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Abstract: Most of the deep-learning algorithms on stock price volatility prediction in the existing
literature use data such as same-frequency market indicators or technical indicators, and less consider
mixed-frequency data, such as macro-data. Compared with the traditional model that only inputs
the same-frequency data such as technical indicators and market indicators, this study proposes
an improved deep-learning model based on mixed-frequency big data. This paper first introduces
the reserve restricted mixed-frequency data sampling (RR-MIDAS) model to deal with the mixed-
frequency data and, secondly, extracts the temporal and spatial features of volatility series by using
the parallel model of CNN-LSTM and LSTM, and finally utilizes the Optuna framework for hyper-
parameter optimization to achieve volatility prediction. For the deep-learning model with mixed-
frequency data, its RMSE, MAE, MSLE, MAPE, SMAPE, and QLIKE are reduced by 18.25%, 14.91%,
30.00%, 12.85%, 13.74%, and 23.42%, respectively. This paper provides a more accurate and robust
method for forecasting the realized volatility of stock prices under mixed-frequency data.

Keywords: mixed frequency data; RR-MIDAS model; volatility prediction; deep learning; Optuna
framework

MSC: 68T09; 62P05; 68T07

JEL Classification: C32; G17

1. Introduction

The volatility of the financial market is an important indicator for measuring the de-
gree of price fluctuations of financial assets, which plays a very important role in practical
applications such as investment decision making [1], asset pricing [2], and risk manage-
ment [3]. Therefore, the construction of a more accurate volatility estimation and forecasting
model has very important theoretical value and application significance.

The research on volatility estimation and prediction has gone through the process
from using low-frequency data to using high-frequency data for prediction. In the context
of low-frequency data, Engle [4] proposed an autoregressive conditional heteroskedasticity
(ARCH) model that considers changes in volatility. On this basis, Bollerslev [5] proposed
a generalized autoregressive conditional heteroskedasticity (GARCH) model in order to
better characterize the heteroskedasticity of the residuals of financial asset return series.
Based on the assumption that conditional variance obeys an unobservable stochastic
process, Taylor [6] proposed the stochastic volatility (SV) model. However, the drawback
of the above models is that a large amount of intraday price information is lost when
estimating stock volatility, and high-frequency data can provide more fine-grained price
fluctuation information, which can help improve the accuracy of volatility estimation.
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With the ease and decreasing cost of access to high-frequency data, high-frequency data
have become more common in the study of financial asset return volatility, which provides
a new entry point for financial volatility forecasting. In the context of high-frequency
data, Andersen et al. [7] proposed an estimator of realized volatility based on the sum
of squares of intraday high-frequency returns as a new way to measure daily volatility.
Corsi [8] proposed the heterogeneous autoregression (HAR) model for financial volatility
forecasting, which introduces information about historical volatility over different time
scales to more sensitively capture volatility’s short-term and long-term changes. However,
the complexity and variability of the financial market itself means that more factors need to
be considered when building forecasting models, like macro-factors, sentiment factors [9],
and investor attention factor [10], etc. Furthermore, the relationship between these variables
is often nonlinear and dynamically changing, which makes it difficult for traditional time-
series models to adapt to changes in the market, and the forecasting accuracy is limited.
In addition, traditional econometric models can only be applied to the modeling of smooth
series, but the price series in financial markets are often trending and seasonal, which
makes it difficult for them to meet the requirement of smoothness.

In recent years, nonlinear machine-learning models have been gradually adopted in
financial time-series forecasting and can fully exploit the nonlinear relationship between
variables and strong feature-learning ability, which improves the forecasting performance
of the models to some extent. Currently, nonlinear machine prediction models include
support vector machines and random forests, etc. For example, Liu et al. [11] predicted the
volatility of the shipping market index using the AR-SVR-GARCH model, Li and Qiao [12]
predicted the realized the volatility of the CSI 300 index using the SW-SVR model. To
predict the share price movement of a clean energy exchange-traded fund, Sadorsky [13]
predicted the volatility of the Clean Energy Exchange Traded Fund (CETF) using random
forests, and Zhuo and Morimoto [14] used a hybrid HAR model and SVR model to forecast
realized volatility. However, the ability of machine learning to portray the correlation
of data before and after a financial time series is poor, and deep-learning models have
been gradually developed to further improve the prediction accuracy and better express
the correlation of data before and after a time series. Long-short-term memory (LSTM)
networks, as an improved model of recurrent neural network (RNN), focus on coping with
long-term dependence and do not require complex hyper-parameter tuning, and they are
able to automatically memorize the historical information of a longer period of time, but the
LSTM itself has a relatively complex model structure and is computationally intensive when
the time span of the data is large. Convolutional neural networks (CNN) are able to learn
the temporal and spatial features of time series without complex information processing
by using convolutional and pooling layers as feature extractors [15]. However, CNN is
deficient in capturing the long-term serial features of financial time series. Zhou [16] found
that the deep-learning model CNN-LSTM has a strong learning ability and overfitting
resistance to nonlinear relationships. Lu et al. [17] and Chen [18] utilized the CNN-LSTM
model for stock price prediction and found that the model prediction accuracy was higher.
However, CNN-LSTM models in the existing literature mainly focus on stock price trend
prediction and less on the prediction of stock price volatility.

In addition, most of the above models consider using the same frequency of market
indicators or technical indicators to predict the time series. More existing studies show that
macro-variables play an important role in predicting stock market volatility; for example,
Amendola et al. [19] use the GARCH-MIDAS model to study the asymmetric effect of
macro-variables on stock volatility, Shang and Zheng [20] introduce an SV-MIDAS model
with input macro-variables to predict the stock price volatility, and Li et al. [21] use a
GARCH-MIDAS model to introduce macro-variables to predict stock volatility under
economic policy uncertainty. Compared with stock market data and technical indicators,
macro-variables are usually low-frequency variables. Currently, when dealing with mixed-
frequency data, some scholars use linear interpolation to deal with the mismatch between
high-frequency and low-frequency information, but when dealing with financial time-
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series data, linear interpolation may lead to distortion of the trend, resulting in the loss of
information. Ghysels et al. [22] proposed that the MIDAS model can frequency-align high-
frequency variables into low-frequency variables, combining data from different frequencies
to predict volatility. However, MIDAS has high computational complexity and performs
poorly when dealing with nonlinear relationships, and more flexible methods need to
be considered to deal with datasets with complex nonlinear relationships. RU-MIDAS,
proposed by Foroni et al. [23], enables the prediction of the trend of a low-frequency variable
to a high-frequency variable, but it can achieve good empirical results only when the
frequency multiplicity difference is small. The RR-MIDAS model proposed by Xu et al. [24]
simplifies the calculation process and still shows good prediction accuracy when the
frequency multiplicity difference is 22. Wu et al. [25] used the GARCH-MIDAS model to
process the mixed-frequency data and predict volatility and found that the model was more
accurate and robust. In summary, when using mixed-frequency data to predict volatility,
more scholars have noticed the advantages of the MIDAS model in mixed-frequency data
processing, and more scholars only use the MIDAS econometric model to homogenise and
predict mixed-frequency data without considering the advantages of the deep-learning
model in multivariate time-series data feature learning and data prediction.

