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Abstract: It is well known that if a poset satisfies Property A and its dual form, then the o-convergence
and 0-convergence in the poset are equivalent. In this paper, we supply an example to illustrate that
a poset in which the o-convergence and 0,-convergence are equivalent may not satisfy Property A
or its dual form, and carry out some further investigations on the equivalence of the o-convergence
and op-convergence. By introducing the concept of the local Frink ideals (the dually local Frink
ideals) and establishing the correspondence between ID-pairs and nets in a poset, we prove that
the o-convergence and o0p-convergence of nets in a poset are equivalent if and only if the poset is
ID-doubly continuous. This result gives a complete solution to the problem of E.S. Wolk in two
modes of order convergence, which states under what conditions for a poset the o-convergence and
0p-convergence in the poset are equivalent.
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1. Introduction

Let P be a poset and (x;);c; a net on an up-directed set I with value in the poset P.
The concept of order convergence of nets in a poset P was introduced by Birkhoff [1],
Mcshane [2], Frink [3], Rennie [4] and Ward [5]. It is worth noting that the authors may
have attached different meanings to the order convergence. Following the formulation of
Wolk [6], we correspond to the following two modes of order convergence:

Definition 1 ([1-3]). A net (x;);ej in a poset P is said to o-converge to an element x € P (in
symbol (x;);e; —» x) if there exist subsets M and N of P such that

(A0) M is up-directed and N is down-directed;

(BO) supM = x =inf N;

(CO) Foreverym € Mandn € N, m < x; < n holds eventually, i.e., there is iy € I such that
m < x; < nforalli 2 i.

Definition 2 ([4-6]). A net (x;);c; in a poset P is said to 0y-converge to an element x € P (in
symbol (x;)icr <2 x) if there exist subsets M and N of P such that

(A2) supM = x =inf N;
(B2) Foreverym € Mandn € N, m < x; < n holds eventually.

A research topic concerning the o-convergence and 0;-convergence, which are closely
related to our work, is from the topological aspect. The o-convergence in a poset P may
not be topological, i.e., there does not exist a topology T on the poset P such that the
o-convergent class and the convergent class with respect to the topology T are equivalent.
In [7], based on the introduction of Condition(*) and the double continuity for posets,
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Zhou and Zhao proved that, for a double continuous poset P with Condition(*), the o-
convergence in the poset P is topological. As a further result, Condition (A), a weaker
condition than Condition(*), and the O-doubly continuous posets were defined in [8]. It
was shown that, for a poset P with Condition (A), the o-convergence in the poset P is
topological if and only if the poset P is O-doubly continuous. Following the ideal in [8],
Sun and Li [9] studied the B-topology on posets and found that the o-convergence in a poset
P is topological if and only if the poset P is S*-doubly continuous, which demonstrates the
equivalence between the o-convergence being topological and the S*-double continuity of a
poset. Moreover, the ideal-o-convergence, a generalized form of o-convergence established
via ideals, was defined in posets by Georgiou et al. [10,11]. Also, the authors obtained that
the ideal-o-convergence in a poset P is topological if and only if the poset P is S*-doubly
continuous. This generalized the previous results on the o-convergence.

On the other hand, the 0,-convergence is also not topological generally. To characterize
these posets so that the 0,-convergence is topological, Zhao and Li [12] studied the notions
of a-double continuous posets and a*-double continuous posets. Under some additional
conditions, the 0p-convergence in these posets is topological. Ulteriorly, Li and Zou [13]
proposed the concept of O,-doubly continuous posets and showed that the 0,-convergence
in a poset P is topological if and only if the poset P is O»-doubly continuous, meaning that
they gave a sufficient and necessary condition for the 0y-convergence to be topological.
Further, Georgiou et al. [14] extended the 0,-convergence to be the ideal-0;-convergence
via ideals, and showed that the O,-double continuity can equivalently characterize such a
convergence to be topological.

From the order-theoretical aspect, by the definitions, one can readily verify that the
o-convergence implies the 0p-convergence, i.e., if a net (x;);c; in a poset P o-converges to
an element x € P, then it 0op-converges to x. However, the converse implication is not
true. This fact can be demonstrated by the example in [6]. Hence, in [6], Wolk posed the
following fundamental problem:

Problem 1. Under what conditions for a poset P do the o-convergence and oy-convergence in
P agree?

A well-known result on this problem is that the o-convergence and 0,-convergence in a
lattice are equivalent. Then, Wolk [6] obtained a result on the characterization of posets for
the associated o-inf convergence (a counterpart of o-convergence) and o0p-inf convergence (a
counterpart of 0p-convergence) being equivalent, which provides an approximate solution
to the fundamental problem, using the concepts of Frink ideals and dual Frank ideals [15].

Motivated by these results toward the problem mentioned above, in this paper, we
continue to make some further investigations on the o-convergence and op-convergence,
hoping to clarify the order-theoretical condition of a poset P, which is sufficient and
necessary for the o-convergence and 0,-convergence to be equivalent.

