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Abstract: Tone-mapping algorithms aim to compress a wide dynamic range image into a narrower
dynamic range image suitable for display on imaging devices. A representative tone-mapping
algorithm, Retinex theory, reflects color constancy based on the human visual system and performs
dynamic range compression. However, it may induce halo artifacts in some areas or degrade
chroma and detail. Thus, this paper proposes a Retinex jointed multiscale contrast limited adaptive
histogram equalization method. The proposed algorithm reduces localized halo artifacts and detail
loss while maintaining the tone-compression effect via high-scale Retinex processing. A performance
comparison of the experimental results between the proposed and existing methods confirms that
the proposed method effectively reduces the existing problems and displays better image quality.

Keywords: tone compression; multiscale Retinex (MSR); contrast limited adaptive histogram
equalization (CLAHE)

MSC: 68T45

1. Introduction

The human visual system (HVS) has a color constancy that aims to perceive the color
of an object consistently, even if the lighting conditions change [1]. Retinex theory, a
representative tone-mapping algorithm, is designed to mimic how the human eye and
brain recognize and process light and color. Retinex separates images into illumination and
reflectance components, enhancing the overall brightness, luminance contrast, and detail
information in images. Retinex is used to adjust luminance under low-light conditions and
reduce noise [2,3]. According to the hyperparameter σ of the Gaussian filter used to extract
the illumination layer, the details and noise of the output image exhibit a trade-off. The
multiscale Retinex (MSR) method combines single-scale Retinex (SSR) with multiple scales
to address this problem [4]. The MSR method improves noise reduction and enhances
details. However, it has limitations regarding noise removal and can induce a halo effect,
distorting colors along the boundaries of high-contrast objects or figures.

In addition to the Retinex technique, various tone-mapping processes have been
developed for compressing images with wide dynamic ranges. For example, Reinhard et al.
proposed correcting the image through a simple sigmoid transfer curve to reproduce wide
dynamic range images in various display environments [5]. The sigmoid transfer curve is
defined by an experimental parameter, which could make it challenging to establish the
optimal level of parameters for each image. Due to the significant differences in dynamic
range between the input and output caused by tone mapping, some information may be
lost or artifacts can occur. Therefore, several methods effectively preserve detailed image
information by processing the basic and detailed components separately [6,7]. A prominent
method for base–detail separation is the bilateral filter, which smooths input images while
preserving the edge components. Durand and Dorsey developed an accelerated bilateral
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filter, the fast bilateral filter, to expedite filtering [8]. Moreover, Kwon et al. proposed edge-
adaptive layer blurring to estimate and compensate for halo areas to reduce these artifacts
caused by localized tone mapping [9]. Lee et al. proposed a tone-mapping technique
through visual achromatic responses to reduce artifacts caused by differences between the
compressed base and detail layers [10]. The extended version of the color appearance model
(CAM) based on the HVS, iCAM06, is one of the techniques to reproduce wide dynamic
range images. The iCAM06 reflects characteristics of the HVS, such as color adaptation
and tone compression under diverse lighting conditions [11]. In iCAM06, feature-based
fusion is applied to preserve image edge structures and details. However, there may be a
detail reduction problem due to feature-based fusion with fixed-edge stopping functions.
Hence, Kwon et al. proposed using the characteristics of the contrast sensitivity function as
a base-detail separation method and detail compensation technique to preserve iCAM06
edge components [12].

To implement HDR image, multiple LDR images with various exposures under the
same conditions are required. However, acquiring multiple images under precisely identical
conditions in the real world can be challenging. Therefore, a technology is required to
acquire an image with wide dynamic range through tone compression from one LDR image.

The existing method of removing surround through multiple blurring uses multiple
Gaussian filters, so the output image is dependent on the σ value. A larger σ value leads
to decreased detail, while a smaller one can result in halo and noise issues. Learning-
based methods often suffer from low tone compression effects and cause some image
distortions, such as an overall white balance shift in the image. As such, existing methods
have limitations in expressing a single LDR image as an HDR image.

