set *M* and is again a local Frink ideal in the set *N*. This local Frink ideal is called the *local Frink ideal generated* by the set *M* and denoted by $IG_N(M)$. The *dually local Frink ideal generated* by the set *N* is defined dually, and denoted by $DG_M(N)$. Next, we clarify the structure of $IG_N(M)$ and $DG_M(N)$:

Proposition 3. *Let P be a poset and* $M, N \subseteq P$ *. Then,*

- (1) $IG_N(M) = \{ p \in P : (\exists M_0 \sqsubseteq M) \ (\exists N_0 \sqsubseteq N) \ (M_0)^u \cap (N_0)^l \subseteq \uparrow p \};$
- (2) $DG_M(N) = \{q \in P : (\exists M_{00} \sqsubseteq M) \ (\exists N_{00} \sqsubseteq N) \ (M_{00})^u \cap (N_{00})^l \subseteq \downarrow q\}.$

Proof. (1): Denote the set $\{p \in P : (\exists M_0 \sqsubseteq M) \ (\exists N_0 \sqsubseteq N) \ (M_0)^u \cap (N_0)^l \subseteq \uparrow p\}$ by \overline{M}_N . Then, it is easy to see that $M \subseteq \overline{M}_N$. Now, we proceed to prove that $\overline{M}_N \in \mathfrak{L}(N)$. Let $F \sqsubseteq \overline{M}_N$ and $S \sqsubseteq N$. We should consider the following cases:

(i) $F = \emptyset$.

Since $F = \emptyset$, it follows that $(M_a)^u \cap S^l \subseteq F^u \cap S^l = S^l$ for all $M_a \subseteq M$, which implies that $(F^u \cap S^l)^l \subseteq [(M_a)^u \cap S^l]^l$ for all $M_a \subseteq M$. This means that $(M_a)^u \cap S^l \subseteq \uparrow p'$ for all $p' \in (F^u \cap S^l)^l$. Hence, we infer that $(F^u \cap S^l)^l \subseteq \overline{M}_L$.

(ii) $F = \{e_1, e_2, \ldots, e_m\} \neq \emptyset$.

It follows by the definition of \overline{M}_N that, for every $1 \leq_o r \leq_o m$, there exist $M_r \sqsubseteq M$ and $N_r \sqsubseteq N$ such that $(M_r)^u \cap (N_r)^l \subseteq \uparrow e_r$. Take $M_F = \bigcup \{M_r : 1 \leq_o r \leq_o m\}$ and $N_F = \bigcup \{N_r : 1 \leq_o r \leq_o m\} \bigcup S$. Then, we have that $M_F \sqsubseteq M$, $N_F \sqsubseteq N$ and

$$(M_F)^u \bigcap (N_F)^l = \bigcap \{ (M_r)^u \bigcap (N_r)^l : 1 \le_o r \le_o m \} \bigcap S^l$$
$$\subseteq \bigcap \{ \uparrow e_r : 1 \le_o r \le_o m \} \bigcap S^l$$
$$= F^u \bigcap S^l.$$

This implies that $(F^u \cap S^l)^l \subseteq [(M_F)^u \cap (N_F)^l]^l$, which means that $(M_F)^u \cap (N_F)^l \subseteq \uparrow p'$ for all $p' \in (F^u \cap S^l)^l$. Thus, we conclude that $(F^u \cap S^l)^l \subseteq \overline{M}_N$ by the definition of \overline{M}_N .

According to (i), (ii) and Definition 4, we show that $\overline{M}_N \in \mathfrak{L}(N)$.

To complete the proof, it suffices to prove that $\overline{M}_N \subseteq K$ for every $K \in \mathfrak{L}(N)$ with $M \subseteq K$. Let $p \in \overline{M}_N$. Then, by the definition of \overline{M}_N , there exist $M_0 \sqsubseteq M$ and $N_0 \sqsubseteq N$ such that $(M_0)^u \cap (N_0)^l \subseteq \uparrow p$. This means that $p \in [(M_0)^u \cap (N_0)^l]^l$. Since $M \subseteq K$ and $K \in \mathfrak{L}(N)$, it follows that $p \in [(M_0)^u \cap (N_0)^l]^l \subseteq K$. So, we have that $\overline{M}_N \subseteq K$. Consequently, we infer that $IG_N(M) = \overline{M}_N = \{p \in P : (\exists M_0 \sqsubseteq M) \ (\exists N_0 \sqsubseteq N) \ (M_0)^u \cap (N_0)^l \subseteq \uparrow p\}$.