To this end, in Section 2, following the Frink ideal (the dual Frink ideal), the concepts
of local Frink ideals (dually local Frink ideals) and ID-pairs in posets are further proposed,
and then the relationship between ID-pairs and nets is presented. Section 3 is devoted
to the order-theoretical characterization of the local Frink ideal (the dually local Frink
ideal) generated by a general set. Using this characterization, we prove that the ID-
double continuity is the precise feature for those posets for which the two modes of
order convergence are equivalent.

For the unexplained notions and concepts, one can refer to [6,16,17].

2. Local Frink Ideal (Dually Local Frink Ideal) in Posets

We appoint some conventional notations to be used in the sequel. Let X be a set. We
take F C X to mean that F is a finite subset of the set X, including the empty set @. Given a
poset Pand K, L. C P. The notations K* and L' are used to denote the set of all upper bounds
of K and the set of all lower bounds of L, respectively, ie., K* = {y € P: (Vp € K) y > p}
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and L' = {z € P: (Vp € L) z < p}. Particularly, if the sets K and L are all reduced to be a
singleton {y}, then the notations 1y and Jy are reserved to denote the sets {y}* and {y}/,
respectively.

Since the Frink ideal (the dual Frink ideal) in posets plays a fundamental role in the
discussion of this section, we first review its definition.

Definition 3 ([15]). Let P be a poset.

(1) A subset K of the poset P is called a Frink ideal if, for every F C K, we have (F*)! C K.
Furthermore, a Frink ideal K is said to be normal if (K*)! = K.

(2) A subset L of the poset P is called a dual Frink ideal if, for every S C L, we have (S')* C L.
Furthermore, a dual Frink ideal L is said to be normal if (L')* = L.

Based on the Frink ideal (the dual Frink ideal), we further define the local Frink ideal
(the dually local Frink ideal) in posets.

Definition 4. Let P be a poset and K, L C P.

(1) The subset K is called a local Frink ideal in L if, for every F T K and every S T L, we have
(F*NshHl C k.

(2) The subset L is called a dually local Frink ideal in K if, for every F C K and every S T L,
we have (F* N SH* C L.

Example 1. Let R be the set of all real numbers, in its usual order, and let a € R. If we take
K = (—o0,a] and L = [a, +c0), then, by Definition 4, the interval K is a local Frink ideal in L and
the interval L is a dually local Frink ideal in K.

Given a poset P and K, L C P. We simply denote by £(L) the family of all local Frink
ideals in L and, by ©(K), the family of all dually local Frink ideals in K.

Remark 1. Let P be a poset and K, L C P. Then,

(1) From the logic viewpoint, it is reasonable to stipulate that @* = @' = P. Thus, for every
L C Pand every K € £(L), we have L € K if the poset P has the least element . Dually,
for every K C P and every L € ©(K), we have T € L if the greatest element T exists in the
poset P.

(2) IfK e £(L), then K € £(Ly) for every Ly C L. And, dually, if L € ©(K), then L € D(Kp)
for every Ko C K.

(3)  The subset K is a Frink ideal if and only if K € £(D). And, dually, the subset L is a dual Frink
ideal if and only if L € D(D).

Proposition 1. Let P be a poset and K, L C P.

(1) IfK € £(L), then the subset K is a Frink ideal.
(2) IfL € ©(K), then the subset L is a dual Frink ideal.

Proof. (1): Suppose that K € £(L). Then, we have (F*(S")! C K for every F C K and
S C L. This implies that (F*)! C (F*NS!)! C K. Thus, we conclude that (F*)! C K for
every F C K. This shows that the subset K is a Frink ideal.

(2): The proof is similar to that of (1). O

However, the converse implications of Proposition 1 may not be true. This fact can be
clarified in Example 7.

Definition 5. Let P be a poset. A pair (K, L) consisting of subsets K and L of P is called an ID-pair
in PifK € £(L) and L € ©(K). Moreover, an ID-pair (K, L) in P is said to be nontrivial if one
of the following conditions is exactly satisfied:
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(1) |P| = 1, where |P| denotes the cardinal of the poset P;
(2) |P| >2and (K,L) # (P, P).

Example 2. Let P = {a,b} U{L, T}, with the partial order < defined by
. 1 <a<T,;
e 1 <<bLT.
Take K = {L} and L = {T}. Then, it is easy to see from Definitions 4 and 5 that the pair
(K,L) = ({L},{T}) is a nontrivial ID-pair.

Proposition 2. Let (K, L) be an ID-pair in a poset P. Then, the ID-pair (K, L) is nontrivial if and
only if F* N S! # @ for every F C K and every S C L.

Proof. (=): Let (K, L) be a nontrivial ID-pair in a poset P. We consider the following cases:

(i) |P|=1,1ie., the poset P = {p} contains only one element p.

It is easy to check that F* (S = {p} # @ for every F C K and every S C L.
) |P|>2.

Suppose that (Fp)" ﬂ(SO)l = @ for some Fy C K and Sy C L. Then, we have

[(Fo)*N(So)'] = P C K and [(F)*N(So)]* = P C L since (K,L) is an ID-pair

in the poset P. This implies that (K,L) = (P, P), which is a contradiction to the

assumption that the ID-pair (K, L) is nontrivial. Hence, we have that F* (N S! # @ for

every F C Kand every S C L.