The introduction of macro-factors in forecasting stock price volatility is necessary to
fill the gaps in existing research, taking into account the dual impact of macro-factors on
business operations and discount rates. Aiming at the differences in data frequency between
markets, fundamental and macro-factors and realized volatility, as well as the problem
of information loss that may be caused by traditional homogenization processing, this
paper proposes the RR-MIDAS-CNN-LSTM-PARALLEL (RM-CNN-LSTM-P) model. First,
the data with different frequencies are reverse-mixed using the RR-MIDAS model. Then,
the spatial and temporal features of the time series are extracted from market indicators,
fundamental indicators, and macro-variables by CNN-LSTM, respectively. Meanwhile,
the temporal features of realized volatility are processed using a parallel LSTM network
to capture its dynamic changes. To further enhance the model performance, the Optuna
framework is employed to tune the model hyperparameters. Finally, the extracted temporal
and spatial features are fed into the fully connected layer to predict the realized volatility at
the next moment.

This paper makes four contributions in stock price volatility forecasting. First, this
study recognizes the impact of macro-factors on firms’ operations and cash flow discount
rates, and therefore introduces macro-indicators in addition to traditional market and
fundamental indicators to enhance the forecasting accuracy of realized stock price volatility.
Second, for the frequency difference between macroeconomic data and stock market data,
this study adopts the RR-MIDAS model to deal with the problem of mixed-frequency
data, which effectively avoids the information distortion and estimation bias that may be
caused by the traditional interpolation method, and significantly improves the volatility
prediction performance. Then, in terms of model construction, this paper introduces an
LSTM network in parallel on the basis of CNN-LSTM architecture, which is specifically used
to extract the temporal features of realized volatility, and this improvement significantly
improves the prediction accuracy of the model. In addition, considering the high number
of hyperparameters of deep-learning models, this study utilizes the Optuna framework
to tune the model hyperparameters and verifies the superiority of the proposed model
by comparing it with other commonly used models. Finally, to test the robustness of the
model, this paper compares the prediction results of the RM-CNN-LSTM-P model after
500 experiments with 17 other models and performs the DM test, which shows that the
model not only predicts accurately, but also has high robustness.

The structure of this paper is as follows: Section 2 introduces the principles of the
econometric model RR-MIDAS and the deep-learning model CNN-LSTM-P, comprehen-
sively summarizes the evaluation criteria and the principles of the DM test, and then
details the research process. Section 3 introduces the data sources, basic data characteristics
and Optuna tuning framework, argues the correlation between explanatory variables and
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volatility, and demonstrates the optimal hyperparameters of the RM-CNN-LSTM-P model
under the Optuna tuning framework. The test set volatility prediction accuracies and
rankings of 18 volatility prediction models under six loss functions are further compared,
and finally, influence experiments and DM tests are conducted to argue the importance of
the three macro-variables in improving the prediction accuracy of the models, and to verify
that the RM-CNN-LSTM-P model is significantly better than the other models. Section 4
discusses the difference in prediction performance between this paper and the linear inter-
polation model, and the parallel LSTM model with CNN removed, and Section 5 provides
conclusions and extensions.

2. Methodology and Evaluation Criteria
2.1. RR-MIDAS Model

When predicting changes in stock price volatility, the problem arises of predicting high-
frequency data with low-frequency data, and there may be a large frequency multiplicity
difference between the variables. The mixed-frequency data sampling (MIDAS) model and
the reverse unconstrained mixed-frequency data sampling (RU-MIDAS) model proposed
by Foroni et al. [23] on this basis could not solve this type of problem better. Subsequently,
Xu et al. [24] constructed a reverse constrained mixed-frequency data sampling model (RR-
MIDAS), which can realize the real-time prediction of low-frequency data to high-frequency
data and adapt to the situation of large frequency multiplicity difference. The RR-MIDAS
containing K low-frequency explanatory variables is defined as follows:

yt+h/m = β0 +
K

∑
a=1

βa,h

la

∑
b=0

ρa(αha ; b)xa,t−b + u0,h

= β0 + β1,h
[
ρ1

(
αh1 ; 0

)
x1,t−0 + ρ1

(
αh1 ; 1

)
x1,t−1 + . . . + ρ1

(
αh1 ; l1

)
x1,t−l1

]
+

β2,h
[
ρ2

(
αh2 ; 0

)
x2,t−0 + ρ2

(
αh2 ; 1

)
x2,t−1 + . . . + ρ2

(
αh2 ; l2

)
x2,t−l2

]
+ . . . . . .+

βK,h
[
ρK

(
αhK ; 0

)
xK,t−0 + ρK

(
αhK ; 1

)
xK,t−1 + . . . + ρK

(
αhK ; lK

)
xK,t−la

]
+ u0,h

= β0 + (β1,h, β2,h, . . . . . . βK,h)(x̃1,t x̃2,t . . . . . . x̃K,t)
T + u0,h

= β0 + B̃hX̃T
t + u0,h

, (1)

where h is the number of sampling steps, h = 1, 2, 3, 4 . . . ; m is the frequency multiplicity
difference between the explanatory variable x and the response variable y. In this paper,
the frequency multiplicity difference between the monthly variable and the daily variable
is m = 20; ρa(αha ; b) is the weight constraint term; ρa(αha ; b)xa,t−b is the lag polynomial
of the variable xa when the sampling step is h; b is the number of forward steps of the
variable xa when the sampling step is h, b = 0, 1, 2, . . . , la; la is the maximum lag order of
the variable xa; β0 is the constant term; βa,h is the regression parameter of the variable xa
when the sampling step is h; u0,h is the random error.

In order to effectively improve some defects of RU-MIDAS, the RR-MIDAS model
introduces a weight constraint function to reduce the number of parameters. In previous
studies, Breitung and Roling [26] mentioned that the weight constraint functions are Almon
and Beta functions, in which the Almon function is commonly used to fit time-series
data with nonlinear trends, especially in economics and statistics, and it is a very flexible
nonlinear function.The Almon function is defined as follows:

ρa(αha ; b) = exp
(

α1 + α2b2
)

/
la

∑
n=0

exp
(

α1 + α2n2
)

. (2)

Mishra et al. [27] used the MIDAS–Almon weighting method to process the mixed
frequency data to predict the trend of GDP. The Almon function is a smoothing technique
based on the construction of polynomials, which efficiently smooths the data and helps
to minimize the effect of noise or seasonal fluctuations. As it can adapt to a variety of
trend shapes, by adjusting the parameters it can more accurately match the shape of the



Mathematics 2024, 12, 1538 5 of 21

data, and the function also has asymptotic zero error characteristics. Therefore, the Almon
function can better meet the needs of this paper to predict the stock price volatility. In this
paper, the RR-MIDAS model is chosen and the flexible Almon constraint function is applied
to the lag term of low-frequency variables to reduce the number of parameters and solve
the problem of too many parameters to be estimated in the RU-MIDAS model. To simplify
the operation, this paper refers to the treatment of Xu et al. [28] and fixes α1 = 1 for the two
parameters α1 and α2 of the Almon function.

2.2. CNN-LSTM Neural Network

Li et al. [29] proposed that CNNs can not only extract image features but also extract
the relationship between multidimensional time-series data in spatial structure. CNN is
mainly composed of a convolutional layer, pooling layer, and fully connected layer, and its
structure is shown in Figure 1.

Figure 1. Structure of CNN, illustrating the flow from input through convolutional layers to the out-
put. Note: In this figure, the symbols (X, Y) denote the configuration of the convolutional layers
in the neural network. The first number X indicates the dimension of the output sequence after
convolution. The second number Y indicates the number of filters or channels in the layer.