(2): The proof is similar to that of (1). \Box

Lemma 1. Let P be a poset and $M, N \subseteq P$. Then, we have that $IG_N(M) \in \mathfrak{L}(DG_M(N))$ and $DG_M(N) \in \mathfrak{D}(IG_N(M))$, i.e., the pair $(IG_N(M), DG_M(N))$ is an ID-pair in the poset P.

Proof. We only show that $IG_N(M) \in \mathfrak{L}(DG_M(N))$; the fact $DG_M(N) \in \mathfrak{D}(IG_N(M))$ can be similarly proved. Let $F \sqsubseteq IG_N(M)$ and $S \sqsubseteq DG_M(N)$. We consider the following cases:

- (i) $F = \emptyset$ and $S = \emptyset$. If the least element \bot exists in the poset P, then we have that $\bot \in IG_N(M)$ by Remark 1. It follows that $(F^u \cap S^l)^l = \{\bot\} \subseteq IG_N(M)$. If the poset P has no least element, then $(F^u \cap S^l)^l = \emptyset \subseteq IG_N(M)$ by Remark 1 again. This shows that $(F^u \cap S^l)^l \subseteq IG_N(M)$.
- (ii) $F = \{e_1, e_2, \dots, e_m\} \neq \emptyset$ and $S = \emptyset$.

By Proposition 3, there exist $M_r \sqsubseteq M$ and $N_r \sqsubseteq N$ such that $(M_r)^u \cap (N_r)^l \subseteq \uparrow e_r$ for all $1 \leq_o r \leq_o m$. Take $M_0 = \bigcup \{M_r : 1 \leq_o r \leq_o m\}$ and $N_0 = \bigcup \{N_r : 1 \leq_o r \leq_o m\}$. Then, we have that $M_0 \sqsubseteq M$, $N_0 \sqsubseteq N$ and

$$(M_0)^u \bigcap (N_0)^l = \bigcap \{ (M_r)^u \bigcap (N_r)^l : 1 \le_o r \le_o m \}$$
$$\subseteq \bigcap \{ \uparrow e_r : 1 \le_o r \le_o m \}$$
$$= F^u = F^u \bigcap S^l.$$

It follows that $(F^u \cap S^l)^l \subseteq [(M_0)^u \cap (N_0)^l]^l$, which implies that $(M_0)^u \cap (N_0)^l \subseteq \uparrow p$ for all $p \in (F^u \cap S^l)^l$. Thus, by Proposition 3, we have that $p \in IG_N(M)$ for all $p \in (F^u \cap S^l)^l$. This means that $(F^u \cap S^l)^l \subseteq IG_N(M)$.

- (iii) $F = \emptyset$ and $S = \{s_1, s_2, \dots, s_n\} \neq \emptyset$. Proceeding as in the proof of (ii), we can again have $(F^u \cap S^l)^l \subseteq IG_N(M)$.
- (iv) $F = \{e_1, e_2, \dots, e_m\} \neq \emptyset$ and $S = \{s_1, s_2, \dots, s_n\} \neq \emptyset$. By Proposition 3, there exist M_r^F , $M_t^S \sqsubseteq M$ and N_r^F , $N_t^S \sqsubseteq N$ such that $(M_r^F)^u \cap (N_r^F)^l \subseteq \uparrow e_r$ and $(M_t^S)^u \cap (N_t^S)^l \subseteq \downarrow s_t$ for all $1 \leq_o r \leq_o m$ and $1 \leq_o t \leq_o n$. Set $M_0 = \bigcup \{M_r^F : 1 \leq_o r \leq_o m\} \bigcup \bigcup \{M_t^S : 1 \leq_o t \leq_o n\}$ and $N_0 = \bigcup \{N_r^F : 1 \leq_o r \leq_o m\} \bigcup \bigcup \{N_t^S : 1 \leq_o t \leq_o n\}$ and $N_0 \sqsubseteq N$ and

$$(M_0)^u \bigcap (N_0)^l = \bigcap \{ (M_r^F)^u \bigcap (N_r^F)^l : 1 \le_o r \le_o m \}$$
$$\bigcap \bigcap \{ (M_t^S)^u \bigcap (N_t^S)^l : 1 \le_o t \le_o n \}$$
$$\subseteq \bigcap \{ \uparrow e_r : 1 \le_o r \le_o m \} \bigcap \bigcap \{ \downarrow s_t : 1 \le_o t \le_o n \}$$
$$= F^u \bigcap S^l.$$