In this paper, we aim to represent a single LDR image as a superior HDR image in
various aspects. This paper proposes effective tone compression and halo artifact reduction
using Retinex theory and multiscale contrast limited adaptive histogram equalization
(CLAHE). High-scale SSR is advantageous for global tone compression, and CLAHE is
suitable for local tone compression. Therefore, by combining the two theories, we derive
an image with excellent overall tone compression.

The level of image improvement of CLAHE varies depending on the TileSize and
ClipLimit parameters. The proposed method enhances global tone-mapping performance
based on high-σ value Retinex while integrating low levels of TileSize and ClipLimit in
CLAHE to reduce halo artifacts and noise. Additionally, to increase sharpness and enhance
detail, high levels of TileSize and ClipLimit are coordinated. The proposed method applies
a multiscale CLAHE to the optimal global scale Retinex image to enhance global and local
toning performance. Retinex images with reduced details due to trade-offs according to the
high sigma value of the Gaussian filter were compensated for using multiscale CLAHE. The
multiscale CLAHE technique compensates for reduced details using localized histogram
equalizations based on two hyperparameters: TileSize and ClipLimit. Finally, the resultant
image is generated through the color compensation step with the color channel of the
original image. Thus, the proposed method enhances the image quality via effective tone
mapping, detail representation, noise reduction, and color expression. In summary, Retinex
jointed multiscale CLAHE improves the tone-compression effect across the entire image by
combining the two technologies, which are complementary each other in terms of global
and local.

2. Related Work
2.1. Retinex-Based Tone Processing

The human eye adjusts the visual system to perceive the inherent color of objects when
color distortion occurs due to lighting conditions. However, for cameras, the dynamic
region is narrower than the human eye and does not effectively compensate for color
distortion. Retinex theory, which mimics the HVS, can compensate for the camera’s
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vulnerability to lighting and improve the visual quality of images. The SSR value is
computed as follows [13]:

Rssr,i(x, y) = log Ii(x, y)− log[G(x, y) ∗ Ii(x, y)], (1)

G(x, y) = Kexp
[
−

(
x2 + y2

)
/σ2], (2)

K = 1/∑x ∑y exp
[
−

(
x2 + y2

)
/σ2], (3)

where I denotes the input image and i represents the separated channel. Rssr,i(x, y) repre-
sents the result of SSR for the channel, whereas G(x, y) represents the Gaussian function. In
addition, the ∗ symbol is the convolution operator and G(x, y) ∗ Ii(x, y) denotes the blurred
image, which is the illumination component of the original image, where σ is the standard
deviation of the Gaussian function, which is a hyperparameter adjustable by the user. In
addition, K is the normalization factor, set to 1 for the maximum value of the Gaussian filter.

Moreover, σ is a parameter that determines the degree of blurring of the illumination
component, and its value affects the trade-off between noise and detail. A higher σ value
improves noise reduction but may decrease the detail and increase the computational time.
In contrast, a lower σ value enhances the detail and reduces computational time but may
lead to more noise, resulting in unnatural-looking images. Figure 1 illustrates the trade-off
between the components for various σ sizes.
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Figure 1. Comparisons of the single-scale Retinex method with various standard deviation (σ) values.

Through Figure 1, it is observed that as the σ value decreases, halo artifacts intensify,
and noise within the image increases significantly. The halo artifacts typically induce black
rings around objects or cause internal colors of objects to blur into white, resulting in
unnatural images. On the contrary, details such as cloud patterns or surface textures of
objects can be better expressed. As the σ value increases, the image is strongly blurred by
the Gaussian filter, so halo artifacts and noise decrease. The global toning performance
also improves, resulting in improved visibility. However, strong blurring also damages the
details of the image. It can be observed that cloud patterns or wall surfaces become fainter.
Additionally, a higher σ value for the Gaussian filter leads to an increase in computational
complexity during the convolution process with the original image.