Common CNNs are one-dimensional convolution, two-dimensional convolution, and
three-dimensional convolution. The data analyzed in this paper are time series related
to stock price fluctuations and the variables are coupled. One-dimensional convolution
is commonly used in time-series analysis; therefore, this paper adopts one-dimensional
convolution kernels (1-DCNN) to extract the time-series features, which can speed up the
training speed and improve the generalization performance at the same time.The process
of the CNN convolution operation is as follows:

Cl
b = f

(
∑ Cl−1

a ∗ W l
ab + Bl

b

)
(3)

MPl
b = Maxpooling

(
Cl

b

)
(4)

Fl
b = Flatten

(
MPl

b

)
(5)

Ml+1
b = FC

(
Fl

a · W l
ab + Bl+1

b

)
, (6)

where Cl−1
a and Cl

b are the inputs and outputs of the convolutional layer, W l
ab and Bl

b denote
the convolutional kernel and bias term of the convolutional layer, respectively, ∗ denotes
the convolutional operation, f is the activation function, Maxpooling is the pooling layer,
Flatten is the spreading layer, and FC is the fully connected layer.

Although CNNs can effectively extract the spatial features of multivariate data, they
ignore the information in the time dimension. Hidden variable models have the problem of
long-term information preservation and short-term input missing. Take the classical RNN
model as an example; it is often difficult for it to effectively capture long-term dependent
information because of the gradient vanishing problem when dealing with sequence data.
Furthermore, LSTM is good at extracting temporal information with long-term memory
capability, which is one of the methods to solve the problem. In this paper, the input data
are extracted by a one-dimensional convolution operation, and then the activation function,
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maximum pooling layer, spreading layer, and fully connected layer are input successively,
and then the extracted temporal and spatial features are input into the LSTM. The structure
of the LSTM is shown in Figure 2.

Figure 2. LSTM network architecture, detailing the components responsible for capturing long-
term dependencies.

In the CNN-LSTM model, the data processed by steps (3) to (6) or other unprocessed
time-series data can be passed to LSTM to extract the temporal features. RNN contains
the hidden state Ht, and LSTM is optimized on the basis of RNN with the addition of the
unit state Ct and three gate structures, which are the forget gate, the input gate, and the
output gate.

The unit state Ct is the key for LSTM to be able to stand out from RNN. The Ct enables
the long-term memory of the neuron, and the forget gate and input gate are able to correct
the long-term memory.

The forget gate manages and determines which existing information should be retained
or forgotten, which helps to keep the state of the unit up-to-date and ensures that only
relevant information is stored. The forget gate is denoted as ft:

ft = σ
(

W f · [Ht−1, Xt] + B f

)
, (7)

where Ht−1 is the output value of the previous neuron, Xt is the latest input value of the
current neuron, W f is the weight parameter, and B f is the bias variable. When ft is 1 and
it is 0, the memory units Ct−1 of the previous layer are all retained to the current layer.
This design alleviates the gradient vanishing problem and is more capable of extracting
long-term dependencies in time-series data.

In LSTM, input gates are used to evaluate and select new information delivered to the
network, which is responsible for regulating which parts of the current input are critical
and determining what should be retained in the cell state:

it = σ(Wi · [Ht−1, Xt] + Bi), (8)

where it is the input gate, Wi is the weight parameter, and Bi is the bias variable.
The new cell state is determined by multiplying the old cell state with the output of

the oblivion gate and adding it to the product of the candidate state and the input gate,
and the new cell state Ct is:

Ct = ft · Ct−1 + it · tanh(Wc · [Ht−1, Xt] + Bc), (9)

where tanh(·) is the nonlinear activation function, Wc is the weight parameter, and Bc is
the bias variable.

The output gate decides which information from the final unit state is conducted
through the network and converts the filtered short-term memory into input for the next
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step. The output gate is multiplied with the activation function to obtain the new hidden
layer Ht:

Ht = ot · tanh(Ct). (10)

The output gate ot updates the hidden state with a value that can determine the
amount of information passed from the memory unit to the prediction part. Therefore,
the output result is not only affected by the new data, but also by the hidden state output
from the previous layer of the structure. The formula for the output gate is as follows:

ot = f (Wo · [Ht−1, Xt] + Bo), (11)

where Wo is the weight parameter, Ht−1 denotes the hidden state of the previous layer, Bo
is the bias variable, and Xt denotes the input new data.

In this paper, the output of the LSTM is fed into the fully connected layer to obtain
the feature values; specifically, the hidden states of the LSTM are mapped to the predicted
values by means of the fully connected layer in the CNN-LSTM model. The fully connected
layer is a common neural network layer, where each neuron is connected to all neurons
in the previous layer and each connection has a different weight; the output of this layer
is obtained by multiplying and summing the output of the previous layer with the corre-
sponding weights and adding a bias term. The calculation of the fully connected layer is
shown in the following equation:

X̂t+1 = FC(Ht) = WFC · Ht + BFC, (12)

where X̂t+1 denotes the predicted value, WFC denotes the weight matrix of the fully
connected layer, and BFC denotes the bias term of the fully connected layer.

2.3. CNN-LSTM Model Incorporating Macroeconomic Variables

Considering that low-frequency macro-variables have an impact on realized volatility,
this paper introduces the inclusion of low-frequency macro-variables on the basis of techni-
cal indicators and fundamental market indicators data to form a mixed-frequency dataset
for predicting realized volatility. In order to deal with the reverse mixing problem with
large frequency multiplicity differences, the reverse constrained mixed-frequency sampling
method (RR-MIDAS) is utilized to process the mixed-frequency data.

In this paper, the RM-CNN-LSTM-P model is established to solve the mixed-frequency
data problem and the feature-learning problem of multivariate time-series data, where
RM- denotes the RR-MIDAS model, and -P denotes the parallel LSTM. On the one hand,
the RR-MIDAS model preprocesses the mixed-frequency information, which is then fed
into a neural network for feature extraction. Specifically, the CNN component is utilized to
extract spatial features related to volatility fluctuations, and the LSTM network captures
the temporal dynamics of the data series. This dual learning process can understand the
input data more comprehensively; on the other hand, this paper parallelizes the LSTM
structure in the model to deal with volatility historical data specifically, which helps to
capture the nonlinear time-varying features in the volatility data and improves the model’s
comprehension of the volatility historical information. Finally, in this paper, the computing
results of the above two are fused with features to synthesize the spatial and temporal
information to obtain a more comprehensive and accurate volatility prediction value.

The framework of this paper is shown in Figure 3. The RM-CNN-LSTM-P model
is able to make full use of spatial and temporal information when processing inverse
mixing and multivariate time-series data and improve the learning ability of complex data
patterns. At the same time, the model also takes advantage of the computational efficiency
of one-dimensional convolution and the processing of long sequences by identifying
the local features of longer sequences through CNN, passing their outputs to LSTM for
processing, and automatically optimizing the model hyperparameters using the Optuna
tuning framework, which improves the model’s learning ability and prediction accuracy.
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Figure 3. Research framework overview, showcasing the integration of mixed-frequency data and
deep-learning models for volatility forecasting.