This implies that $(F^u \cap S^l)^l \subseteq [(M_0)^u \cap (N_0)^l]^l$, which concludes that $(M_0)^u \cap (N_0)^l \subseteq \uparrow p$ for all $p \in (F^u \cap S^l)^l$. Hence, by Proposition 3, we have $(F^u \cap S^l)^l \subseteq IG_N(M)$. According to (i)–(iv) and Definition 4, we infer that $IG_N(M) \in \mathfrak{L}(DG_M(N))$. \Box

Lemma 2. Let P be a poset and $M, N \subseteq P$. If $\sup M = x = \inf N \in P$, then we have $\sup IG_N(M) = x = \inf DG_M(N)$.

Proof. Let sup $M = x = \inf N \in P$. Then, one can readily check, by Proposition 3, that $M \subseteq IG_N(M) \subseteq \downarrow x$ and $N \subseteq DG_M(N) \subseteq \uparrow x$. It follows that sup $IG_N(M) = x = \inf DG_M(N)$. \Box

We turn to define the ID-double continuity for posets. Since the ID-double continuity has a close relationship to Property A, proposed by Wolk, we review Property A and its dual form for posets in the following:

Definition 6 ([6]). A poset P has Property A if, for every non-normal Frink ideal K with $\sup K = x \in P$, there exists an up-directed subset $K_U \subseteq K$ such that $\sup K_U = x$. Dually, a poset P has Property DA if, for every non-normal dual Frink ideal L with $\inf L = y \in P$, there exists a down-directed subset $L_D \subseteq L$ such that $\inf L_D = y$.

Definition 7. A poset *P* is called an ID-doubly continuous poset if, for every ID-pair (K, L) in the poset *P* with sup $K = x = \inf L \in P$, there exist an up-directed subset $K_U \subseteq K$ and a down-directed subset $L_D \subseteq L$ such that sup $K_U = x = \inf L_D$.

Example 5. (1) Every finite poset is ID-doubly continuous;

(2) Every lattice is ID-doubly continuous.

Suppose that P is a finite poset and (K, L) is an ID-pair with $\sup K = x = \inf L \in P$. Then, we have that $K, L \sqsubseteq P$ and $K^u \cap L^l = \{x\}$. Since the pair (K, L) is an ID-pair, by Definition 4 and Definition 5, it follows that $(K^u \cap L^l)^l = \downarrow x \subseteq K$ and $(K^u \cap L^l)^u = \uparrow x \subseteq L$, which implies that $x \in K$ and $x \in L$. This means that the singleton $\{x\}$ is an up-directed subset of K and also a down-directed subset of L such that $\sup\{x\} = x = \inf\{x\}$. So, by Definition 7, the finite poset P is ID-doubly continuous.

The fact that every lattice is ID-doubly continuous can also be readily checked by Definition 7.

Proposition 4. *Let P be a poset. If the poset P has Property A and Property DA, then it is an ID-doubly continuous poset.*

Proof. Let (K, L) be an ID-pair in the poset P with $\sup K = x = \inf L \in P$. Then, by Proposition 1, the set K is a Frink ideal. If $x \in K$, then we have that $\{x\}$ is an up-directed subset of K and $\sup\{x\} = x$. If $x \notin K$, then K is a non-normal Frink ideal since $x \in (K^u)^l = \downarrow x \neq K$. By Property A, it follows that there exists an up-directed subset $K_U \subseteq K$ such that $\sup K_U = x$. A similar verification can prove that there exists a down-directed subset $L_D \subseteq L$ such that $\inf L_D = x$. Hence, the poset P is ID-doubly continuous. \Box

In general, an ID-doubly continuous poset may not possess Property A and Property DA. For such an example, one can refer to Example 7 in Section 4.

Now, we arrive at the main result:

Theorem 3. A poset P is ID-doubly continuous if and only if the o-convergence and o_2 -convergence in the poset P are equivalent.

