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Abstract: It is well known that if a poset satisfies Property A and its dual form, then the o-convergence
and o2-convergence in the poset are equivalent. In this paper, we supply an example to illustrate that
a poset in which the o-convergence and o2-convergence are equivalent may not satisfy Property A
or its dual form, and carry out some further investigations on the equivalence of the o-convergence
and o2-convergence. By introducing the concept of the local Frink ideals (the dually local Frink
ideals) and establishing the correspondence between ID-pairs and nets in a poset, we prove that
the o-convergence and o2-convergence of nets in a poset are equivalent if and only if the poset is
ID-doubly continuous. This result gives a complete solution to the problem of E.S. Wolk in two
modes of order convergence, which states under what conditions for a poset the o-convergence and
o2-convergence in the poset are equivalent.
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1. Introduction

Let P be a poset and (xi)i∈I a net on an up-directed set I with value in the poset P.
The concept of order convergence of nets in a poset P was introduced by Birkhoff [1],
Mcshane [2], Frink [3], Rennie [4] and Ward [5]. It is worth noting that the authors may
have attached different meanings to the order convergence. Following the formulation of
Wolk [6], we correspond to the following two modes of order convergence:

Definition 1 ([1–3]). A net (xi)i∈I in a poset P is said to o-converge to an element x ∈ P (in
symbol (xi)i∈I

o−→ x) if there exist subsets M and N of P such that

(A0) M is up-directed and N is down-directed;
(B0) sup M = x = inf N;
(C0) For every m ∈ M and n ∈ N, m ⩽ xi ⩽ n holds eventually, i.e., there is i0 ∈ I such that

m ⩽ xi ⩽ n for all i ≧ i0.

Definition 2 ([4–6]). A net (xi)i∈I in a poset P is said to o2-converge to an element x ∈ P (in
symbol (xi)i∈I

o2−→ x) if there exist subsets M and N of P such that

(A2) sup M = x = inf N;
(B2) For every m ∈ M and n ∈ N, m ⩽ xi ⩽ n holds eventually.

A research topic concerning the o-convergence and o2-convergence, which are closely
related to our work, is from the topological aspect. The o-convergence in a poset P may
not be topological, i.e., there does not exist a topology τ on the poset P such that the
o-convergent class and the convergent class with respect to the topology τ are equivalent.
In [7], based on the introduction of Condition(*) and the double continuity for posets,
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Zhou and Zhao proved that, for a double continuous poset P with Condition(*), the o-
convergence in the poset P is topological. As a further result, Condition (△), a weaker
condition than Condition(*), and the O-doubly continuous posets were defined in [8]. It
was shown that, for a poset P with Condition (△), the o-convergence in the poset P is
topological if and only if the poset P is O-doubly continuous. Following the ideal in [8],
Sun and Li [9] studied the B-topology on posets and found that the o-convergence in a poset
P is topological if and only if the poset P is S∗-doubly continuous, which demonstrates the
equivalence between the o-convergence being topological and the S∗-double continuity of a
poset. Moreover, the ideal-o-convergence, a generalized form of o-convergence established
via ideals, was defined in posets by Georgiou et al. [10,11]. Also, the authors obtained that
the ideal-o-convergence in a poset P is topological if and only if the poset P is S∗-doubly
continuous. This generalized the previous results on the o-convergence.

On the other hand, the o2-convergence is also not topological generally. To characterize
these posets so that the o2-convergence is topological, Zhao and Li [12] studied the notions
of α-double continuous posets and α∗-double continuous posets. Under some additional
conditions, the o2-convergence in these posets is topological. Ulteriorly, Li and Zou [13]
proposed the concept of O2-doubly continuous posets and showed that the o2-convergence
in a poset P is topological if and only if the poset P is O2-doubly continuous, meaning that
they gave a sufficient and necessary condition for the o2-convergence to be topological.
Further, Georgiou et al. [14] extended the o2-convergence to be the ideal-o2-convergence
via ideals, and showed that the O2-double continuity can equivalently characterize such a
convergence to be topological.

From the order-theoretical aspect, by the definitions, one can readily verify that the
o-convergence implies the o2-convergence, i.e., if a net (xi)i∈I in a poset P o-converges to
an element x ∈ P, then it o2-converges to x. However, the converse implication is not
true. This fact can be demonstrated by the example in [6]. Hence, in [6], Wolk posed the
following fundamental problem:

Problem 1. Under what conditions for a poset P do the o-convergence and o2-convergence in
P agree?

A well-known result on this problem is that the o-convergence and o2-convergence in a
lattice are equivalent. Then, Wolk [6] obtained a result on the characterization of posets for
the associated o-inf convergence (a counterpart of o-convergence) and o2-inf convergence (a
counterpart of o2-convergence) being equivalent, which provides an approximate solution
to the fundamental problem, using the concepts of Frink ideals and dual Frank ideals [15].

Motivated by these results toward the problem mentioned above, in this paper, we
continue to make some further investigations on the o-convergence and o2-convergence,
hoping to clarify the order-theoretical condition of a poset P, which is sufficient and
necessary for the o-convergence and o2-convergence to be equivalent.

To this end, in Section 2, following the Frink ideal (the dual Frink ideal), the concepts
of local Frink ideals (dually local Frink ideals) and ID-pairs in posets are further proposed,
and then the relationship between ID-pairs and nets is presented. Section 3 is devoted
to the order-theoretical characterization of the local Frink ideal (the dually local Frink
ideal) generated by a general set. Using this characterization, we prove that the ID-
double continuity is the precise feature for those posets for which the two modes of
order convergence are equivalent.

For the unexplained notions and concepts, one can refer to [6,16,17].

2. Local Frink Ideal (Dually Local Frink Ideal) in Posets

We appoint some conventional notations to be used in the sequel. Let X be a set. We
take F ⊑ X to mean that F is a finite subset of the set X, including the empty set ∅. Given a
poset P and K, L ⊆ P. The notations Ku and Ll are used to denote the set of all upper bounds
of K and the set of all lower bounds of L, respectively, i.e., Ku = {y ∈ P : (∀p ∈ K) y ⩾ p}
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and Ll = {z ∈ P : (∀p ∈ L) z ⩽ p}. Particularly, if the sets K and L are all reduced to be a
singleton {y}, then the notations ↑y and ↓y are reserved to denote the sets {y}u and {y}l ,
respectively.