By (i) and (ii), we conclude that F* Sl £ @ for every F C Kand every S C L.

(«<=): Suppose that (K, L) is an ID-pair such that F* (S’ # @ for every F C K and
every S C L. If (K,L) # (P, P), then the ID-pair (K, L) is nontrivial by Definition 5. If
(K,L) = (P,P),i.e, K = L = P, then, by the assumption, we have {p}* N{q}} = trNlq #
@ and {g}*N{p} = 1qNlp # @ forall p,q € P. It follows that p = g for all p,q € P.
Hence, we conclude that |P| = 1. This shows, by Definition 5, that the ID-pair (K, L) is
nontrivial. O

In fact, given a poset P and a Frink ideal K (resp. a dual Frink ideal L) of the poset P, we
can select a subset L (resp. a subset K) of P such that the pair (K, L) is a nontrivial ID-pair.

Theorem 1. Let P be a poset.

(1) If Kis a Frink ideal of the poset P, then the pair (K, L) is a nontrivial ID-pair for some subset
L of the poset P;

(2)  If Lis a dual Frink ideal of the poset P, then the pair (K, L) is a nontrivial ID-pair for some
subset K of the poset P.

Proof. (1): Suppose that K is a Frink ideal of P. Set L = J{(F*)" : F C K}. Now, we
process to show that the pair (K, L) is an ID-pair. Let Fy C K and Sy C L. We consider the
following two cases:

i So=09.

Since K is a Frink ideal, by the definition of L, we have
[(Fo)“ N (So)']' = [(F)* N P)' = [(Fo)")' €K,

and
[(Fo)" N (So)'1* = [(Fo)* N P]* = [(Fo)"]" C L.

(ii) SO = {51,52,...,Sm} 7& @.
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By the definition of L, there exists F; C K such thats; € [(F;)"]* for every i €
{1,2,...,m}. This means that (F;)" C |s; forevery i € {1,2,...,m}. Thus, we have
(FFUF U---UFy)" C (Sp)!, which implies that

((F)* N (So)") C[(ByUF UFRU---UF,)" N (Sp)")!
:[(FO URURU:--- UFm)”]l
CK,

and
((Fo)* N (So)")* Cl(FRUF UF U~ UEy)" N (Sp)"]"
:[(FO URUBRU:--- UFm)”]”
CL.

The combination of (i) and (ii) shows that the pair (K, L) is an ID-pair in P. Finally, we
prove that the ID-pair (K, L) is nontrivial. Assume that (K,L) = (P, P). Letx,y € L = P.
Then, by the definition of L, there exists F, C P such that y € [(F,)"]*, which implies that
(Fy)* C ly. Since ({x} UF,)* C (F,)" C ly, we have x € ly, i.e., x <y. Similarly, we can
prove that y < x. This means that x = y, and thus we have |P| = 1. By Definition 5, it
follows that the ID-pair (K, L) is nontrivial.

(2): By a similar verification to that of (1). O

Example 3. Let P be a chain, i.e., for all x,y € P, either x < yory < x. For every x € P,
by Definition 4 we have that the set | x is a Frink ideal. Obviously, by Definitions 4 and 5, the set
1x can be selected such that the pair (1x,1x) is a nontrivial ID-pair in P.

Given a poset P and a net (x;);c; in the poset P, an element p € P is called an eventually
lower bound of the net (x;);c; provided that there exists iy € I such that x; > p forall i = i.
An eventually upper bound of the net (x;);cs is defined dually. Following the notations
of Wolk [6], we also take the symbols Py and Qy to mean the set of all eventually lower
bounds of the net (x;);c; and the set of all eventually upper bounds of the net (x;);cj,
respectively. If we denote Ex(ig) = {x; € P : i = iy}, then Py = U{[Ex(i)]' : i € I} and
Qx = U{[Ex(i)]* : i € I}. For a set X, the symbol Y C X means that Y is a proper subset
of theset X,i.e, Y C Xand Y # X. In the following, we always take >, to represent the
ordinary order on IN, the set of all positive integers.

Now, we can establish a correspondence between the nets and the ID-pairs:

Theorem 2. Let P be a poset. Then, a pair (K, L) in P is a nontrivial ID-pair if and only if there
exists a net (x;);ey in P such that P, = Kand Q, = L.

Proof. (<): Let (K, L) be a pair of subsets of the poset P. Suppose also that (x;);c; is a net

in the P such that Py = Kand Qy = L. Forevery FC P, = Kand every S T Q, = L, we

consider the following cases:

i) F=S=0.
Since F = @ and S = @, we have that Ex(i) C F*(\S! = P # @ for all i € I. This
implies that (F*NS')! C [Ex(i)]} and (F*NS")* C [Ex(i)]* for all i € I. Hence,
(F*NSH! C Prand (F*N S C Qy.