Proof. (\Rightarrow): Suppose that a poset *P* is ID-doubly continuous. To prove the equivalence between the *o*-convergence and *o*₂-convergence, it suffices to show that, for every net $(x_i)_{i \in I}$ in the poset *P*, we have

$$(x_i)_{i \in I} \xrightarrow{b_2} x \in P \Rightarrow (x_i)_{i \in I} \xrightarrow{o} x$$

Let $(x_i)_{i \in I} \xrightarrow{o_2} x$. Then, by Definition 2, there exist subsets $M, N \subseteq P$ such that sup $M = x = \inf N$, and, for every $m \in M$ and every $n \in N$, $m \leq x_i \leq n$ holds eventually. This means that $M \subseteq P_x$ and $N \subseteq Q_x$, which implies that $IG_N(M) \subseteq P_x$ and $DG_M(N) \subseteq Q_x$ by Remark 1 and Theorem 2. According to Lemma 1 and 2, it follows that $(IG_N(M), DG_M(N))$ is an ID-pair with sup $IG_N(M) = x = \inf DG_M(N)$. Since the poset P is ID-doubly continuous, we have that sup $M_U = x = \inf N_D$ for some up-directed subset $M_U \subseteq IG_N(M) \subseteq P_x$ and some down-directed subset $N_D \subseteq DG_M(N) \subseteq Q_x$. This concludes $(x_i)_{i \in I} \xrightarrow{o} x$.

(\Leftarrow): Assume that the *o*-convergence and o_2 -convergence in a poset *P* are equivalent. Let (*K*, *L*) be an ID-pair in the poset *P* with sup $K = x = \inf L \in P$. Since $x \in F^u \cap S^l \neq \emptyset$ for all $F \sqsubseteq K$ and $S \sqsubseteq L$, the pair (*K*, *L*) is a nontrivial ID-pair by Proposition 2. According to Theorem 2, there exists a net $(x_i)_{i \in I}$ in the poset *P* such that $K = P_x$ and $L = Q_x$. Thus, we have $(x_i)_{i \in I} \xrightarrow{o_2} x$. By the hypothesis, it follows that $(x_i)_{i \in I} \xrightarrow{o} x$. This means that sup $K_U = x = \inf L_D$ for some up-directed subset $K_U \subseteq K = P_x$ and some down-directed subset $L_D \subseteq L = Q_x$. So, the poset *P* is an ID-doubly continuous poset. \Box

By Example 5 and Theorem 3, we immediately have the following:

Example 6. (1) In every finite poset, the o-convergence and the o_2 -convergence are equivalent; (2) In every lattice, the o-convergence and the o_2 -convergence are equivalent.

By Proposition 4 and Theorem 3, or by Definition 2 and Theorem 2 and 5 in [6], we readily have the following:

Corollary 2. If a poset P has Property A and Property DA, then the o-convergence and o_2 -convergence in the poset P are equivalent.

4. Example

In this section, we mainly give an example to clarify the following facts:

- (1) A Frink ideal *K* of a poset *P* may not be a local Frink ideal in every nonempty subset *L* of *P*; Dually, a dual Frink ideal *K* need not be a dually local Frink ideal in every nonempty subset *K* of *P*.
- (2) An ID-doubly continuous poset fails to satisfy Property A and Property DA.

Example 7. Let $P = \{x\} \cup \{a_1, a_2, ..., a_n, ...\} \cup \{b_1, b_2, ..., b_n, ...\} \cup \{c_1, c_2, ..., c_n, ...\} \cup \{d_1, d_2, ..., d_n, ...\}$ (see Figure 1). Define the partial order \leq on *P* by setting

- $\downarrow x = \{x\} \cup \{a_1, a_2, \dots, a_n, \dots\} \cup \{b_1, b_2, \dots, b_n, \dots\} \cup \{c_1, c_2, \dots, c_n, \dots\};$
- $(\forall n) \downarrow a_n = \{a_1, a_2, \dots, a_n\};$
- $(\forall n) \downarrow b_n = \{b_n\};$
- $(\forall n) \downarrow c_n = \{c_n\} \cup \{a_1, a_2, \dots, a_n\} \cup \{b_1, b_2, \dots, b_n\};$
- $(\forall n) \downarrow d_n = \{d_n\} \cup \{b_1, b_2, \dots, b_n\}.$

Figure 1. The diagram for the poset in Example 7.