Since the Frink ideal (the dual Frink ideal) in posets plays a fundamental role in the
discussion of this section, we first review its definition.

Definition 3 ([15]). Let P be a poset.

(1) A subset K of the poset P is called a Frink ideal if, for every F ⊑ K, we have (Fu)l ⊆ K.
Furthermore, a Frink ideal K is said to be normal if (Ku)l = K.

(2) A subset L of the poset P is called a dual Frink ideal if, for every S ⊑ L, we have (Sl)u ⊆ L.
Furthermore, a dual Frink ideal L is said to be normal if (Ll)u = L.

Based on the Frink ideal (the dual Frink ideal), we further define the local Frink ideal
(the dually local Frink ideal) in posets.

Definition 4. Let P be a poset and K, L ⊆ P.

(1) The subset K is called a local Frink ideal in L if, for every F ⊑ K and every S ⊑ L, we have
(Fu ⋂

Sl)l ⊆ K.
(2) The subset L is called a dually local Frink ideal in K if, for every F ⊑ K and every S ⊑ L,

we have (Fu ⋂
Sl)u ⊆ L.

Example 1. Let R be the set of all real numbers, in its usual order, and let a ∈ R. If we take
K = (−∞, a] and L = [a,+∞), then, by Definition 4, the interval K is a local Frink ideal in L and
the interval L is a dually local Frink ideal in K.

Given a poset P and K, L ⊆ P. We simply denote by L(L) the family of all local Frink
ideals in L and, by D(K), the family of all dually local Frink ideals in K.

Remark 1. Let P be a poset and K, L ⊆ P. Then,

(1) From the logic viewpoint, it is reasonable to stipulate that ∅u = ∅l = P. Thus, for every
L ⊆ P and every K ∈ L(L), we have ⊥ ∈ K if the poset P has the least element ⊥. Dually,
for every K ⊆ P and every L ∈ D(K), we have ⊤ ∈ L if the greatest element ⊤ exists in the
poset P.

(2) If K ∈ L(L), then K ∈ L(L0) for every L0 ⊆ L. And, dually, if L ∈ D(K), then L ∈ D(K0)
for every K0 ⊆ K.

(3) The subset K is a Frink ideal if and only if K ∈ L(∅). And, dually, the subset L is a dual Frink
ideal if and only if L ∈ D(∅).

Proposition 1. Let P be a poset and K, L ⊆ P.

(1) If K ∈ L(L), then the subset K is a Frink ideal.
(2) If L ∈ D(K), then the subset L is a dual Frink ideal.

Proof. (1): Suppose that K ∈ L(L). Then, we have (Fu ⋂
Sl)l ⊆ K for every F ⊑ K and

S ⊑ L . This implies that (Fu)l ⊆ (Fu ⋂
Sl)l ⊆ K. Thus, we conclude that (Fu)l ⊆ K for

every F ⊑ K. This shows that the subset K is a Frink ideal.
(2): The proof is similar to that of (1).

However, the converse implications of Proposition 1 may not be true. This fact can be
clarified in Example 7.

Definition 5. Let P be a poset. A pair (K, L) consisting of subsets K and L of P is called an ID-pair
in P if K ∈ L(L) and L ∈ D(K). Moreover, an ID-pair (K, L) in P is said to be nontrivial if one
of the following conditions is exactly satisfied:
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(1) |P| = 1, where |P| denotes the cardinal of the poset P;
(2) |P| ≥ 2 and (K, L) ̸= (P, P).

Example 2. Let P = {a, b}⋃{⊥,⊤}, with the partial order ⩽ defined by

• ⊥ ⩽ a ⩽ ⊤;
• ⊥ ⩽ b ⩽ ⊤.

Take K = {⊥} and L = {⊤}. Then, it is easy to see from Definitions 4 and 5 that the pair
(K, L) = ({⊥}, {⊤}) is a nontrivial ID-pair.

Proposition 2. Let (K, L) be an ID-pair in a poset P. Then, the ID-pair (K, L) is nontrivial if and
only if Fu ⋂

Sl ̸= ∅ for every F ⊑ K and every S ⊑ L.

Proof. (⇒): Let (K, L) be a nontrivial ID-pair in a poset P. We consider the following cases:

(i) |P| = 1, i.e., the poset P = {p} contains only one element p.
It is easy to check that Fu ⋂

Sl = {p} ̸= ∅ for every F ⊑ K and every S ⊑ L.
(ii) |P| ≥ 2.

Suppose that (F0)
u ⋂

(S0)
l = ∅ for some F0 ⊑ K and S0 ⊑ L. Then, we have

[(F0)
u ⋂

(S0)
l ]l = P ⊆ K and [(F0)

u ⋂
(S0)

l ]u = P ⊆ L since (K, L) is an ID-pair
in the poset P. This implies that (K, L) = (P, P), which is a contradiction to the
assumption that the ID-pair (K, L) is nontrivial. Hence, we have that Fu ⋂

Sl ̸= ∅ for
every F ⊑ K and every S ⊑ L.

By (i) and (ii), we conclude that Fu ⋂
Sl ̸= ∅ for every F ⊑ K and every S ⊑ L.

(⇐): Suppose that (K, L) is an ID-pair such that Fu ⋂
Sl ̸= ∅ for every F ⊑ K and

every S ⊑ L. If (K, L) ̸= (P, P), then the ID-pair (K, L) is nontrivial by Definition 5. If
(K, L) = (P, P), i.e., K = L = P, then, by the assumption, we have {p}u ⋂{q}l = ↑p

⋂ ↓q ̸=
∅ and {q}u ⋂{p}l = ↑q

⋂ ↓p ̸= ∅ for all p, q ∈ P. It follows that p = q for all p, q ∈ P.
Hence, we conclude that |P| = 1. This shows, by Definition 5, that the ID-pair (K, L) is
nontrivial.

In fact, given a poset P and a Frink ideal K (resp. a dual Frink ideal L) of the poset P, we
can select a subset L (resp. a subset K) of P such that the pair (K, L) is a nontrivial ID-pair.