2.4. Evaluation Criteria
2.4.1. Loss Function Criteria

In order to evaluate the performance of different models, the square root mean square
error (RMSE), mean absolute error (MAE), mean square logarithmic error (MSLE), mean
absolute percentage error (MAPE), symmetric mean absolute percentage error (SMAPE),
and Quasi-Like (QLIKE) loss function are used as the evaluation criteria in this paper.
The formula for each indicator is as follows:

RMSE =

√
∑N

t=1
(

RVt − R̂Vt
)2

N
(13)

MAE =
∑N

t=1
∣∣RVt − R̂Vt

∣∣
N

(14)

MSLE =
∑N

t=1
(
ln(1 + RVt)− ln

(
1 + R̂Vt

))2

N
(15)

MAPE =
∑N

t=1

∣∣∣ RVt−R̂Vt
RVt

∣∣∣
N

(16)

SMAPE =
∑N

t=1
2×|RVt−R̂Vt|
|RVt |+|R̂Vt|

N
(17)

QLIKE =
∑N

t=1

(
ln R̂V2

t + RV2
t /R̂V2

t

)
N

, (18)

where N is the number of samples, RVt represents the true value, and R̂Vt is the corre-
sponding predicted value. The smaller each evaluation index is, the better the performance
of the model.
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2.4.2. Diebold–Mariano Test

The DM test [30] is a statistical test for comparing the performance of two time-
series forecasting models.The main purpose of the DM test is to assess whether there is
a significant difference in the forecasting performance of one model with respect to the
other.The null hypothesis of the test is that the forecasting performance of the two models is
close to each other, which can be denoted as H0 : EA = EB, while the alternative hypothesis
is that their performance is significantly different, which can be denoted as H1 : EA ̸= EB.
Assuming that two prediction models, A and B, perform a prediction task with a time
span of T, the prediction results in that time range are obtained, and the prediction errors
EA = [|xa1|, |xa2|, . . . , |xaT |] and EB = [|xb1|, |xb2|, . . . , |xbT |] are computed based on the
true values, where xa1 and xb1 are the differences between the predicted values and the
true values of model A and model B, respectively.

The DM statistic values are as follows:

DM =
Dmean

Dstd
, (19)

where D = [d1, d2, · · · , dT ] = [xa1 − xb1, xa2 − xb2, · · · , xaT − xbT ], Dmean = ∑T
t=1 dt

T , Dstd =√
∑T

t=1(dt−Dmean )2

T−1 .
The distribution of the DM statistic under the null hypothesis obeys the standard

normal distribution Z. There is a significant difference between the predictive performance
of Model A and Model B when |DM| > Z1−α.

3. Empirical Research

In order to improve the prediction accuracy of volatility, this paper combines the real-
ized volatility calculated based on 5-min high-frequency financial data and its influencing
factors to construct a new volatility prediction index system. In addition, the prediction
accuracy of the RM-CNN-LSTM-P model is compared with that of the traditional econo-
metric model, the machine-learning model, and the deep-learning model with and without
the introduction of macro-variables, respectively.

3.1. Data Sources and Description

Building on the work of Lei et al. [10] and Song et al. [31], this study selects the
following variables as influential factors for volatility prediction. Gross domestic product
(GDP), consumer price index (CPI), and purchasing manager’s index (PMI) are selected to
construct the macro-factor dataset, and the frequencies and interpretations of the target
variables and each explanatory variable are shown in Table 1.

CPI, GDP, and PMI data were obtained from Sina Finance (https://finance.sina.com.
cn/, accessed on 13 May 2024). RV, BIAS, DMA, CDP, AR, BR, RV_V, and CR were calculated
from the trading volume, overnight spreads, turnover rate, and other data related to the
SSE index, and the basic data related to the calculations were obtained from the Wind
database. SSE BOLL, MACD, VMACD, MA, RSI, KDJ, GL, VL, and OI were obtained from
the Wind database.

The datasets of the above macro-factors are low-frequency variables, in which GDP is
season data and the remaining two macro-indicators are monthly data, and this paper uses
linear interpolation to interpolate the quarterly data to obtain monthly GDP data. All data
were taken from 1 March 2011 to 31 October 2022, a total of 2832 trading days. In order to
maintain the consistency of the frequency multiplicity difference between low-frequency
data and high-frequency data, this paper treats the monthly trading days of the high-
frequency data as 20 days and randomly removes the excess trading day data in the months
that are more than 20 days; the trading days that are less than 20 days are supplemented by
the linear interpolation to 20 days, and the final trading days are 2800 days.

https://finance.sina.com.cn/
https://finance.sina.com.cn/
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Table 1. Frequency of variables and specific explanations. This table outlines the frequency of the
target variable and influencing variables, including macroeconomic indicators such as GDP, CPI,
and PMI, along with their respective interpretations.

Variable Type Variable Frequency Explanation

Target Variable RV Day The realized volatility of high-frequency prices

Influencing
Variables

Macro
Variables

CPI Month Consumer Price Index
GDP Season Gross Domestic Product
PMI Month Purchasing Managers’ Index

Micro
Variables

BOLL Day Bollinger Bands
MACD Day Moving average convergence

VMACD Day Volume moving average convergence divergence
MA Day Moving average
RSI Day Relative Strength Indicator
KDJ Day Stochastic Index
OI Day Open interest volume
GL Day Rise and fall range
VL Day Trading Volume

RV_V Day The realized volatility of the trading volume
CR Day Center of Gravity Indicator

DMA Day Parallel line difference indicator reflecting the energy of buying
and selling forces and future price trend

CDP Day Contrarian operation indicator
AR Day Market buying and selling sentiment
BR Day The degree of market buying and selling desire

BIAS Day The degree of deviation from the moving average

Note: Some of the indicators in the table are calculated as follows: CR: The sum of the buyer’s power since the Nth
day − The sum of the seller’s power since the Nth day. DMA: 5-day moving average − 10-day moving average.
CDP: (Previous day’s highest price + previous day’s lowest price + previous day’s closing price^2)/4. AR: (Closing
price − opening price)/(opening price − the lowest price). BR: (The highest price − closing price)/(closing price
− the lowest price). BIAS: (Closing price of the day − 5-day average price)/5-day average price.

To perform linear interpolation, consider two known points, P1(x1, y1) and P2(x2, y2),
where x1 < x2, and we want to find the value of function f (x) at a point x that lies between
x1 and x2. The linear interpolation formula is given by:

f (x) = y1 +

(
y2 − y1

x2 − x1

)
(x − x1). (20)

In this paper, we calculate the daily realized volatility based on the methodology in
Andersen et al. [7], which is the logarithm of the daily adjacent 5-min closing price xt,d to
compute the sum of the returns rt,d squared, which is defined as follows:

RVt =
48

∑
d=1

[(ln xt,d − ln xt,d−1) · 100]2, (21)

where t represents the trading day and xt,d is the closing price for every five minutes of
trading day t, d = 1, 2, 3, . . . , 48.

Figure 4 illustrates the Spearman correlation coefficients between the indicators of
forecasting and between the variables with realized volatility.

As can be seen in Figure 4, the correlation between RV and BIAS, DMA, VL, and OI
is high, and there is also some correlation with CPI, GDP, and PMI. The covariance test
between the indicators shows low correlation, which indicates that introducing these
variables simultaneously into the model does not lead to serious multicollinearity problems,
especially with the macro-variables, and the correlation is low (the absolute value of which
is between 0 and 0.2); there is a certain degree of correlation between the indicators and
realized volatility, and some of the indicators have a correlation of more than 0.3 (e.g.,
OI, BIAS); in particular, the correlation between the macroeconomic variables and the
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realized volatility is more prominent. Therefore, when constructing the forecasting model
the introduction of these variables may improve the forecasting accuracy of the model.

Figure 4. Spearman correlation coefficients analysis, depicting the relationships between various
indicators and realized volatility.