Let $K = \{b_1, b_2, ..., b_n, ...\}$. Then, the set K is a non-normal Frink ideal by Definition 3 and the definition of the poset P. However, the poset P does not process Property A since we can easily see that $\sup K = x$, and $\sup K_U \neq x$ for every up-directed subset $K_U \subseteq K$. We next show that $K \notin \mathfrak{L}(L)$ for any nonempty subset L of the poset P by analyzing the following cases:

(*i*) $a_i \in L$ (resp. $b_i \in L$, $c_i \in L$, $d_i \in L$) for some $i \in \mathbb{N}$.

Take $j \in \mathbb{N}$ such that $j >_o i$. Then, we have $\{b_j\} \sqsubseteq K$, $\{a_i\} \sqsubseteq L$ (resp. $\{b_i\} \sqsubseteq L$, $\{c_i\} \sqsubseteq L$, $\{d_i\} \sqsubseteq L$) and $(\{b_j\}^u \cap \{a_i\}^l)^l = P \nsubseteq K$ (resp. $(\{b_j\}^u \cap \{b_i\}^l)^l = P \nsubseteq K$, $(\{b_j\}^u \cap \{c_i\}^l)^l = P \nsubseteq K$, $(\{b_j\}^u \cap \{d_i\}^l)^l = P \nsubseteq K$). This implies that $K \notin \mathfrak{L}(L)$ by Definition 4.

(*ii*) $x \in L$.

It is easy to see that $\{b_1, b_2\} \subseteq K$, $\{x\} \subseteq L$ and $(\{b_1, b_2\}^u \cap \{x\}^l)^l = \{a_1, a_2\} \cup \{b_1, b_2\} \nsubseteq K$. This implies that $K \notin \mathfrak{L}(L)$ by Definition 4.

The combination of (i) and (ii) shows that the set K is not a local Frink ideal in any nonempty subset L of the poset P.

Now, we are going to verify that P is an ID-doubly continuous poset. Let (K', L') be an ID-pair in the poset P with sup $K' = p = \inf L'$. We consider the following cases:

(*iii*) $p = a_i$ (resp. $p = b_i, c_i, d_i$) for some $i \in \mathbb{N}$.

It is easy to see, by the definition of the poset P, that there exist $K_0 \sqsubseteq K'$ and $L_0 \sqsubseteq L'$ such that $\sup K_0 = \inf L_0 = p = a_i$. Since the pair (K', L') is an ID-pair, we have $[(K_0)^u \cap (L_0)^l]^l = \downarrow a_i \subseteq K'$ and $[(K_0)^u \cap (L_0)^l]^u = \uparrow a_i \subseteq L'$, i.e., $a_i \in K'$ and $a_i \in L'$. Take $K'_U = L'_D = \{a_i\}$. Then, the set K'_U is an up-directed subset of the set K', the set L'_D is a down-directed subset of the set L' and $\sup K'_U = a_i = \inf L'_D$.

- (iv) p = x and $x \in K'$. Since $\inf L' = x$, one can readily check that $L' = \{x\}$. Take $K'_{U} = L'_{D} = \{x\}$. Then, we have that the set K'_{U} is an up-directed subset of the set K', the set L'_{D} is a down-directed subset of the set L' and $\sup K'_{U} = x = \inf L'_{D}$.
- (v) p = x and $a_i \in \tilde{K}'$ for some $i \in \mathbb{N}$.

Since $\inf L' = x$, it is easy to see that $L' = \{x\}$. If the set $K' \cap \{a_1, a_2, ...\}$ is infinite, then we have that the set $K'_{U} = K' \cap \{a_1, a_2, ...\}$ is an up-directed subset of the set K', the set $L'_{D} = \{x\}$ is a down-directed subset of the set L' and $\sup K'_{U} = x = \inf L'_{D}$. If the set $K' \cap \{a_1, a_2, ...\}$ is finite, then we have that the set $K' \cap \{b_1, b_2, ...\}$ is also finite. Otherwise, suppose that the set $K' \cap \{b_1, b_2, ...\}$ is infinite. Then, there exists $\{b_{i_1}, b_{i_2}, ...\} \subseteq K'$. Since the pair (K', L') is an ID-pair in the poset P, we have that $a_{i_k} \in (\{b_{i_1}, b_{i_k}\}^u \cap \{x\}^{l})^l$ for every $k \in \mathbb{N}$ with $k \ge_0 2$. This means that $\{a_{i_2}, a_{i_3}, ...\} \subseteq$ $K' \cap \{a_1, a_2, ...\}$, contradicting the hypothesis that the set $K' \cap \{a_1, a_2, ...\}$ is finite. Let $\{a_{j_1}, a_{j_2}, ..., a_{j_m}\} = K' \cap \{a_1, a_2, ...\}$ and $\{b_{i_1}, b_{i_2}, ..., i_n\} = K' \cap \{b_1, b_2, ...\}$, and let $j_0 = \max\{j_1, j_2, ..., j_m\}$ and $i_0 = \max\{i_1, i_2, ..., i_n\}$. Since $\sup K' = x$, we also take the following cases into consideration:

- (v1) $x \in K'$.
- *In this case, we can return the verification to Case (iv).*
- (v2) $c_{i^0} \in K'$ for some $i^0 \in \mathbb{N}$ with $i^0 <_o j_0$.

In this case, if we take $K_0 = \{a_{j_0}, c_{i^0}\}$ and $L_0 = \{x\}$, then we have $K_0 \sqsubseteq K'$ and $L_0 \sqsubseteq L'$ with $\sup K_0 = x = \inf L_0$. By a similar verification to that of Case (iii), there exist an up-directed subset K'_U of the set K' and a down-directed subset L'_D of the set L' such that $\sup K'_U = x = \inf L'_D$.

(v3) $c_{i^1} \in K'$ for some $i^1 \in \mathbb{N}$ with $i^1 <_o i_0$.

In this case, if we take $K_0 = \{b_{i_0}, c_{i^1}\}$ and $L_0 = \{x\}$, then we have $K_0 \sqsubseteq K'$ and $L_0 \sqsubseteq L'$ with $\sup K_0 = x = \inf L_0$. By a similar verification to that of (iii), there exist an up-directed subset K'_U of the set K' and a down-directed subset L'_D of the set L' such that $\sup K'_U = x = \inf L'_D$.

that $\sup K'_{U} = x = \inf L'_{D}$. (v4) $c_{i^{2}}, c_{i^{3}} \in K'$ for some $i^{2}, i^{3} \in \mathbb{N}$.

In this case, if we take $K_0 = \{c_{i^2}, c_{i^3}\}$ and $L_0 = \{x\}$, then we have $K_0 \sqsubseteq K'$ and $L_0 \sqsubseteq L'$ with $\sup K_0 = x = \inf L_0$. By a similar verification to (iii), there exist an up-directed subset K'_{U} of the set K' and a down-directed subset L'_D of the set L' such that $\sup K'_{U} = x = \inf L'_D$.

- (vi) p = x and $c_i \in K'$ for some $i \in \mathbb{N}$. Since the pair (K', L') is an ID-pair, we have $a_i \in (\{c_i\}^u \cap \{x\}^l)^l \subseteq K'$. So, we can return the verification to Case (v).
- (vii) p = x and $b_i \in K'$ for some $i \in \mathbb{N}$. We consider the following cases:
 - (vii1) $b_i, b_j \in K' \cap \{b_1, b_2, ...\}$ for some $i, j \in \mathbb{N}$. Since the pair (K', L') is an ID-pair, we have $a_i \in (\{b_i, b_j\}^u \cap \{x\}^l)^l \subseteq K'$. So, we can return the verification to Case (v).
 - (vii2) $\{b_i\} = K' \cap \{b_1, b_2, ...\}$. Since sup K' = x, there exists $j \in \mathbb{N}$ such that $a_j \in K'$ (resp. $c_j \in K'$, $x \in K'$). So, we can return the verification to Case (v) (resp. Case (vi), Case (iv)).

By Definition 7 and the combination of Cases (iii)–(vii), we conclude that the poset P is an ID-doubly continuous poset.

5. Discussion

This paper introduced the notion of ID-pairs in posets. It was shown that the set of all eventually lower bounds and the set of all eventually upper bounds of a net in a given poset can be precisely paired to be an ID-pair. This result provides a potential approach for dealing with the general nets in posets, since some kinds of order convergent nets, such as the *o*-convergent nets and o_2 -convergent nets, are uniquely determined by their eventually lower bounds sets and eventually upper bounds sets.