Theorem 1. Let P be a poset.

(1) If K is a Frink ideal of the poset P, then the pair (K, L) is a nontrivial ID-pair for some subset
L of the poset P;

(2) If L is a dual Frink ideal of the poset P, then the pair (K, L) is a nontrivial ID-pair for some
subset K of the poset P.

Proof. (1): Suppose that K is a Frink ideal of P. Set L =
⋃{(Fu)u : F ⊑ K}. Now, we

process to show that the pair (K, L) is an ID-pair. Let F0 ⊑ K and S0 ⊑ L. We consider the
following two cases:

(i) S0 = ∅.
Since K is a Frink ideal, by the definition of L, we have

[(F0)
u ∩ (S0)

l ]l = [(F0)
u ∩ P]l = [(F0)

u]l ⊆ K,

and
[(F0)

u ∩ (S0)
l ]u = [(F0)

u ∩ P]u = [(F0)
u]u ⊆ L.

(ii) S0 = {s1, s2, . . . , sm} ̸= ∅.
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By the definition of L, there exists Fi ⊑ K such that si ∈ [(Fi)
u]u for every i ∈

{1, 2, . . . , m}. This means that (Fi)
u ⊆ ↓si for every i ∈ {1, 2, . . . , m}. Thus, we have

(F1 ∪ F2 ∪ · · · ∪ Fm)u ⊆ (S0)
l , which implies that

((F0)
u ∩ (S0)

l)l ⊆[(F0 ∪ F1 ∪ F2 ∪ · · · ∪ Fm)
u ∩ (S0)

l ]l

=[(F0 ∪ F1 ∪ F2 ∪ · · · ∪ Fm)
u]l

⊆K,

and
((F0)

u ∩ (S0)
l)u ⊆[(F0 ∪ F1 ∪ F2 ∪ · · · ∪ Fm)

u ∩ (S0)
l ]u

=[(F0 ∪ F1 ∪ F2 ∪ · · · ∪ Fm)
u]u

⊆L.

The combination of (i) and (ii) shows that the pair (K, L) is an ID-pair in P. Finally, we
prove that the ID-pair (K, L) is nontrivial. Assume that (K, L) = (P, P). Let x, y ∈ L = P.
Then, by the definition of L, there exists Fy ⊑ P such that y ∈ [(Fy)u]u, which implies that
(Fy)u ⊆ ↓y. Since ({x} ∪ Fy)u ⊆ (Fy)u ⊆ ↓y, we have x ∈ ↓y, i.e., x ⩽ y. Similarly, we can
prove that y ⩽ x. This means that x = y, and thus we have |P| = 1. By Definition 5, it
follows that the ID-pair (K, L) is nontrivial.

(2): By a similar verification to that of (1).

Example 3. Let P be a chain, i.e., for all x, y ∈ P, either x ⩽ y or y ⩽ x. For every x ∈ P,
by Definition 4 we have that the set ↓x is a Frink ideal. Obviously, by Definitions 4 and 5, the set
↑x can be selected such that the pair (↓x, ↑x) is a nontrivial ID-pair in P.

Given a poset P and a net (xi)i∈I in the poset P, an element p ∈ P is called an eventually
lower bound of the net (xi)i∈I provided that there exists i0 ∈ I such that xi ⩾ p for all i ≧ i0.
An eventually upper bound of the net (xi)i∈I is defined dually. Following the notations
of Wolk [6], we also take the symbols Px and Qx to mean the set of all eventually lower
bounds of the net (xi)i∈I and the set of all eventually upper bounds of the net (xi)i∈I ,
respectively. If we denote Ex(i0) = {xi ∈ P : i ≧ i0}, then Px =

⋃{[Ex(i)]l : i ∈ I} and
Qx =

⋃{[Ex(i)]u : i ∈ I}. For a set X, the symbol Y ⊂ X means that Y is a proper subset
of the set X, i.e., Y ⊆ X and Y ̸= X. In the following, we always take ≥o to represent the
ordinary order onN, the set of all positive integers.

Now, we can establish a correspondence between the nets and the ID-pairs:

Theorem 2. Let P be a poset. Then, a pair (K, L) in P is a nontrivial ID-pair if and only if there
exists a net (xi)i∈I in P such that Px = K and Qx = L.

Proof. (⇐): Let (K, L) be a pair of subsets of the poset P. Suppose also that (xi)i∈I is a net
in the P such that Px = K and Qx = L. For every F ⊑ Px = K and every S ⊑ Qx = L, we
consider the following cases:

(i) F = S = ∅.
Since F = ∅ and S = ∅, we have that Ex(i) ⊆ Fu ⋂

Sl = P ̸= ∅ for all i ∈ I. This
implies that (Fu ⋂

Sl)l ⊆ [Ex(i)]l and (Fu ⋂
Sl)u ⊆ [Ex(i)]u for all i ∈ I. Hence,

(Fu ⋂
Sl)l ⊆ Px and (Fu ⋂

Sl)u ⊆ Qx.
(ii) F = ∅ ⊑ Px and S = {s1, s2, . . . , sn} ⊑ Qx.

Since S = {s1, s2, . . . , sn} ⊑ Qx, for every 1 ≤o t ≤o n, there exists it ∈ I such that
Ex(it) ⊆ ↓st. Take i0 ∈ I such that i0 ≧ it for all 1 ≤o t ≤o n. Then, we have
Ex(i0) ⊆ ⋂{Ex(it) : 1 ≤o t ≤o n} ⊆ ⋂{↓st : 1 ≤o t ≤o n} = Sl , which implies
that Ex(i0) ⊆ Fu ⋂

Sl = Sl ̸= ∅, (Fu ⋂
Sl)l ⊆ [Ex(i0)]l and (Fu ⋂

Sl)u ⊆ [Ex(i0)]u. It
follows that (Fu ⋂

Sl)l ⊆ Px and (Fu ⋂
Sl)u ⊆ Qx.