(i) F=@LC Pyand S = {s1,52,...,5n} C Qx.
Since S = {s1,52,...,5:} C Qx, for every 1 <, t <, n, there exists iy € I such that
Ex(it) C lst. Take ip € I such thatiy 2 i forall1 <, t+ <, n. Then, we have
Ex(io) € M{Ex(it) : 1 <ot <o n} € N{lst : 1 <o t <, n} = S, which implies
that Ex(ip) C F*NS! = S' # @, (F* N SH! C [Ex(ip)]' and (F*N S C [Ex(ig)]*. Tt
follows that (F* N S")! C Py and (F*NS')* C Qy.

(iil) F={ey,er,...,em} EPrand S =@ C Qy.
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(iv)

By a similar verification to that of (ii), we can also prove that F* Sst+£@, (F*NShH C
Py and (F*NSH* C Q.

F={eyer...,e;} C Pyand S = {s1,52,...,51} C Qx.

Since F = {ey,ez,...,em} C Pyand S = {s1,82,...,5,} T Qy, there exist i,,i; € I
such that Ex(i;) C fe, and Ex(it) C Jsiforalll <, r <, mand 1 <, t <, n. Take
ip € Isuch that iy = i,,i; foralll <, r <, mand 1 <, t <, n. Then, we have
Ex(ig) CN{ter: 1 <or<om}NN{Ist:1<pt <,n}p =F* N S!, which implies that
F*NSs' £ @, (F*NSH C [Ex(ip))! and (F* N SH)* C [Ex(ig)]*. Thus, (F*NS))! C Py
and (F* N SH* C Q.

By (i)—(iv), Definition 4 and Proposition 2, we conclude that the pair (Py, Qx) = (K, L)

is a nontrivial ID-pair in the poset P.

(=): Assume that the pair (K, L) is a nontrivial ID-pair in the poset P. We take the

following cases into consideration:

\

(vi)

Either the set K or the set L is infinite.

Without loss of generality, we can assume that the set K is infinite. As the ID-pair
(K, L) is nontrivial, we have that F*N S’ # @ for every F C K and every S C L by
Proposition 2. Let K;? be the cardinal, linearly ordered by >3 of the set F N S! and af_- :
x3 — F*( S! be a one-to-one function from «7 onto F* (S’ for every F C K and every
SCL.Putl={(F,S,A):FCKSCLA€xi} Forany (F,S1,A1), (Fa, S2,A2) € 1,
we define (F, Sy, A2) 2 (F1, 51, A1) if and only if one of the following conditions
is satisfied:

(1) Fi=F, 51 =Sand A >3 Ay;

(2) FF C Fband 51 C S,.

Now, one can readily check that the ordered set I is up-directed. Let the net (x;);c; in
the poset P be defined by x(r g ) = a3 (A) for every (F,S,A) € I. Next, we proceed
to prove that Py = Kand Qx = L. Let p € Px. Then, there exists (F;,S1,A1) € I
such that p € [Ex((F1,S1,A1))])". Take S, = S; and F, C K with F; C F,. Then, we
have [(F)*N(S2)!]' C K since the pair (K, L) is a nontrivial ID-pair. According to
the definition of I, it follows that (F,, Sy, A2) = (Fy, S1, A1) for every A, € ngz, which
implies that x(f, 5, 1,) = uls_f (A2) € Ex((F;,S1,A1)) for every A € KIS_-ZZ Hence, we con-
clude that (F)* N(S2)! € Ex((F1,S1,A1)). This shows that p € [Ex((Fi,S1,M))] €
[(F)*N(S2)"]" € K. Thus, Py C K. Conversely, let g € K. Set Fy = {g} C K and
So = @ C L. Then, by the definition of I, it is easy to see that (Fy, Sp, Ag) € I for all
Ag € K?g For every (F,S,A) € I'with (F,S,A) = (Fy, So, Ag), by the definition of I, we
have Fy C F and Sy C S, which implies that F* N S' C (Fy)*N(So)" = 13. It follows
that x(p 1) = az(A) € F*NS' C 1q for every (F,S,A) = (Fy, So, Ao). This means that
g € Py. Hence, we conclude that K C Py. This shows that Py = K. It can be similarly
proved that Qx = L.

Both the sets K and L are finite.

Since the pair (K, L) is a nontrivial ID-pair in the poset P, it follows that K* L} # @,
(K*N Ll)l C Kand (K*N Ll)” C L. Let KIL<, well ordered by ZIL<, denote the cardinal
of the set K¥ L! , and aIL< : KIL< — K" L! be a one-to-one function from the cardinal
kk onto the set K“ L' Set I = {(n,A) : n € N, A € kk}. For any (n1, A1), (n2,A2) € 1,
we define (13, Ay) = (11, A1) if and only if one of the following conditions is satisfied:
() m =mnyand Ay >k Ay;

(4) ny #npand ny >, ny.