In this paper, the target variable is realized volatility (RV), and the explanatory vari-
ables include micro variables (basic quotes, technical indicators) and macro-variables.
When training the model, this paper splits the dataset into a training set (from 1 March 2011
to 31 December 2020) and a test set (from 1 January 2021 to 31 October 2022). In addition,
in order to avoid model training overfitting, the latter 20% of the training set is selected
as the validation set in this paper. In addition, in order to eliminate the interference of the
quantiles on model training, this paper standardizes all variables and back-standardizes
the predicted values of the model. The standardization calculation formula is as follows:

xnormalized =
x − mean(x)

std(x)
(22)

ynormalized =
y − mean(y)

std(y)
. (23)

In the above equation, x and y are eigenvectors, and mean(·) and std(·) represent
the mean and standard deviation of the corresponding variables, respectively. This paper
scrolls through the past 20 days of historical data to predict the next day’s realized volatility,
as shown in Figure 5.

Figure 5. Historical data forecasting approach, demonstrating the use of rolling time windows for
predicting future realized volatility.
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3.2. Optuna Framework

The RM-CNN-LSTM-P model for predicting the realized volatility of stock prices
proposed in this paper contains multiple nonlinear hyperparameters, and the tuning of
these nonlinear parameters is difficult; the grid search method and stochastic search are
a way to find better hyperparameters, but they have the disadvantages of being more
time-consuming and consuming more resources.

To tune the nonlinear hyperparameters in the model, this paper introduces the widely
used Optuna tuning framework, which improves the predictive ability of the model by
automatically tuning the appropriate hyperparameters. The framework, developed by
Akiba et al. [32], has two basic concepts: study, an optimization process based on an
objective function; and trial, a single execution process of the objective function. The tuning
framework performs pruning operations on poorly performing trials to improve efficiency
while selecting the best hyperparameters for the model to achieve optimal results. In the
tuning process of the Optuna framework, this paper chooses the tree-structured Parzen
estimator [33] algorithm as a sampler to find the optimal hyperparameter search space.

There are 67 hyperparameters in the model of this paper: first, the hyperparameters
in RR-MIDAS include the maximum lag orders l1, l2, l3 of the three low-frequency vari-
ables CPI, GDP, and PMI, and their corresponding Almon coefficients αh1, αh2, αh3, where
hi = 1, 2, 3, . . . , m (frequency multiplicity m = 20 in this paper). Thus there are 63 hyperpa-
rameters in total. Secondly, there are two hyperparameters in the neural network part of
CNN and LSTM, including the number of units in the serial LSTM module with CNN unit1
and the number of units in the parallel LSTM module with CNN unit2. Finally, the model
training part consists of two hyperparameters: the batch size, batch_size, and the learning
rate of Adam’s optimizer, learning_rate.

In the Optuna tuning process, each trial tries to minimize the loss metric and calculate
various error metric values. In this paper, we set the number of experiments, trial = 500,
and the return value is the loss MAE value of the model on the validation set. The hyperpa-
rameter optimization process of the RM-CNN-LSTM-P model is shown in Figure 6, where
the horizontal coordinate represents the number of experiments, the vertical coordinate
represents the MAE value, the blue dots represent the MAE at the end of one experiment,
and the red line represents the minimum loss value up to each experiment before the
experiment is carried out up to 500 times. Table 2 demonstrates the hyperparameters of the
RM-CNN-LSTM-P model after Optuna framework tuning.

Table 2. Optimal hyperparameter of the RM-CNN-LSTM-P model. The table presents the optimal
hyperparameters determined through the Optuna framework for the RR-MIDAS and CNN-LSTM
components of the model.

Part Hyperparameter Optimal Hyperparameter Value

RR-MIDAS

l1, l2, l3 2, 2, 2

αh1
[0.763, 1.054, 0.970, 0.311, 0.800, 0.292, 0.493, 0.564, 0.295, 0.799, 0.802, 0.781,
1.150, 1.289, 0.691, 0.920, 1.455, 0.908, 0.384, 1.005]

αh2
[0.734, 0.159, 1.399, 0.697, 0.558, 1.137, 0.577, 0.767, 0.864, 0.245, 0.330, 1.171,
0.796, 0.527, 1.205, 0.988, 1.388, 0.288, 1.092, 0.820]

αh3
[1.285, 0.884, 0.474, 0.824, 0.183, 0.444, 0.596, 0.707, 0.901, 1.086, 0.147, 1.010,
0.737, 0.542, 1.069, 0.373, 1.227, 0.709, 1.020, 1.466]

CNN-LSTM unit1 170
unit2 99

Model batch_size 101
learning_rate 0.160

Note: The RM-CNN-LSTM-P model features a CNN with two convolutional layers using 32 and 64 filters. This
is followed by two LSTM layers with a variable number of units (parameterized as unit1) and a time step of 20.
Additionally, there is a parallel LSTM component with one LSTM layer having a different variable number of
units (unit2).
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Figure 6. Optuna running process, showing the dynamic optimization process of the Optuna
framework during the hyperparameter tuning phase of the RM-CNN-LSTM-P model.

3.3. Prediction Results

In order to examine the prediction performance of the proposed models in this paper,
in this section the RM-CNN-LSTM-P model is compared with the deep-learning mod-
els RM-CNN, RM-LSTM, RM-CNN-GRU, and RM-CNN-LSTM with the introduction of
macroscopic data, also with the CNN, LSTM, CNN-GRU, and CNN-LSTM model without
the introduction of macroscopic data. The machine-learning models RM-SVR and RM-RF
with the introduction of macro-data, the deep-learning models SVR and RF without the
introduction of macro-data, as well as the classical econometric models HAR, RM-RIDGE,
RM-LINEAR, RIDGE, and LINEAR are also compared. The results are shown in Table 3.

Table 3. Analysis of model prediction performance based on multiple error metrics. This table
compares and ranks the predictive performance of different models using different loss functions.

Model RMSE MAE MSLE MAPE SMAPE QLIKE Rank

RM-CNN-LSTM-P 0.833 (1) 0.445 (1) 0.091 (1) 0.536 (2) 0.471 (1) 3.627 (8) 1
RM-LSTM 0.893 (2) 0.535 (6) 0.108 (2) 0.779 (6) 0.563 (7) 2.524 (6) 2

LSTM 0.917 (3) 0.536 (7) 0.111 (3) 0.832 (7) 0.559 (6) 2.510 (5) 3
RM-CNN-LSTM 1.016 (8) 0.508 (2) 0.128 (6) 0.512 (1) 0.519 (2) 5.162 (13) 4
RM-CNN-GRU 1.000 (5) 0.520 (4) 0.124 (4) 0.644 (5) 0.543 (4) 4.014 (10) 4

CNN-GRU 1.010 (7) 0.517 (3) 0.127 (5) 0.616 (4) 0.537 (3) 4.522 (11) 5
CNN-LSTM 1.019 (9) 0.523 (5) 0.130 (7) 0.615 (3) 0.546 (5) 4.736 (12) 6

RM-CNN 0.997 (4) 0.602 (8) 0.142 (9) 0.905 (8) 0.711 (9) 42.410 (15) 7
RM-SVR 1.136 (10) 0.822 (11) 0.211 (11) 1.734 (11) 0.732 (11) 1.218 (2) 8

SVR 1.181 (11) 0.839 (12) 0.223 (12) 1.755 (12) 0.723 (10) 1.719 (4) 9
CNN 1.005 (6) 0.624 (9) 0.157 (10) 0.954 (9) 0.733 (12) 274.505 (18) 10
HAR 2.314 (17) 0.706 (10) 0.141 (8) 1.123 (10) 0.632 (8) 5.268 (14) 11

RM-RF 1.641 (12) 1.282 (14) 0.405 (13) 2.896 (14) 0.871 (14) 1.216 (1) 12
RF 1.657 (13) 1.280 (13) 0.407 (14) 2.894 (13) 0.862 (13) 1.268 (3) 13

RM-RIDGE 2.176 (15) 1.680 (16) 0.482 (17) 3.176 (16) 1.113 (16) 2.792 (7) 14
RIDGE 2.064 (14) 1.555 (15) 0.441 (15) 2.904 (15) 1.088 (15) 130.453 (17) 15

RM-LINEAR 2.438 (18) 1.889 (18) 0.553 (18) 3.705 (18) 1.175 (17) 3.877 (9) 16
LINEAR 2.313 (16) 1.753 (17) 0.481 (16) 3.278 (17) 1.185 (18) 128.524 (16) 17

Note: “RM-” is the RR-MIDAS model, which indicates that macro-variables are treated by RR-MIDAS as explana-
tory variables and integrated with the rest of the high-frequency variables to be input into the subsequent model.
The values in brackets indicate the ranking of each model based on the respective error metric. Rank is the result
of the summation of the rankings of each indicator and then sorted.