(iii) F = {e1, e2, . . . , em} ⊑ Px and S = ∅ ⊑ Qx.
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By a similar verification to that of (ii), we can also prove that Fu ⋂
Sl ̸= ∅, (Fu ⋂

Sl)l ⊆
Px and (Fu ⋂

Sl)u ⊆ Qx.
(iv) F = {e1, e2, . . . , em} ⊑ Px and S = {s1, s2, . . . , sn} ⊑ Qx.

Since F = {e1, e2, . . . , em} ⊑ Px and S = {s1, s2, . . . , sn} ⊑ Qx, there exist ir, it ∈ I
such that Ex(ir) ⊆ ↑er and Ex(it) ⊆ ↓st for all 1 ≤o r ≤o m and 1 ≤o t ≤o n. Take
i0 ∈ I such that i0 ≧ ir, it for all 1 ≤o r ≤o m and 1 ≤o t ≤o n. Then, we have
Ex(i0) ⊆

⋂{↑er : 1 ≤o r ≤o m}⋂⋂{↓st : 1 ≤o t ≤o n} = Fu ⋂
Sl , which implies that

Fu ⋂
Sl ̸= ∅, (Fu ⋂

Sl)l ⊆ [Ex(i0)]l and (Fu ⋂
Sl)u ⊆ [Ex(i0)]u. Thus, (Fu ⋂

Sl)l ⊆ Px
and (Fu ⋂

Sl)u ⊆ Qx.

By (i)–(iv), Definition 4 and Proposition 2, we conclude that the pair (Px, Qx) = (K, L)
is a nontrivial ID-pair in the poset P.

(⇒): Assume that the pair (K, L) is a nontrivial ID-pair in the poset P. We take the
following cases into consideration:

(v) Either the set K or the set L is infinite.
Without loss of generality, we can assume that the set K is infinite. As the ID-pair
(K, L) is nontrivial, we have that Fu ⋂

Sl ̸= ∅ for every F ⊑ K and every S ⊑ L by
Proposition 2. Let κS

F be the cardinal, linearly ordered by ≥S
F, of the set Fu ⋂

Sl , and aS
F :

κS
F → Fu ⋂

Sl be a one-to-one function from κS
F onto Fu ⋂

Sl for every F ⊑ K and every
S ⊑ L. Put I = {(F, S, λ) : F ⊑ K, S ⊑ L, λ ∈ κS

F}. For any (F1, S1, λ1), (F2, S2, λ2) ∈ I,
we define (F2, S2, λ2) ≧ (F1, S1, λ1) if and only if one of the following conditions
is satisfied:

(1) F1 = F2, S1 = S2 and λ2 ≥S1
F1

λ1;
(2) F1 ⊂ F2 and S1 ⊆ S2.

Now, one can readily check that the ordered set I is up-directed. Let the net (xi)i∈I in
the poset P be defined by x(F,S,λ) = aS

F(λ) for every (F, S, λ) ∈ I. Next, we proceed
to prove that Px = K and Qx = L. Let p ∈ Px. Then, there exists (F1, S1, λ1) ∈ I
such that p ∈ [Ex((F1, S1, λ1))]

l . Take S2 = S1 and F2 ⊑ K with F1 ⊂ F2. Then, we
have [(F2)

u ⋂
(S2)

l ]l ⊆ K since the pair (K, L) is a nontrivial ID-pair. According to
the definition of I, it follows that (F2, S2, λ2) ≧ (F1, S1, λ1) for every λ2 ∈ κS2

F2
, which

implies that x(F2,S2,λ2)
= aS2

F2
(λ2) ∈ Ex((F1, S1, λ1)) for every λ2 ∈ κS2

F2
. Hence, we con-

clude that (F2)
u ⋂

(S2)
l ⊆ Ex((F1, S1, λ1)). This shows that p ∈ [Ex((F1, S1, λ1))]

l ⊆
[(F2)

u ⋂
(S2)

l ]l ⊆ K. Thus, Px ⊆ K. Conversely, let q ∈ K. Set F0 = {q} ⊑ K and
S0 = ∅ ⊑ L. Then, by the definition of I, it is easy to see that (F0, S0, λ0) ∈ I for all
λ0 ∈ κS0

F0
. For every (F, S, λ) ∈ I with (F, S, λ) ≧ (F0, S0, λ0), by the definition of I, we

have F0 ⊆ F and S0 ⊆ S, which implies that Fu ⋂
Sl ⊆ (F0)

u ⋂
(S0)

l = ↑q. It follows
that x(F,S,λ) = aS

F(λ) ∈ Fu ⋂
Sl ⊆ ↑q for every (F, S, λ) ≧ (F0, S0, λ0). This means that

q ∈ Px. Hence, we conclude that K ⊆ Px. This shows that Px = K. It can be similarly
proved that Qx = L.

(vi) Both the sets K and L are finite.
Since the pair (K, L) is a nontrivial ID-pair in the poset P, it follows that Ku ⋂

Ll ̸= ∅,
(Ku ⋂

Ll)l ⊆ K and (Ku ⋂
Ll)u ⊆ L. Let κL

K, well ordered by ≥L
K, denote the cardinal

of the set Ku ⋂
Ll , and aL

K : κL
K → Ku ⋂

Ll be a one-to-one function from the cardinal
κL

K onto the set Ku ⋂
Ll . Set I = {(n, λ) : n ∈ N, λ ∈ κL

K}. For any (n1, λ1), (n2, λ2) ∈ I,
we define (n2, λ2) ≧ (n1, λ1) if and only if one of the following conditions is satisfied:

(3) n1 = n2 and λ2 ≥L
K λ1;

(4) n1 ̸= n2 and n2 ≥o n1.

It can easily be checked that the ordered I is up-directed. Let (xi)i∈I be the net in the
poset P by defining x(n,λ) = aL

K(λ) ∈ Ku ⋂
Ll for all λ ∈ κL

K. Now, it remains to show
that K = Px and L = Qx. Let q ∈ K. Then, we have Ku ⋂

Ll ⊆ ↑q. By the definition
of the net (xi)i∈I , it follows that x(n,λ) = aL

K(λ) ∈ Ku ⋂
Ll ⊆ ↑q for all (n, λ) ∈ I.