It can easily be checked that the ordered I is up-directed. Let (x;);c; be the net in the
poset P by defining x(,, 1) = ak(A) e KN L' forall A € k. Now, it remains to show
that K = Py and L = Q. Let g € K. Then, we have K* L C 1q. By the definition
of the net (x;);cy, it follows that x(, ) = ak(A) € K'NL! C 1qforall (n,A) € I
This means that g € [Ex((n,A))]! for all (n,A) € I. Hence, we conclude that g € Py,
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which shows that K C P,. Conversely, let p € Py. Then, there exists (19, Ag) € I such

that p € [Ex((no, Ao))]". Since (no +1,A) = (ng, Ag), for all A € «&, it follows that

X(not1,1) = ag(A) € K*N L forall A € xf. This implies that K L' C Ex((n0, Ao)).

Hence, we have p € [Ex((n9,A0))]' € (K*N L) C K. This shows that P, C K.

Therefore, P, = K. A similar verification can show that Q, = L.

By (v) and (vi), we can conclude that there exists a net (x;);c; in the poset P such that
Py = Kand Qy = L. Thus, the proof is completed. [

Example 4. Let P = {T}U{a1,az,...,an,... } with the partial order < defined by
e (Vn)a, <T.
Consider the net (x) e defined by

(Vn € N) x,, = ay,

where the up-directed set IN is the set of all positive integers in its usual order. By the definition of
the net (X )nen, we have Py = @ and Qy = { T }. On the other hand, it follows from Definition 4
and Definition 5 that the pair (D,{T }) is a nontrivial ID-pair. This demonstrates Theorem 2 in
the case.

The combination of Proposition 1 and Theorems 1 and 2 indicates that the eventually
lower bounds Py and eventually upper bounds Qy of a net (x;);c are precisely a Frink ideal
and a dual Frink ideal, respectively (see Corollary 1). However, they are not independent.
Theorem 2 clarifies the correlation between the Frink ideal Py and the dual Frink ideal Q
from the point of view of order; that is, the Frink ideal Py and the dual Frink ideal Q, must
be matched as a nontrivial ID-pair. Also, this is the initial motivation of introducing the
local Frink ideal (the dually local Frink ideal) and ID-pair for posets in the sequel.

Corollary 1 ([6]). Let P be a poset and K, L C P. Then,

(1) The subset K is a Frink ideal if and only if Py = K for some net (x;);cy in the poset P;
(2)  The subset L is a dual Frink ideal if and only if Qy = L for some net (y;)jc; in the poset P.

3. ID-Doubly Continuous Posets

Given a poset P and M, N C P, let £4(N) = {K € £(N) : M C K}. Then, one can
readily verify by Definition 4 that the intersection () £5(N) contains the set M and is again
a local Frink ideal in the set N. This local Frink ideal is called the local Frink ideal generated
by the set M and denoted by IGy(M). The dually local Frink ideal generated by the set N is
defined dually, and denoted by DG;(N). Next, we clarify the structure of IGy (M) and
DGM(N)Z

Proposition 3. Let P be a poset and M, N C P. Then,
(1) IGN(M)={peP:(3MyC M) (3INy C N) (Mg)*N(No)" C 1p};
(2) DGm(N) ={q € P: (3Mg E M) (INgo C N) (Moo)* N(Noo)' < 1}

Proof. (1): Denote the set {p € P : (3My C M) (3Ny C N) (Mp)*N(No)! € 1p} by My.
Then, it is easy to see that M C My. Now, we proceed to prove that My € £(N). Let
F C My and S C N. We should consider the following cases:
(i F=0.
Since F = @, it follows that (M,)* N S! € F* S = 8! for all M, = M, which implies
that (F* N S"! C [(M,)* N S')! for all M, C M. This means that (M,)* N S' C 1p’ for
all p’ € (F* N S")%. Hence, we infer that (F* N S')! C M.
(i) F={ey,e...,em} #.
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It follows by the definition of My that, for every 1 <, r <, m, there exist M, T M
and N, C N such that (M,)* ﬂ(Nr)l C tep. Take Mp = U{M; : 1 <, r <, m} and
Np=U{N; :1<,r <, m}US. Then, we have that Mg C M, Ny C N and

(Mp)* (Y(NE)' =M (N =1 <o 7 <o m}( S
gﬂ{Ter 1515, m}ﬂsl
=F(s".

This implies that (F* N S')! C [(Mp)* N(Ng)!]!, which means that (Mp)* N(Ng)! C

1p’ for all p’ € (F* N S")!. Thus, we conclude that (F* N S")! C My by the definition

of MN.

According to (i), (ii) and Definition 4, we show that My € £(N).

To complete the proof, it suffices to prove that My C K for every K € £(N) with M C
K. Let p € My. Then, by the definition of My, there exist My C M and Ny C N such that
(Mp)* N(Np)! C 1p. This means that p € [(Mp)* N(Np)')". Since M C K and K € £(N), it
follows that p € [(Mg)" N(Np)']* € K. So, we have that My C K. Consequently, we infer
that IGy (M) = My = {p € P: (3My C M) (INo C N) (Mo)* N(No)' C 1p}.