For all models, the prediction performance of the models improves after adding
macroeconomic variables to the explanatory variables, which initially shows the importance
of macro-variables for prediction; the prediction performance of the deep-learning model
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is better than that of the machine-learning model, and the prediction performance of
the machine-learning model is better than that of the ridge model and the linear model;
among them, the RM-CNN-LSTM-P model proposed in this paper has the best prediction
performance among all the models.

First, the RM-CNN-LSTM-P model reduces RMSE, MAE, MSLE, SMAPE, and QLIKE
by 18.01%, 12.40%, 28.91%, 9.25%, and 29.74%, respectively, compared with the RM-CNN-
LSTM model, which indicates that the parallel LSTM approach proposed in this paper has
a better prediction performance than the one that directly inputs the RV together with other
explanatory variables into the model. The parallel LSTM can effectively extract temporal
features, which in turn improves the prediction performance of the model.

Secondly, the optimal RM-CNN-LSTM-P among deep-learning models reduces RMSE,
MAE, MSLE, MAPE, and SMAPE by 26.67%, 45.86%, 56.87%, 69.09%, and 35.66%, re-
spectively, compared with the optimal RM-SVR among machine-learning models, and
comparing the best predictive performance of RM-SVR among machine-learning models
RMSE by 50.91%, QLIKE by 76.87%, and RM-SVR model by higher ranking compared
to the HAR model, which has the best predictive performance among traditional metrics
models. SVR fits the data by finding the optimal hyperplane, and it may not perform well
for datasets with more features or higher complexity. In contrast, deep-learning models
can better handle complex data structures and features, and therefore perform better in this
comparison. Additionally, traditional statistical models are usually based on a number of
assumptions and simplifications and may not adapt well to complex data structures.

In addition, the QLIKE error is particularly sensitive to the deviations of individual
forecasts. Unlike other error metrics that are based on linear responses to deviations between
predicted R̂Vt and actual realized volatility values, RVt, QLIKE incorporates a logarithmic
transformation that can amplify the impact of large errors, especially underestimations.

The term ln R̂V2
t penalizes underestimates more than overestimates, as the logarithm

of a small number becomes increasingly negative. Also, the term RV2
t /R̂V2

t can become
very large if R̂Vt is significantly underpredicted, leading to a significant increase in the
QLIKE value. This asymmetric treatment of errors means that the QLIKE metric places a
higher cost on underprediction.

3.4. Result Explanations

Using RM-LINEAR as the benchmark model, the percentage change of other model
metrics is shown in Table 4.

Table 4. Comparison of the predictive performance of the models with RM-LINEAR. The table
illustrates the percentage change in predictive performance metrics when comparing each model to
the RM-LINEAR benchmark.

Model RMSE MAE MSLE MAPE SMAPE QLIKE

RM-CNN-LSTM-P −65.83% −76.44% −83.54% −85.53% −59.91% −6.45%
RM-LSTM −63.37% −71.68% −80.47% −78.97% −52.09% −34.90%

RM-CNN-LSTM −58.33% −73.12% −76.85% −86.18% −55.83% 33.14%
RM-CNN-GRU −58.98% −72.47% −77.58% −82.62% −53.79% 3.53%

RM-CNN −59.11% −68.13% −74.32% −75.57% −39.49% 993.89%
RM-SVR −53.40% −56.48% −61.84% −53.20% −37.70% −68.58%
RM-RF −32.69% −32.13% −26.76% −21.84% −25.87% −68.64%

RM-RIDGE −10.75% −11.06% −12.84% −14.28% −5.28% −27.99%

Except for individual values, the RMSE, MAE, MSLE, MAPE, SMAPE, and QLIKE
metrics of the predicted values of each model decreased, and the model prediction accura-
cies were improved to different degrees, among which RM-CNN-LSTM-P is the optimal
deep-learning model, the deep-learning model is better than the machine-learning model,
and the econometric model is the worst.
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Taking RM-CNN-LSTM-P as an example, all of its indexes have a significant decrease
compared with the benchmark model, especially on MAPE, which reaches 85.53%, which
means that the model has a great improvement in prediction accuracy compared with the
base model. This indicates that LSTM is particularly suitable for processing and predicting
long-term dependency problems in time-series data.

CNN-GRU combines the use of convolutional neural networks and GRU. CNN is
good at extracting spatial features in time-series data, while GRU is a simplified version of
LSTM with fewer parameters and lower computational complexity, but its performance is
slightly weaker than that of LSTM in the complex scenarios in this paper.

CNN is a deep-learning model commonly used to process data with an obvious spatial
structure, which uses convolutional layers to automatically and efficiently capture spatial
hierarchical features of the data, but it is not able to capture temporal features better, so its
prediction performance is not good when used independently.

Among the machine-learning models, for RM-SVR and RM-RF, while also showing
improvements over the benchmark models, the improvements are much smaller compared
to the deep-learning models. Compared to SVR, CNNs typically have better performance
when dealing with large datasets because they can capture deeper features, which is
difficult to do with traditional machine-learning methods. For example, RM-SVR shows an
improvement of 53.20% on MAPE, while the deep-learning model shows at least 75.57%
improvement, which shows the advantage of deep learning in dealing with complex
nonlinear problems.

The econometric model RM-RIDGE shows the smallest improvement, with only a
small decrease in all metrics, which may be due to the fact that econometric models are
inherently linear and have a limited ability to deal with nonlinear and complex data
structures, and therefore have the worst performance in comparison with the other models.

The main reason why the deep-learning model outperforms the machine-learning
model and the econometric model is because of its stronger pattern recognition and feature
extraction capabilities when dealing with nonlinear, complex, and high-dimensional data
structures, which enables the deep-learning model to show more accurate predictions
across a wide range of predictive metrics.

Finally, Table 5 compares the effect of whether or not macro-variables are input on
the prediction accuracy of the model. Most of the data in the table are negative, which
indicates that the model with macro-features has better prediction performance. RM-CNN-
LSTM-P reduces the RMSE, MAE, MSLE, MAPE, SMAPE, and QLIKE by 18.25%, 14.91%,
30.00%, 12.85%, 13.74%, and 23.42%, respectively, when compared to the model without
inputting macro-variables, confirming the importance of macro-features in improving
model performance. Macro features provide more comprehensive information about the
external environment, and these macroeconomic indicators can reflect the overall market
trend and potential economic cycle changes, which allows the model to take into account
more factors that may affect the prediction, thus improving the prediction accuracy and
robustness of the model.