This means that q ∈ [Ex((n, λ))]l for all (n, λ) ∈ I. Hence, we conclude that q ∈ Px,
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which shows that K ⊆ Px. Conversely, let p ∈ Px. Then, there exists (n0, λ0) ∈ I such
that p ∈ [Ex((n0, λ0))]

l . Since (n0 + 1, λ) ≧ (n0, λ0), for all λ ∈ κL
K, it follows that

x(n0+1,λ) = aL
K(λ) ∈ Ku ⋂

Ll for all λ ∈ κL
K. This implies that Ku ⋂

Ll ⊆ Ex((n0, λ0)).
Hence, we have p ∈ [Ex((n0, λ0))]

l ⊆ (Ku ⋂
Ll)l ⊆ K. This shows that Px ⊆ K.

Therefore, Px = K. A similar verification can show that Qx = L.

By (v) and (vi), we can conclude that there exists a net (xi)i∈I in the poset P such that
Px = K and Qx = L. Thus, the proof is completed.

Example 4. Let P = {⊤}⋃{a1, a2, . . . , an, . . . } with the partial order ⩽ defined by

• (∀n) an ⩽ ⊤.

Consider the net (xn)n∈N defined by

(∀n ∈ N) xn = an,

where the up-directed set N is the set of all positive integers in its usual order. By the definition of
the net (xn)n∈N, we have Px = ∅ and Qx = {⊤}. On the other hand, it follows from Definition 4
and Definition 5 that the pair (∅, {⊤}) is a nontrivial ID-pair. This demonstrates Theorem 2 in
the case.

The combination of Proposition 1 and Theorems 1 and 2 indicates that the eventually
lower bounds Px and eventually upper bounds Qx of a net (xi)i∈I are precisely a Frink ideal
and a dual Frink ideal, respectively (see Corollary 1). However, they are not independent.
Theorem 2 clarifies the correlation between the Frink ideal Px and the dual Frink ideal Qx
from the point of view of order; that is, the Frink ideal Px and the dual Frink ideal Qx must
be matched as a nontrivial ID-pair. Also, this is the initial motivation of introducing the
local Frink ideal (the dually local Frink ideal) and ID-pair for posets in the sequel.

Corollary 1 ([6]). Let P be a poset and K, L ⊆ P. Then,

(1) The subset K is a Frink ideal if and only if Px = K for some net (xi)i∈I in the poset P;
(2) The subset L is a dual Frink ideal if and only if Qy = L for some net (yj)j∈J in the poset P.

3. ID-Doubly Continuous Posets

Given a poset P and M, N ⊆ P, let LM(N) = {K ∈ L(N) : M ⊆ K}. Then, one can
readily verify by Definition 4 that the intersection

⋂
LM(N) contains the set M and is again

a local Frink ideal in the set N. This local Frink ideal is called the local Frink ideal generated
by the set M and denoted by IGN(M). The dually local Frink ideal generated by the set N is
defined dually, and denoted by DGM(N). Next, we clarify the structure of IGN(M) and
DGM(N):

Proposition 3. Let P be a poset and M, N ⊆ P. Then,

(1) IGN(M) = {p ∈ P : (∃M0 ⊑ M) (∃N0 ⊑ N) (M0)
u ⋂

(N0)
l ⊆ ↑p};

(2) DGM(N) = {q ∈ P : (∃M00 ⊑ M) (∃N00 ⊑ N) (M00)
u ⋂

(N00)
l ⊆ ↓q}.

Proof. (1): Denote the set {p ∈ P : (∃M0 ⊑ M) (∃N0 ⊑ N) (M0)
u ⋂

(N0)
l ⊆ ↑p} by MN .

Then, it is easy to see that M ⊆ MN . Now, we proceed to prove that MN ∈ L(N). Let
F ⊑ MN and S ⊑ N. We should consider the following cases:

(i) F = ∅.
Since F = ∅, it follows that (Ma)u ⋂

Sl ⊆ Fu ⋂
Sl = Sl for all Ma ⊑ M, which implies

that (Fu ⋂
Sl)l ⊆ [(Ma)u ⋂

Sl ]l for all Ma ⊑ M. This means that (Ma)u ⋂
Sl ⊆ ↑p′ for

all p′ ∈ (Fu ⋂
Sl)l . Hence, we infer that (Fu ⋂

Sl)l ⊆ ML.
(ii) F = {e1, e2, . . . , em} ̸= ∅.
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It follows by the definition of MN that, for every 1 ≤o r ≤o m, there exist Mr ⊑ M
and Nr ⊑ N such that (Mr)u ⋂

(Nr)l ⊆ ↑er. Take MF =
⋃{Mr : 1 ≤o r ≤o m} and

NF =
⋃{Nr : 1 ≤o r ≤o m}⋃

S. Then, we have that MF ⊑ M, NF ⊑ N and

(MF)
u ⋂

(NF)
l =

⋂
{(Mr)

u ⋂
(Nr)

l : 1 ≤o r ≤o m}
⋂

Sl

⊆
⋂
{↑er : 1 ≤o r ≤o m}

⋂
Sl

=Fu ⋂
Sl .

This implies that (Fu ⋂
Sl)l ⊆ [(MF)

u ⋂
(NF)

l ]l , which means that (MF)
u ⋂

(NF)
l ⊆

↑p′ for all p′ ∈ (Fu ⋂
Sl)l . Thus, we conclude that (Fu ⋂

Sl)l ⊆ MN by the definition
of MN .

According to (i), (ii) and Definition 4, we show that MN ∈ L(N).
To complete the proof, it suffices to prove that MN ⊆ K for every K ∈ L(N) with M ⊆

K. Let p ∈ MN . Then, by the definition of MN , there exist M0 ⊑ M and N0 ⊑ N such that
(M0)

u ⋂
(N0)

l ⊆ ↑p. This means that p ∈ [(M0)
u ⋂

(N0)
l ]l . Since M ⊆ K and K ∈ L(N), it

follows that p ∈ [(M0)
u ⋂

(N0)
l ]l ⊆ K. So, we have that MN ⊆ K. Consequently, we infer

that IGN(M) = MN = {p ∈ P : (∃M0 ⊑ M) (∃N0 ⊑ N) (M0)
u ⋂

(N0)
l ⊆ ↑p}.