Furthermore, in order to characterize these posets in which the *o*-convergence and o_2 -convergence are equivalent, the concept of ID-doubly continuous posets is proposed. It is proved that the equivalence of the *o*-convergence and o_2 -convergence in a poset is equivalent to the ID-double continuity of the poset. This result provides a sufficient and necessary condition for the *o*-convergence and o_2 -convergence to be equivalent.

However, it may be complicated to verify the ID-double continuity for some posets, such as the poset in Example 7. On the contrary, the lattices, a special kind of poset, can be easily proved to be ID-double continuous. This indicates that the ID-double continuity has some close relationships with some special kinds of posets. These relationships deserve further investigation.

Author Contributions: Conceptualization, T.S. and N.F.; methodology, T.S. and N.F.; software, T.S. and N.F.; validation, T.S. and N.F.; formal analysis, T.S. and N.F.; investigation, T.S. and N.F.; resources, T.S. and N.F.; data curation, T.S. and N.F.; writing—original draft preparation, T.S. and N.F.; writing—review and editing, T.S. and N.F.; visualization, T.S. and N.F.; supervision, T.S. and N.F.; project administration, T.S. and N.F.; funding acquisition, T.S. and N.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the Natural Science Foundation of China (Grant No.: 11901194), and the Research Foundation of Education Bureau of Hunan Province, China (Grant No.: 21B0617).

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors would like to thank the referees for their careful reading and valuable comments, which have improved the quality and readability of this paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Birkhoff, G. Moore-Smith convergence in general topology. Ann. Math. 1937, 38, 39–56. [CrossRef]
- 2. Mcshane, E.J. Order-Preserving Paps and Integration Process, Annals of Mathematics Studies; Princeton University Press: Princeton, NJ, USA, 1953; Volume 31.
- 3. Frink, O. Topology in lattice. Trans. Am. Math. Soc. 1942, 51, 569-582. [CrossRef]
- 4. Rennie, B.C. Lattices. Proc. Lond. Math. Soc. 1951, 52, 386–400. [CrossRef]
- 5. Ward, A.J. On relations between certain intrinsic topologies in partially ordered sets. *Proc. Camb. Philos. Soc.* **1955**, *51*, 254–261. [CrossRef]
- 6. Wolk, E.S. On order-convergence. Proc. Am. Math. Soc. 1961, 12, 379–384. [CrossRef]
- 7. Zhou, Y.H.; Zhao, B. Order-convergence and lim-inf_M-convergence in posets. J. Math. Anal. Appl. 2007, 325, 655–664.
- 8. Wang, K.Y.; Zhao, B. Some further result on order-convergence in posets. Topol. Appl. 2013, 160, 82–86. [CrossRef]
- 9. Sun, T.; Li, Q.G.; Guo, L.K. Birkhoff's order-convergence in partially ordered sets. Top. Appl. 2016, 207, 156–166. [CrossRef]
- 10. Georgiou, D.N.; Megaritis, A.C.; Naidoo, I.; Prinos, G.A.; Sereti, F. Convergence of nets in posets via an ideal. *Sci. Math. Jpn.* **2020**, *83*, 23–38.
- 11. Georgiou, D.; Prinos, G.; Sereti, F. Statistical and ideal convergences in Topology. Mathematics 2023, 11, 663. [CrossRef]
- 12. Zhao, B.; Li, J. O₂-convergence in posets. Topol. Its Appl. 2006, 153, 2971–2975. [CrossRef]
- 13. Li, Q.G.; Zou, Z.W. A result for o₂-convergence to be topological in posets. Open Math. 2016, 14, 205–211. [CrossRef]
- 14. Georgiou, D.N.; Megaritis, A.C.; Naidoo, I.; Prinos, G.A.; Sereti, F. A study of convergences in partially ordered sets. *Topol. Its Appl.* **2020**, *275*, 106994. [CrossRef]
- 15. Frink, O. Ideals in partially ordered sets. Am. Math. Mon. 1954, 61, 223-234. [CrossRef]
- 16. Davey, B.A.; Priestley, A.H. Introduction to Lattices and Order, 2nd ed.; Cambridge University Press: Cambridge, UK, 2002.
- 17. Engelking, R. General Topology; Polish Scientific Publishers: Warszawa, Poland, 1977.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.