Combining the advantages of CNN and LSTM for processing sequence data and
parallel LSTM for capturing temporal characteristics, together with the introduction of
macro-features, the structural design of RM-CNN-LSTM-P as well as the integration of
macro-features enable the model to more accurately capture the key information driving
the prediction when dealing with complex data, and thus its prediction performance is
significantly better than that of the other models in many performance indicators.
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Table 5. Assessment of the impact of fusing RR-MIDAS on the performance of each model. Displaying
the percentage change in predictive performance metrics when macroeconomic variables are included
in the model.

Model RMSE MAE MSLE MAPE SMAPE QLIKE

RM-CNN-LSTM-P −18.25% −14.91% −30.00% −12.85% −13.74% −23.42%
RM-CNN-LSTM −0.29% −2.87% −1.54% −16.75% −4.95% 9.00%

RM-LSTM −2.62% −0.19% −2.70% −6.37% 0.72% 0.56%
RM-CNN-GRU −0.99% 0.58% −2.36% 4.55% 1.12% −11.23%

RM-CNN −0.80% −3.53% −9.55% −5.14% −3.00% −84.55%
RM-SVR −3.81% −2.03% −5.38% −1.20% 1.25% −29.14%
RM-RF −0.97% 0.16% −0.49% 0.07% 1.04% −4.10%

RM-RIDGE 5.43% 8.04% 9.30% 9.37% 2.30% −97.86%
RM-LINEAR 5.40% 7.76% 14.97% 13.03% −0.84% −96.98%

3.5. The Degree of Influence of the Three Macro-Variables on the Predictive Performance of
the Model

The purpose of this experiment is to remove any one of the three macro-variables in
order to study the effect of a macro-variable on the model as a whole; if the predictive per-
formance of the model does not decrease significantly after the removal of a macro-variable,
it means that this part of the model has a small effect on the performance of the model, and
if the predictive performance of the model decreases significantly after the removal of a
macro-variable, it means that this macro-variable has an important predictive value.

In order to explore the degree of influence of the three macro-variables CPI, GDP,
and PMI on the model prediction performance, this paper, based on the tuning results,
fixes the optimal hyperparameters (as Table 2) to conduct the experiments; removes CPI,
GDP, and PMI successively in order to test the degree of importance of the variables in
the model prediction; calculates the prediction value; and calculates the six evaluation
indexes proposed in Section 2.4.1. In this paper, the following formula is used to assess the
importance of variables:

ER =
lossi − lossnone

lossnone
, (24)

where lossi denotes the loss value with the removal of macro-variable i and lossnone denotes
the loss value when no macro-variable is removed.

Table 6 demonstrates the percentage change in the loss values of the corresponding
error indicators after removing each macro variable.

Table 6. Percentage change in value of losses. The table shows the impact of removing individual
macroeconomic variables on the predictive performance of the model, as measured by various
loss indicators.

CPI GDP PMI

RMSE 10.44% 14.93% 10.33%
MAE 11.67% 12.59% 8.86%
MSLE 20.50% 22.96% 14.81%
MAPE 6.69% 9.75% 0.96%

SMAPE 12.66% 8.70% 6.78%
QLIKE 187.39% 1.39% 21.93%

A larger percentage change in the loss values implies that the corresponding macro-
variables have a more significant effect on the improvement of the model’s forecasting
accuracy. It is not difficult to see that the changes in the loss indicators after removing
the GDP variable are generally higher than the other macro-variables, especially in RMSE
and MSLE. This indicates that GDP is one of the most important factors influencing the
model forecasts.
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For the different loss indicators, the magnitude of change in QLIKE is particularly
significant. the percentage change in QLIKE for CPI is as high as 187.39%, which is much
higher than the range of change in GDP and PMI. This indicates that QLIKE is very sensitive
to changes in CPI.

It can be seen that for the RM-CNN-LSTM-P model that the effects of the three macro-
variables are positive for RMSE, MAE, MSLE, MAPE, SMAPE, and QLIKE. The changes in
these quantitative indicators not only allow us to assess the importance of macro-variables,
but also to find out the degree of fluctuation in the performance of the predictive model
when different macro-variables are missing.

3.6. DM Test

In order to verify whether the RM-CNN-LSTM-P model is significantly better than
the other models, this paper adopts the DM test, which is used to compare whether there
is a significant difference in the prediction performance of the two prediction models.The
results of the DM test are shown in Table 7.

Table 7. DM test results. This table presents the results of the DM test, indicating the statistical
significance of the differences in predictive performance between the RM-CNN-LSTM-P model and
other models.

LINEAR RIDGE RF HAR SVR CNN CNN-GRU CNN-LSTM LSTM CNN-LSTM-P

LINEAR / 4.27 *** 7.85 *** 0.29 8.76 *** 9.08 *** 8.99 *** 8.89 *** 9.51 *** 9.7 ***
RIDGE −4.27 *** / 6.94 *** −0.27 8.12 *** 8.53 *** 8.38 *** 8.25 *** 9.15 *** 9.42 ***

RF −7.85 *** −6.94 *** / −1.79 * 1.59 5.14 *** 10.08 *** 10.34 *** 7.12 *** 6.96 ***
HAR −0.29 0.27 1.79 * / 1.89 * 2.03 ** 2.03 ** 2.02 ** 2.13 ** 2.18 **
SVR −8.76 *** −8.12 *** −1.59 −1.89 * / 2.68 *** 2.41 ** 2.05 ** 5.57 *** 6.33 ***
CNN −9.08 *** −8.53 *** −5.14 *** −2.03 ** −2.68 *** / −0.08 −0.5 2.57 ** 2.95 ***

CNN-GRU −8.99 *** −8.38 *** −10.08 *** −2.03 ** −2.41 ** 0.08 / −3.27 *** 2.53 ** 2.97 ***
CNN-LSTM −8.89 *** −8.25 *** −10.34 *** −2.02 ** −2.05 ** 0.5 3.27 *** / 2.74 *** 3.14 ***

LSTM −9.51 *** −9.15 *** −7.12 *** −2.13 ** −5.57 *** −2.57 ** −2.53 ** −2.74 *** / 2.3 **
CNN-LSTM-P −9.7 *** −9.42 *** −6.96 *** −2.18 ** −6.33 *** −2.95 *** −2.97 *** −3.14 *** −2.3 ** /

Note: *** denotes p < 0.01, ** denotes p < 0.05, * denotes p < 0.1. Except for the HAR model, all models omit the
‘RM-’ labeling.

The null hypothesis of the DM test is that the two models have the same prediction
performance, and if the value of the DM test statistic is negative it indicates that there is a
significant difference between the prediction performance of the model and the prediction
performance of a certain column model, and the larger the absolute value of the DM statistic,
the larger the difference in the prediction performance of the model.

First of all, the DM statistics of the prediction results of the RM-CNN-LSTM-P model
and other models are all significant at the 1% or 5% level, and the DM statistics are
all negative, which indicates that the prediction results of the RM-CNN-LSTM-P model
are more accurate and robust. Among them, the absolute values of the DM statistics
of the RM-CNN-LSTM-P and RM-LINEAR, RM-RIDGE, RM-RF, and RM-SVR models
are all larger, which indicates that the predictive ability of the RM-CNN-LSTM-P model
is significantly better than the RM-LINEAR, RM-RIDGE, RM-RF, and RM-SVR models.
Secondly, the DM test results show that the deep-learning model is better than the machine-
learning model, and the traditional econometric model has the worst prediction accuracy,
and this conclusion is robust. The results of the DM test again prove the conclusions in
Table 3.