(2): The proof is similar to that of (1).

Lemma 1. Let P be a poset and M, N ⊆ P. Then, we have that IGN(M) ∈ L(DGM(N)) and
DGM(N) ∈ D(IGN(M)), i.e., the pair (IGN(M), DGM(N)) is an ID-pair in the poset P.

Proof. We only show that IGN(M) ∈ L(DGM(N)); the fact DGM(N) ∈ D(IGN(M)) can
be similarly proved. Let F ⊑ IGN(M) and S ⊑ DGM(N). We consider the following cases:

(i) F = ∅ and S = ∅.
If the least element ⊥ exists in the poset P, then we have that ⊥ ∈ IGN(M) by
Remark 1. It follows that (Fu ⋂

Sl)l = {⊥} ⊆ IGN(M). If the poset P has no
least element, then (Fu ⋂

Sl)l = ∅ ⊆ IGN(M) by Remark 1 again. This shows that
(Fu ⋂

Sl)l ⊆ IGN(M).
(ii) F = {e1, e2, . . . , em} ̸= ∅ and S = ∅.

By Proposition 3, there exist Mr ⊑ M and Nr ⊑ N such that (Mr)u ⋂
(Nr)l ⊆ ↑er for

all 1 ≤o r ≤o m. Take M0 =
⋃{Mr : 1 ≤o r ≤o m} and N0 =

⋃{Nr : 1 ≤o r ≤o m}.
Then, we have that M0 ⊑ M, N0 ⊑ N and

(M0)
u ⋂

(N0)
l =

⋂
{(Mr)

u ⋂
(Nr)

l : 1 ≤o r ≤o m}

⊆
⋂
{↑er : 1 ≤o r ≤o m}

=Fu = Fu ⋂
Sl .

It follows that (Fu ⋂
Sl)l ⊆ [(M0)

u ⋂
(N0)

l ]l , which implies that (M0)
u ⋂

(N0)
l ⊆ ↑p

for all p ∈ (Fu ⋂
Sl)l . Thus, by Proposition 3, we have that p ∈ IGN(M) for all

p ∈ (Fu ⋂
Sl)l . This means that (Fu ⋂

Sl)l ⊆ IGN(M).
(iii) F = ∅ and S = {s1, s2, . . . , sn} ̸= ∅.

Proceeding as in the proof of (ii), we can again have (Fu ⋂
Sl)l ⊆ IGN(M).

(iv) F = {e1, e2, . . . , em} ̸= ∅ and S = {s1, s2, . . . , sn} ̸= ∅.
By Proposition 3, there exist MF

r , MS
t ⊑ M and NF

r , NS
t ⊑ N such that (MF

r )
u ⋂

(NF
r )

l ⊆
↑er and (MS

t )
u ⋂

(NS
t )

l ⊆ ↓st for all 1 ≤o r ≤o m and 1 ≤o t ≤o n. Set M0 =
⋃{MF

r :
1 ≤o r ≤o m}⋃⋃{MS

t : 1 ≤o t ≤o n} and N0 =
⋃{NF

r : 1 ≤o r ≤o m}⋃⋃{NS
t : 1 ≤o

t ≤o n}. Then, we have that M0 ⊑ M, N0 ⊑ N and
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(M0)
u ⋂

(N0)
l =

⋂
{(MF

r )
u ⋂

(NF
r )

l : 1 ≤o r ≤o m}⋂⋂
{(MS

t )
u ⋂

(NS
t )

l : 1 ≤o t ≤o n}

⊆
⋂
{↑er : 1 ≤o r ≤o m}

⋂⋂
{↓st : 1 ≤o t ≤o n}

=Fu ⋂
Sl .

This implies that (Fu ⋂
Sl)l ⊆ [(M0)

u ⋂
(N0)

l ]l , which concludes that (M0)
u ⋂

(N0)
l ⊆

↑p for all p ∈ (Fu ⋂
Sl)l . Hence, by Proposition 3, we have (Fu ⋂

Sl)l ⊆ IGN(M).

According to (i)–(iv) and Definition 4, we infer that IGN(M) ∈ L(DGM(N)).

Lemma 2. Let P be a poset and M, N ⊆ P. If sup M = x = inf N ∈ P, then we have
sup IGN(M) = x = inf DGM(N).

Proof. Let sup M = x = inf N ∈ P. Then, one can readily check, by Proposition 3,
that M ⊆ IGN(M) ⊆ ↓x and N ⊆ DGM(N) ⊆ ↑x. It follows that sup IGN(M) = x =
inf DGM(N).

We turn to define the ID-double continuity for posets. Since the ID-double continuity
has a close relationship to Property A, proposed by Wolk, we review Property A and its
dual form for posets in the following:

Definition 6 ([6]). A poset P has Property A if, for every non-normal Frink ideal K with sup K =
x ∈ P, there exists an up-directed subset KU ⊆ K such that sup KU = x. Dually, a poset P
has Property DA if, for every non-normal dual Frink ideal L with inf L = y ∈ P, there exists a
down-directed subset LD ⊆ L such that inf LD = y.

Definition 7. A poset P is called an ID-doubly continuous poset if, for every ID-pair (K, L)
in the poset P with sup K = x = inf L ∈ P, there exist an up-directed subset KU ⊆ K and a
down-directed subset LD ⊆ L such that sup KU = x = inf LD.

Example 5. (1) Every finite poset is ID-doubly continuous;
(2) Every lattice is ID-doubly continuous.
Suppose that P is a finite poset and (K, L) is an ID-pair with sup K = x = inf L ∈ P. Then,

we have that K, L ⊑ P and Ku ⋂
Ll = {x}. Since the pair (K, L) is an ID-pair, by Definition 4

and Definition 5, it follows that (Ku ⋂
Ll)l = ↓x ⊆ K and (Ku ⋂

Ll)u = ↑x ⊆ L, which implies
that x ∈ K and x ∈ L. This means that the singleton {x} is an up-directed subset of K and also a
down-directed subset of L such that sup{x} = x = inf{x}. So, by Definition 7, the finite poset P
is ID-doubly continuous.

The fact that every lattice is ID-doubly continuous can also be readily checked by Definition 7.