The MSR method is an improved technique that uses this trade-off relationship to
obtain natural results. Further, MSR can be obtained as a weighted sum of several SSR
images. The following equation represents MSR:

Rmsr(x, y) = ∑N
n=1 wn(logIi(x, y)− log[Gn (x, y) ∗ Ii(x, y)]), (4)
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where wn and Gn represent the weight and Gaussian filter in the nth SSR, respectively. An
improved image can be obtained by connecting the benefits of noise reduction at high
scales and detail enhancement at low scales through intermediate-scale images. As a result,
Rmsr(x, y) represents the resulting image synthesized with multiple scale values.

An overall tone-mapped image can be obtained using the MSR method. However, in
this process, the original colors of objects are somewhat distorted, resulting in unintended
colors in the output. Therefore, MSR color restoration (MSRCR) aims to restore the original
colors to acquire natural results from the results of MSR [4]. The MSRCR technique is
obtained by multiplying the original MSR results by the color restoration function (CRF),
given in Equation (5):

I′ i(x, y) =
Ii(x, y)

∑S
j=0 Ij(x, y)

, (5)

where Ii represents the ith channel of the input image and S denotes the number of color
channels in the input image. In addition, I′ i denotes the ratio of the total color component
to the ith channel color component. In the commonly used RGB color space, S typically has
a value of 3. The CRF applied to the ith channel is calculated as follows:

CRFi(x, y) = βlog
[
αI′ i(x, y)

]
, (6)

where β denotes the gain constant and α indicates the nonlinearity control constant.
Finally, the MSRCR image is obtained by multiplying the CRF obtained from MSR,

represented in Equation (7):

Rmsrcr,i(x, y) = CRFi(x, y) ∗ Rmsr,i(x, y). (7)

While these multiscale syntheses of the SSR images and the color compensation can
compensate for some faults of the original SSR images, some problems remain, such as
distortion-induced halo artifacts and noise problems, highlighting prominent problems
depending on the image characteristics.

2.2. Contrast Limited Adaptive Histogram Equalization

Histogram equalization is an image enhancement method that increases the contrast of
an image using the cumulative distribution function (CDF) of pixel values in the image [14].
This method is widely used as one of the most straightforward image enhancement meth-
ods; however, it suffers from the problem of some regions of the image becoming saturated
as a result of attempting to distribute the histogram of pixel values evenly across the entire
image. The CLAHE method improves the limitations of histogram equalization by locally
applying histogram equalization to multiple tiles of size M × M instead of the entire im-
age [15]. This approach also prevents the excessive amplification of specific pixel values by
limiting the maximum number of bins in the histogram using a hyperparameter, ClipLimit
β. The control constant β is calculated as follows:

β =
M2

L
(1 +

α

100
(Smax − 1)), (8)

where M represents the size M × M of the parameter TileSize; therefore, M2 denotes the
number of pixels in each tile. In addition, L represents the maximum brightness value of
the image pixels, which is 256 for an 8-bit image. Moreover, ∝ is the clip factor, which
takes an arbitrary value between 0 and 100. The value of Smax is the maximum allowable
slope, and when the clip factor α is set to 100, ClipLimit becomes a constant determined by(

M2

L

)
∗ Smax.

Moreover, CLAHE exhibits a trade-off while enhancing the image, such as performing
detail representation, tone compression, and reduction of noise and halo artifacts, depend-
ing on the parameters ClipLimit and TileSize. Therefore, in the case of a single CLAHE
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performed by fixing the parameters, an overall image quality improvement is not expected.
Additionally, optimal parameter values are not explicitly specified and are determined
differently for each image based on the experience of the user. Consequently, there are
limitations in achieving optimal quality enhancement for each image, and even setting
incorrect parameter values may result in unnatural-looking images, as depicted in Figure 2.
Figure 2a represents the original image, and Figure 2b reveals only slight improvement due
to relatively low parameter settings. Figure 2c exhibits strong halo artifacts due to the high
TileSize settings. In addition, Figure 2d demonstrates improved detail representation due
to the high ClipLimit settings, but significant noise is observed.
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(b) low-enhanced image with low parameter values, (c) increased halo artifacts due to the high
TileSize, and (d) increased noise due to the high ClipLimit.