4. Discussion
4.1. Linear Interpolation

Some scholars use interpolation to adjust the frequency of variables; for example,
Ding et al. [34] used linear interpolation to adjust the frequency of GDP variables. Table 8
demonstrates the advantages of the RR-MIDAS model over traditional interpolation meth-
ods in terms of prediction accuracy by comparing the prediction accuracies of the different
models after processing the mixed-frequency data.The accuracy of the results of the RR-
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MIDAS model is generally higher than that of the predictions derived from the use of
interpolation when processing the mixed-frequency data and making the predictions.
The main reason for this difference is that interpolation, especially linear interpolation, may
distort the structure of the data due to the limitations of the method itself, which not only
fails to accurately capture the latest dynamics of the data but may also compromise the
timeliness of the predictions as a result.

The RR-MIDAS model employs a frequency alignment technique, which ensures
the consistency of the data across time scales by frequency-adjusting the low-frequency
explanatory variables. In addition, the model imposes additional controls on these variables
by introducing polynomial weight constraints, which not only reduces the number of
parameters in the model but also enhances its adaptability and flexibility.

Table 8. Analysis of model prediction performance based on multiple error metrics comparing the
RR-MIDAS model with the linear interpolation model. This table compares and ranks the predictive
performance of different models using different loss functions.

Model RMSE MAE MSLE MAPE SMAPE QLIKE Rank

RM-CNN-LSTM-P 0.833 (1) 0.445 (1) 0.091 (1) 0.536 (3) 0.471 (1) 3.627 (6) 1
LI-CNN-LSTM-P 0.921 (4) 0.466 (2) 0.101 (2) 0.479 (1) 0.474 (2) 4.363 (9) 2

RM-LSTM 0.893 (2) 0.535 (7) 0.108 (3) 0.779 (7) 0.563 (7) 2.524 (5) 3
RM-CNN-GRU 1.000 (6) 0.520 (4) 0.124 (5) 0.644 (5) 0.543 (4) 4.014 (8) 4
RM-CNN-LSTM 1.016 (8) 0.508 (3) 0.128 (6) 0.512 (2) 0.519 (3) 5.162 (12) 5

LI-LSTM 0.901 (3) 0.563 (8) 0.111 (4) 0.860 (8) 0.579 (8) 2.341 (4) 6
LI-CNN-LSTM 1.018 (9) 0.526 (5) 0.131 (8) 0.638 (4) 0.551 (5) 4.613 (11) 7
LI-CNN-GRU 1.014 (7) 0.531 (6) 0.130 (7) 0.653 (6) 0.558 (6) 4.504 (10) 7

RM-CNN 0.997 (5) 0.602 (9) 0.142 (9) 0.905 (9) 0.711 (9) 42.410 (13) 8
RM-SVR 1.136 (11) 0.822 (11) 0.211 (11) 1.734 (11) 0.732 (10) 1.218 (2) 9
LI-CNN 1.022 (10) 0.652 (10) 0.156 (10) 1.080 (10) 0.735 (11) 671.651 (14) 10
RM-RF 1.641 (13) 1.282 (13) 0.405 (13) 2.896 (13) 0.871 (13) 1.216 (1) 11
LI-SVR 1.401 (12) 1.041 (12) 0.305 (12) 2.287 (12) 0.817 (12) 3.689 (7) 12
LI-RF 2.086 (14) 1.541 (14) 0.523 (14) 3.576 (14) 0.904 (14) 1.387 (3) 13

Note: “LI-” is the linear interpolation model. The values in brackets indicate the ranking of each model based on
the respective error metric. Rank is the result of the summation of the rankings of each indicator and then sorted.

4.2. Parallel Model

Table 9 demonstrates the superiority in performance of the RM-LSTM model compared
to the RM-CNN-LSTM model. This study speculates that this result may stem from the
critical role of spatial information in the prediction process, whereas CNNs may cause
some degree of information loss in extracting this spatial information.

By introducing LSTM in parallel to the RM-LSTM model, we observed a significant
improvement in prediction accuracy. This finding highlights the importance of temporal infor-
mation on realized volatility in stock price volatility forecasting to improve forecasting accuracy.

Considering that market indicators, fundamental indicators, and macro-variables all
contain rich temporal and spatial information, this study argues that the introduction of
CNNs to extract spatial features of these data is crucial.

Table 9. Analysis of model prediction performance based on multiple error metrics comparing
parallel models. This table compares and ranks the predictive performance of different models using
different loss functions.

Model RMSE MAE MSLE MAPE SMAPE QLIKE Rank

RM-LSTM-P 0.917 (2) 0.485 (1) 0.099 (1) 0.629 (2) 0.507 (1) 2.716 (2) 1
RM-LSTM 0.893 (1) 0.535 (3) 0.108 (2) 0.779 (3) 0.563 (3) 2.524 (1) 2

RM-CNN-LSTM 1.016 (3) 0.508 (2) 0.128 (3) 0.512 (1) 0.519 (2) 5.162 (3) 3

Note: The values in brackets indicate the ranking of each model based on the respective error metric. Rank is the
result of the summation of the rankings of each indicator and then sorted.
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5. Conclusions and Extension

In order to accurately predict the realized volatility of stocks, this paper introduces
macro-indicators on the basis of market indicators and fundamental indicators of stocks.
When dealing with mixed-frequency data, this paper integrates the RR-MIDAS model into
the CNN-LSTM architecture, which effectively solves the problem of low-frequency macroe-
conomic data processing and significantly advances the volatility prediction technique.
In addition, in terms of forecasting model, this paper extracts the temporal information
of realized volatility by parallelizing an LSTM, which improves the forecasting accuracy
of the model. Finally, the hyperparameters of the prediction model are automatically
optimized through the Optuna tuning framework, which provides a new model framework
for volatility prediction.

Based on the above study, this paper proposes five conclusions: first, from the per-
spective of introduced variables, among all models, those with macro-features have better
forecasting performance. Second, in terms of prediction models, the RM-CNN-LSTM-P
model proposed in this paper has the best prediction performance, and the deep-learning
model has better prediction performance than the machine-learning model and the tra-
ditional econometric model. Third, from the point of view of whether parallel LSTM,
the prediction performance of RM-CNN-LSTM model and RM-LSTM after parallel LSTM is
improved, and LSTM can effectively extract the temporal features of the realized volatility,
which improves the prediction performance of the model. Fourth, in terms of the mixing
data processing method, the RR-MIDAS-based prediction model has better prediction
results compared with the interpolation method. Fifth, in terms of the robustness of the
results, the RM-CNN-LSTM-P model proposed in this paper has a robust performance.
The results of impact experiments show that all three macro-variables, CPI, GDP, and PMI,
have significant positive effects on improving the prediction accuracy of the model. The
DM test results show that the prediction performance of the RM-CNN-LSTM-P model
proposed in this paper is significantly better than that of other machine-learning or econo-
metrics models.

The research in this paper has certain practical value. Firstly, for regulators, they can
adjust regulatory policies and measures according to the predicted volatility situation,
intervene in the market in time, and prevent the occurrence of financial risks. Secondly,
for financial institutions, according to the predicted volatility situation, they can adjust the
weights of different assets, choose appropriate investment products, and reduce the risk
exposure of their investment portfolios. Finally, for individual investors, they can choose
investment products with lower volatility according to the predicted volatility situation, so
as to realize sound value-added worth of their personal investment portfolios.

The research in this paper provides innovative ideas and empirical support for further
development in the field of volatility forecasting. In future volatility prediction research,
on the one hand, we can further enrich the index system of volatility prediction by introduc-
ing multifactors such as market sentiment indicators to further prove the accuracy of the
model; on the other hand, we can consider further improving the CNN-LSTM framework
and introducing the attention mechanism to continuously improve the learning ability and
prediction performance of the model.
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