Proposition 4. Let P be a poset. If the poset P has Property A and Property DA, then it is an
ID-doubly continuous poset.

Proof. Let (K, L) be an ID-pair in the poset P with sup K = x = inf L ∈ P. Then, by
Proposition 1, the set K is a Frink ideal. If x ∈ K, then we have that {x} is an up-directed
subset of K and sup{x} = x. If x /∈ K, then K is a non-normal Frink ideal since x ∈ (Ku)l =
↓x ̸= K. By Property A, it follows that there exists an up-directed subset KU ⊆ K such
that sup KU = x. A similar verification can prove that there exists a down-directed subset
LD ⊆ L such that inf LD = x. Hence, the poset P is ID-doubly continuous.

In general, an ID-doubly continuous poset may not possess Property A and Property
DA. For such an example, one can refer to Example 7 in Section 4.

Now, we arrive at the main result:
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Theorem 3. A poset P is ID-doubly continuous if and only if the o-convergence and o2-convergence
in the poset P are equivalent.

Proof. (⇒): Suppose that a poset P is ID-doubly continuous. To prove the equivalence
between the o-convergence and o2-convergence, it suffices to show that, for every net (xi)i∈I
in the poset P, we have

(xi)i∈I
o2−→ x ∈ P ⇒ (xi)i∈I

o−→ x.

Let (xi)i∈I
o2−→ x. Then, by Definition 2, there exist subsets M, N ⊆ P such that sup M =

x = inf N, and, for every m ∈ M and every n ∈ N, m ⩽ xi ⩽ n holds eventually. This
means that M ⊆ Px and N ⊆ Qx, which implies that IGN(M) ⊆ Px and DGM(N) ⊆ Qx by
Remark 1 and Theorem 2. According to Lemma 1 and 2, it follows that (IGN(M), DGM(N))
is an ID-pair with sup IGN(M) = x = inf DGM(N). Since the poset P is ID-doubly
continuous, we have that sup MU = x = inf ND for some up-directed subset MU ⊆
IGN(M) ⊆ Px and some down-directed subset ND ⊆ DGM(N) ⊆ Qx. This concludes
(xi)i∈I

o−→ x.
(⇐): Assume that the o-convergence and o2-convergence in a poset P are equivalent.

Let (K, L) be an ID-pair in the poset P with sup K = x = inf L ∈ P. Since x ∈ Fu ⋂
Sl ̸= ∅

for all F ⊑ K and S ⊑ L, the pair (K, L) is a nontrivial ID-pair by Proposition 2. According
to Theorem 2, there exists a net (xi)i∈I in the poset P such that K = Px and L = Qx. Thus,
we have (xi)i∈I

o2−→ x. By the hypothesis, it follows that (xi)i∈I
o−→ x. This means that

sup KU = x = inf LD for some up-directed subset KU ⊆ K = Px and some down-directed
subset LD ⊆ L = Qx. So, the poset P is an ID-doubly continuous poset.

By Example 5 and Theorem 3, we immediately have the following:

Example 6. (1) In every finite poset, the o-convergence and the o2-convergence are equivalent;
(2) In every lattice, the o-convergence and the o2-convergence are equivalent.

By Proposition 4 and Theorem 3, or by Definition 2 and Theorem 2 and 5 in [6], we
readily have the following:

Corollary 2. If a poset P has Property A and Property DA, then the o-convergence and o2-
convergence in the poset P are equivalent.

4. Example

In this section, we mainly give an example to clarify the following facts:

(1) A Frink ideal K of a poset P may not be a local Frink ideal in every nonempty subset
L of P; Dually, a dual Frink ideal K need not be a dually local Frink ideal in every
nonempty subset K of P.

(2) An ID-doubly continuous poset fails to satisfy Property A and Property DA.

Example 7. Let P = {x}⋃{a1, a2, . . . , an, . . . }⋃{b1, b2, . . . , bn, . . . }⋃{c1, c2, . . . , cn, . . . }⋃{d1, d2, . . . , dn, . . . } (see Figure 1). Define the partial order ⩽ on P by setting

• ↓ x = {x}⋃{a1, a2, . . . , an, . . . }⋃{b1, b2, . . . , bn, . . . }⋃{c1, c2, . . . , cn, . . . };
• (∀n) ↓ an = {a1, a2, . . . , an};
• (∀n) ↓ bn = {bn};
• (∀n) ↓ cn = {cn}

⋃{a1, a2, . . . , an}
⋃{b1, b2, . . . , bn};

• (∀n) ↓ dn = {dn}
⋃{b1, b2, . . . , bn}.
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x

a1

a2

a3

b2b1 b3

c1 c 2 c3

d2 d3d1

Figure 1. The diagram for the poset in Example 7.

Let K = {b1, b2, . . . , bn, . . . }. Then, the set K is a non-normal Frink ideal by Definition 3 and
the definition of the poset P. However, the poset P does not process Property A since we can easily
see that sup K = x, and sup KU ̸= x for every up-directed subset KU ⊆ K. We next show that
K /∈ L(L) for any nonempty subset L of the poset P by analyzing the following cases:

(i) ai ∈ L (resp. bi ∈ L, ci ∈ L, di ∈ L) for some i ∈ N.
Take j ∈ N such that j >o i. Then, we have {bj} ⊑ K, {ai} ⊑ L (resp. {bi} ⊑ L,
{ci} ⊑ L, {di} ⊑ L) and ({bj}u ⋂{ai}l)l = P ⊈ K (resp. ({bj}u ⋂{bi}l)l = P ⊈ K,
({bj}u ⋂{ci}l)l = P ⊈ K, ({bj}u ⋂{di}l)l = P ⊈ K). This implies that K /∈ L(L) by
Definition 4.

(ii) x ∈ L.
It is easy to see that {b1, b2} ⊑ K, {x} ⊑ L and ({b1, b2}u ⋂{x}l)l = {a1, a2}

⋃{b1, b2} ⊈
K. This implies that K /∈ L(L) by Definition 4.

The combination of (i) and (ii) shows that the set K is not a local Frink ideal in any nonempty
subset L of the poset P.