(2): The proof is similar to that of (1). O

Lemma 1. Let P be a poset and M, N C P. Then, we have that IGny(M) € £(DGp(N)) and
DGy (N) € D(IGN(M)), i.e., the pair (IGN(M), DGp(N)) is an ID-pair in the poset P.

Proof. We only show that IGy(M) € £(DGpy(N)); the fact DGy (N) € D(IGy(M)) can
be similarly proved. Let F C IGy(M) and S T DG (N). We consider the following cases:
(i) F=Qand S =0.
If the least element L exists in the poset P, then we have that L € IGy(M) by
Remark 1. Tt follows that (F*NS))! = {1} C IGnN(M). If the poset P has no
least element, then (F*(S")! = @ C IGy(M) by Remark 1 again. This shows that
(F' NS C 1y (M).
(i) F={ey,er...,ep}#Dand S = Q.
By Proposition 3, there exist M, C M and N, C N such that (M,)* ﬂ(Nr)l C te, for
alll <, r <, m. Take Mg = U{M, : 1 <, r <, m}and Np = U{N; : 1 <, r <, m}.
Then, we have that My C M, Ny C N and

(Mo)* (No)' =M (N 1 <o 7 <o m}
gﬂ{Ter 15, r<, m}
=F*=F*(s.

It follows that (F* N S")! C [(Mg)* N(Np)']!, which implies that (Mg)* N(Np)! C 1p
for all p € (F*NS")!. Thus, by Proposition 3, we have that p € IGy(M) for all
p € (F*NS"L. This means that (F* N S')! C IGNy(M).

(i) F=®@and S = {s1,52,...,5:} # @.
Proceeding as in the proof of (ii), we can again have (F* N S')! C IGy(M).

(iv) F={e,es...,em} #Dand S = {s1,52,...,5.} # @.
By Proposition 3, there exist M, My T M and N}, N7 C N such that (M})* N(NF)! C
ey and (M?)*N(N7P)! C Js forall1 <, r <, mand 1 <, t <, n. Set My = U{MF :
1<or<ompUU{M; 11 <t <on}and No=U{N/ :1<,r <om}UU{N? : 1<,
t <, n}. Then, we have that My C M, Ny C N and
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(Mo)* (No)' =MD (NS 1 <o 1 <o m}
MM (NP 1 <ot <o n}
gﬂ{Ter 1515 m}ﬂm{ist 15t5, Yl}
=F"s.
This implies that (F* N Sl)l C [(Mp)* ﬂ(NO)l]l, which concludes that (Mj)" ﬂ(No)l C
tp for all p € (F*NS')!. Hence, by Proposition 3, we have (F* N §")! C IGy(M).
According to (i)—(iv) and Definition 4, we infer that IGy (M) € £(DGyp(N)). O

Lemma 2. Let P be a poset and M,N C P. IfsupM = x = infN € P, then we have
sup IGN(M) = x = inf DGy (N).

Proof. Let supM = x = infN € P. Then, one can readily check, by Proposition 3,
that M C IGN(M) C lx and N C DGy (N) C tx. It follows that sup IGy(M) = x =
inf DGy (N). O

We turn to define the ID-double continuity for posets. Since the ID-double continuity
has a close relationship to Property A, proposed by Wolk, we review Property A and its
dual form for posets in the following:

Definition 6 ([6]). A poset P has Property A if, for every non-normal Frink ideal K with sup K =
x € P, there exists an up-directed subset Ky C K such that sup Kyy = x. Dually, a poset P
has Property DA if, for every non-normal dual Frink ideal L with inf L = y € P, there exists a
down-directed subset Lp C L such that inf Lp = y.

Definition 7. A poset P is called an ID-doubly continuous poset if, for every ID-pair (K, L)
in the poset P with supK = x = infL € P, there exist an up-directed subset Ky C K and a
down-directed subset Lp C L such that sup Ky = x = inf Lp.

Example 5. (1) Every finite poset is ID-doubly continuous;

(2) Every lattice is ID-doubly continuous.

Suppose that P is a finite poset and (K, L) is an ID-pair with sup K = x = inf L € P. Then,
we have that K, L C P and K* L' = {x}. Since the pair (K, L) is an ID-pair, by Definition 4
and Definition 5, it follows that (K* N Ll)l = Jx C Kand (K" Ll)” = Tx C L, which implies
that x € Kand x € L. This means that the singleton {x} is an up-directed subset of K and also a
down-directed subset of L such that sup{x} = x = inf{x}. So, by Definition 7, the finite poset P
is ID-doubly continuous.

The fact that every lattice is ID-doubly continuous can also be readily checked by Definition 7.

Proposition 4. Let P be a poset. If the poset P has Property A and Property DA, then it is an
ID-doubly continuous poset.

Proof. Let (K, L) be an ID-pair in the poset P with supK = x = infL € P. Then, by
Proposition 1, the set K is a Frink ideal. If x € K, then we have that {x} is an up-directed
subset of K and sup{x} = x. If x ¢ K, then K is a non-normal Frink ideal since x € (K*)! =
lx # K. By Property A, it follows that there exists an up-directed subset K;; C K such
that sup Ky; = x. A similar verification can prove that there exists a down-directed subset
Lp C Lsuch thatinf Lp = x. Hence, the poset P is ID-doubly continuous. [

In general, an ID-doubly continuous poset may not possess Property A and Property
DA. For such an example, one can refer to Example 7 in Section 4.
Now, we arrive at the main result:
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Theorem 3. A poset P is ID-doubly continuous if and only if the o-convergence and 0,-convergence
in the poset P are equivalent.

Proof. (=): Suppose that a poset P is ID-doubly continuous. To prove the equivalence
between the o-convergence and 0p-convergence, it suffices to show that, for every net (x;);c;
in the poset P, we have

0
(x)ie1 > x € P = (x;)ie1 — x.

Let (x;)ier %2, x. Then, by Definition 2, there exist subsets M, N C P such thatsup M =
x = inf N, and, for every m € M and every n € N, m < x; < n holds eventually. This
means that M C Py and N C Q,, which implies that IGx (M) C Py and DGp(N) C Qy by
Remark 1 and Theorem 2. According to Lemma 1 and 2, it follows that (IGy(M), DGy (N))
is an ID-pair with sup IGN(M) = x = inf DGy(N). Since the poset P is ID-doubly
continuous, we have that sup My = x = inf Np for some up-directed subset M;; C
IGN(M) C Py and some down-directed subset Np C DGy (N) C Qy. This concludes
(xi)ier = x.

(<=): Assume that the o-convergence and 0;-convergence in a poset P are equivalent.
Let (K, L) be an ID-pair in the poset P with sup K = x = inf L € P. Since x € F*S' # @
forall FC Kand S C L, the pair (K, L) is a nontrivial ID-pair by Proposition 2. According
to Theorem 2, there exists a net (x;);c; in the poset P such that K = Py and L = Q. Thus,
we have (x;);c1 2 x. By the hypothesis, it follows that (x;);c; 25 x. This means that
sup Ky = x = inf Lp for some up-directed subset Ki; C K = Py and some down-directed
subset Lp C L = Q. So, the poset P is an ID-doubly continuous poset. [

By Example 5 and Theorem 3, we immediately have the following:

Example 6. (1) In every finite poset, the o-convergence and the 0y-convergence are equivalent;
(2) In every lattice, the o-convergence and the op-convergence are equivalent.

By Proposition 4 and Theorem 3, or by Definition 2 and Theorem 2 and 5 in [6], we
readily have the following;:

Corollary 2. If a poset P has Property A and Property DA, then the o-convergence and 0,-
convergence in the poset P are equivalent.

4. Example

In this section, we mainly give an example to clarify the following facts:

(1) AFrinkideal K of a poset P may not be a local Frink ideal in every nonempty subset
L of P; Dually, a dual Frink ideal K need not be a dually local Frink ideal in every
nonempty subset K of P.

(2) AnID-doubly continuous poset fails to satisfy Property A and Property DA.

Example 7. Let P = {x}U{ar,a2,...,an,... yU{b1,bo, ..., by, ...} U{cr,c0, ..., cn,... }
U{d1,d2,...,dn, ...} (see Figure 1). Define the partial order < on P by setting

o Jx={x}U{m,a,...,an,... } U{b1, o, ..., byu,... y U{c1,c0,...,Cn,... };
e (Vn) lay,={ay,a,...,a,};

o (Vn) L by={bu};

e (Vn) Lcyn={cn}U{ar, a2, ...,an} U{b1, b2, ..., bn};

e (Vn) [ d,={d,}U{b1,ba,..., b}
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Figure 1. The diagram for the poset in Example 7.

Let K = {by,by,...,by,...}. Then, the set K is a non-normal Frink ideal by Definition 3 and

the definition of the poset P. However, the poset P does not process Property A since we can easily
see that sup K = x, and sup Kyy # x for every up-directed subset Kyy C K. We next show that
K ¢ £(L) for any nonempty subset L of the poset P by analyzing the following cases:

(i) a;€L(resp.bj €L, cieL,d; €L)forsomei c IN.
Take j € W such that j >, i. Then, we have {bj} C K, {a;} C L (resp. {b} CL
{a} EL {d} C L) and ({6} N{a;}))' = P & K (resp. ({b}*N{b:}')! = P £ K
{b¥ N{cit)! = P ¢ K, ({b;}* N{d;}')! = P € K). This implies that K é £(L) by
Deﬁnztzon 4.
(i) x € L.
It is easy to see that {by, by} T K, {x} C Land ({by, ba}* N{x}))! = {ay, a2} U{b1, b} &
K. This implies that K ¢ £(L) by Definition 4.
The combination of (i) and (ii) shows that the set K is not a local Frink ideal in any nonempty
subset L of the poset P.

Now, we are going to verify that P is an ID-doubly continuous poset. Let (K’, L") be an ID-pair

in the poset P with sup K’ = p = inf L. We consider the following cases:

(iii)

(iv)

(v)

p = a; (resp. p = bj,c;,d;) for somei € IN.