Now, we are going to verify that P is an ID-doubly continuous poset. Let (K′, L′) be an ID-pair
in the poset P with sup K′ = p = inf L′. We consider the following cases:

(iii) p = ai (resp. p = bi, ci, di) for some i ∈ N.
It is easy to see, by the definition of the poset P, that there exist K0 ⊑ K′ and L0 ⊑ L′

such that sup K0 = inf L0 = p = ai. Since the pair (K′, L′) is an ID-pair, we have
[(K0)

u ⋂
(L0)

l ]l = ↓ai ⊆ K′ and [(K0)
u ⋂

(L0)
l ]u = ↑ai ⊆ L′, i.e., ai ∈ K′ and ai ∈ L′.

Take K′
U = L′

D = {ai}. Then, the set K′
U is an up-directed subset of the set K′, the set L′

D is a
down-directed subset of the set L′ and sup K′

U = ai = inf L′
D.

(iv) p = x and x ∈ K′.
Since inf L′ = x, one can readily check that L′ = {x}. Take K′

U = L′
D = {x}. Then, we have

that the set K′
U is an up-directed subset of the set K′, the set L′

D is a down-directed subset of
the set L′ and sup K′

U = x = inf L′
D.

(v) p = x and ai ∈ K′ for some i ∈ N.
Since inf L′ = x, it is easy to see that L′ = {x}. If the set K′ ⋂{a1, a2, . . . } is infinite, then
we have that the set K′

U = K′ ⋂{a1, a2, . . . } is an up-directed subset of the set K′, the set
L′

D = {x} is a down-directed subset of the set L′ and sup K′
U = x = inf L′

D.
If the set K′ ⋂{a1, a2, . . . } is finite, then we have that the set K′ ⋂{b1, b2, . . . } is also
finite. Otherwise, suppose that the set K′ ⋂{b1, b2, . . . } is infinite. Then, there exists
{bi1 , bi2 , . . . } ⊆ K′. Since the pair (K′, L′) is an ID-pair in the poset P, we have that
aik ∈ ({bi1 , bik}

u ⋂{x}l)l for every k ∈ N with k ≥o 2. This means that {ai2 , ai3 , . . . } ⊆
K′ ⋂{a1, a2, . . . }, contradicting the hypothesis that the set K′ ⋂{a1, a2, . . . } is finite. Let
{aj1 , aj2 , . . . , ajm} = K′ ⋂{a1, a2, . . . } and {bi1 , bi2 , · · ·in} = K′ ⋂{b1, b2, . . . }, and let
j0 = max{j1, j2, . . . , jm} and i0 = max{i1, i2, . . . , in}. Since sup K′ = x, we also take
the following cases into consideration:

(v1) x ∈ K′.
In this case, we can return the verification to Case (iv).

(v2) ci0 ∈ K′ for some i0 ∈ N with i0 <o j0.
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In this case, if we take K0 = {aj0 , ci0} and L0 = {x}, then we have K0 ⊑ K′ and
L0 ⊑ L′ with sup K0 = x = inf L0. By a similar verification to that of Case (iii), there
exist an up-directed subset K′

U of the set K′ and a down-directed subset L′
D of the set L′

such that sup K′
U = x = inf L′

D.
(v3) ci1 ∈ K′ for some i1 ∈ N with i1 <o i0.

In this case, if we take K0 = {bi0 , ci1} and L0 = {x}, then we have K0 ⊑ K′ and
L0 ⊑ L′ with sup K0 = x = inf L0. By a similar verification to that of (iii), there exist
an up-directed subset K′

U of the set K′ and a down-directed subset L′
D of the set L′ such

that sup K′
U = x = inf L′

D.
(v4) ci2 , ci3 ∈ K′ for some i2, i3 ∈ N.

In this case, if we take K0 = {ci2 , ci3} and L0 = {x}, then we have K0 ⊑ K′ and
L0 ⊑ L′ with sup K0 = x = inf L0. By a similar verification to (iii), there exist an
up-directed subset K′

U of the set K′ and a down-directed subset L′
D of the set L′ such that

sup K′
U = x = inf L′

D.

(vi) p = x and ci ∈ K′ for some i ∈ N.
Since the pair (K′, L′) is an ID-pair, we have ai ∈ ({ci}u ⋂{x}l)l ⊆ K′. So, we can return
the verification to Case (v).

(vii) p = x and bi ∈ K′ for some i ∈ N.
We consider the following cases:

(vii1) bi, bj ∈ K′ ⋂{b1, b2, . . . } for some i, j ∈ N.
Since the pair (K′, L′) is an ID-pair, we have ai ∈ ({bi, bj}u ⋂{x}l)l ⊆ K′. So, we can
return the verification to Case (v).

(vii2) {bi} = K′ ⋂{b1, b2, . . . }.
Since sup K′ = x, there exists j ∈ N such that aj ∈ K′ (resp. cj ∈ K′, x ∈ K′). So, we
can return the verification to Case (v) (resp. Case (vi), Case (iv)).

By Definition 7 and the combination of Cases (iii)–(vii), we conclude that the poset P is an
ID-doubly continuous poset.

5. Discussion

This paper introduced the notion of ID-pairs in posets. It was shown that the set of
all eventually lower bounds and the set of all eventually upper bounds of a net in a given
poset can be precisely paired to be an ID-pair. This result provides a potential approach for
dealing with the general nets in posets, since some kinds of order convergent nets, such as
the o-convergent nets and o2-convergent nets, are uniquely determined by their eventually
lower bounds sets and eventually upper bounds sets.

Furthermore, in order to characterize these posets in which the o-convergence and
o2-convergence are equivalent, the concept of ID-doubly continuous posets is proposed.
It is proved that the equivalence of the o-convergence and o2-convergence in a poset is
equivalent to the ID-double continuity of the poset. This result provides a sufficient and
necessary condition for the o-convergence and o2-convergence to be equivalent.

However, it may be complicated to verify the ID-double continuity for some posets,
such as the poset in Example 7. On the contrary, the lattices, a special kind of poset, can be
easily proved to be ID-double continuous. This indicates that the ID-double continuity has
some close relationships with some special kinds of posets. These relationships deserve
further investigation.
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