It is easy to see, by the definition of the poset P, that there exist Ky C K’ and Ly C L’
such that supKy = infLy = p = a;. Since the pair (K',L") is an ID-pair, we have
[(Ko)*N(Lo)')F = la; € K and [(Ko)*N(Lo)'|* = ta; C L', ice., a; € K' and a; € L.
Take K|; = L}, = {a;}. Then, the set K{; is an up-directed subset of the set K', the set L, is a
down-directed subset of the set L' and sup Kj; = a; = inf L.

p=xandx € K.

Since inf L' = x, one can readily check that L' = {x}. Take K{; = L}, = {x}. Then, we have
that the set K[, is an up-directed subset of the set K', the set LT, is a down-directed subset of
the set L' and sup K|; = x = inf L],.

p = xand a; € K’ for some i € IN.

Since inf L' = x, it is easy to see that L' = {x}. If the set K' N{ay,az, ...} is infinite, then
we have that the set K; = K'(\{a1,az,...} is an up-directed subset of the set K', the set
L}, = {x} is a down-directed subset of the set L' and sup K|; = x = inf L],.

If the set K'(\{ay,ay,...} is finite, then we have that the set K' ({by,by,...} is also
finite. Otherwise, suppose that the set K' (\{by,ba,...} is infinite. Then, there exists
{bi,, bi,...} € K'. Since the pair (K',L") is an ID-pair in the poset P, we have that
a;, € ({biy, bi, }* N{x}")! for every k € N with k >, 2. This means that {a;, a;,, ...} C
K'N{ay,ay,...}, contradicting the hypothesis that the set K' N{ay,ay,...} is finite. Let
{11]'1,11]'2, .. .,a]‘m} = K ﬂ{a1,a2,. .. } and {billbizl .- 'in} = K ﬂ{bl,bZ,. .. }, and let
jo = max{ji,ja,...,jm} and iy = max{iy, iy, ..., in}. Since supK' = x, we also take
the following cases into consideration:

(vl) x € K.

In this case, we can return the verification to Case (iv).
(v2) ¢ € K for some i € Nwith i® <, jo.
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In this case, if we take Ko = {aj,, cp} and Ly = {x}, then we have Ky £ K’ and
Lo C L' with sup Ky = x = inf Ly. By a similar verification to that of Case (iii), there
exist an up-directed subset K{; of the set K’ and a down-directed subset L7, of the set L'
such that sup Kj; = x = inf L,
(v3) ¢y € K for some il € Nwithi' <, ip.
In this case, if we take Ky = {b;;,cn} and Ly = {x}, then we have Ky C K’ and
Lo C L' with sup Ky = x = inf Ly. By a similar verification to that of (iii), there exist
an up-directed subset K; of the set K" and a down-directed subset L, of the set L' such
that sup Kj; = x = inf L.
(v4) ca,cs € K for some i2,i® € IN.
In this case, if we take Ko = {cp,cp} and Ly = {x}, then we have Ky T K’ and
Ly C L' with supKy = x = infLy. By a similar verification to (iii), there exist an
up-directed subset K|, of the set K’ and a down-directed subset L7, of the set L' such that
supKj; = x =infL},.
(vi) p = xandc; € K for somei € IN.
Since the pair (K', L) is an ID-pair, we have a; € ({c;}* N{x}")! C K’. So, we can return
the verification to Case (v).
(vii) p = x and b; € K’ for some i € IN.
We consider the following cases:
(viil) b;,b; € K'N{b1,by,...} for somei,j € IN.
Since the pair (K', L") is an ID-pair, we have a; € ({b;, b;}* N{x}')" C K. So, we can
return the verification to Case (v).
(vii2) {bz} =K ﬂ{bl, bz, - }
Since sup K" = x, there exists j € IN such that a; € K’ (resp. ¢; € K, x € K'). So, we
can return the verification to Case (v) (resp. Case (vi), Case (iv)).

By Definition 7 and the combination of Cases (iii)—(vii), we conclude that the poset P is an
ID-doubly continuous poset.

5. Discussion

This paper introduced the notion of ID-pairs in posets. It was shown that the set of
all eventually lower bounds and the set of all eventually upper bounds of a net in a given
poset can be precisely paired to be an ID-pair. This result provides a potential approach for
dealing with the general nets in posets, since some kinds of order convergent nets, such as
the o-convergent nets and 0;-convergent nets, are uniquely determined by their eventually
lower bounds sets and eventually upper bounds sets.

Furthermore, in order to characterize these posets in which the o-convergence and
0p-convergence are equivalent, the concept of ID-doubly continuous posets is proposed.
It is proved that the equivalence of the o0-convergence and 0,-convergence in a poset is
equivalent to the ID-double continuity of the poset. This result provides a sufficient and
necessary condition for the o-convergence and o0p-convergence to be equivalent.

However, it may be complicated to verify the ID-double continuity for some posets,
such as the poset in Example 7. On the contrary, the lattices, a special kind of poset, can be
easily proved to be ID-double continuous. This indicates that the ID-double continuity has
some close relationships with some special kinds of posets. These relationships deserve
further investigation.
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