3. Proposed Method

Figure 3 illustrates the tone-mapping algorithm proposed in this paper, which employs
Retinex processing and multiscale CLAHE. The proposed method aims to address image
distortion problems, such as halo artifacts and noise, which are not adequately resolved
by Retinex theory and other tone-mapping algorithms by introducing multiscale CLAHE
based on high-scale Retinex. The proposed method also aims to enhance tone compression
and detail representation capabilities. The proposed method consists of SSR, multiscale
CLAHE, and color correction, as illustrated in Figure 3.
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As shown in Figure 3, the algorithm proceeds in the order of SSR, multiscale CLAHE,
and color correction. First, to reduce halo artifacts and noise, high-scale SSR is performed.
In this process, a high-σ value Gaussian filter is applied to heavily blur the surround layer,
effectively removing halo artifacts and obtaining a reflection layer with superior global
toning. Next, the multiscale CLAHE described in the blue box is performed. CLAHE is used
to compensate for visibility, such as details lost by strong SSR. However, single-parameter
CLAHE can introduce noise while compensating for details, thereby compromising overall
image quality. Therefore, this paper synthesizes multiple CLAHE layers with different
parameters to suppress noise induction while compensating for details, thus enhancing
overall image quality. The images from each scale are weighted and synthesized. Finally,
the algorithm undergoes a process to naturally restore some distorted colors, as indicated
in the green box of Figure 3. Lastly, as shown in the fourth box, the synthesized luminance
channel and the color-restored a and b channels are combined, and the output image is
provided by converting them into RGB channels. In summary, the main progress of the
algorithm is as follows:

• To effectively address the halo artifact and noise issues that arise in conventional
multi-blurring techniques, high-scale SSR is performed.

• To compensate for visibility while maintaining image quality, we perform CLAHE on
multiple scales.

• To restore some distorted colors due to the previous procedure, the color correction
method, MSRCR, is performed.

3.1. Decomposition of Reflectance and Illumination Layers

First, the input image in the RGB color space is converted to the Lab color space.
Because the Lab color space separates the luminance channel and color channels, the
luminance channel can be synthesized, reducing the color information distortion in the
image. The SSR method is applied to the separated luminance channel to divide it into
illumination and reflectance components. As depicted in Figure 1, a higher value of the
standard deviation σ of the Gaussian function results in a more effective reduction of
the halo artifacts and noise. Therefore, considering the compensation for details through
CLAHE, even as image details decrease, σ is set to a high value to reduce noise significantly
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and perform high tone mapping. In this paper, considering that the computational time
is more than double the standard deviation increases, σ is set appropriately to 250. The
decomposition of the luminance channel into reflectance and illumination layers through
the Gaussian function is performed as follows:

Ls(x, y) = G[L(x, y)], (9)

LR(x, y) = L(x, y)− G[L(x, y)], (10)

where G represents the Gaussian filter, Ls denotes the illumination layer image obtained by
applying a Gaussian filter to the luminance channel L of the input image, and LR indicates
the reflectance layer image obtained by removing the illumination layer component from
the luminance image L.

3.2. Multiscale CLAHE

High-scale SSR processing enables acquiring images with no noise and effective
tone compression. However, the brightness contrast and detail are decreased due to
the trade-off. The image enhancement method CLAHE is applied to increase brightness
contrast and compensate for the decreased detail to address this problem. The degree of
image enhancement varies depending on the direction in which the hyperparameters of
CLAHE (ClipLimit and TileSize) are set. Figure 4 depicts images with CLAHE applied
with various parameters.
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Generally, as the size of ClipLimit increases, the contrast and detail compensation
also increase. However, when ClipLimit becomes too large, excessive compensation leads
to increased noise and results in unnatural output. As for TileSize, increasing it reduces
the overall noise and improves tone compression, but excessive values lead to severe halo
artifacts and image degradation, resulting in unnatural output. Therefore, an image with
superior brightness contrast, detail compensation, noise reduction, and tone compression
can be obtained by composing n pairs (ClipLimit and TileSize), applying weights to the
images obtained with each pair, and combining them. For optimal synthesis, the diagonal
matrix images from the image array in Figure 3 are adopted as the images used for compo-
sition. High-scale CLAHE achieves excellent detail representation and tone compression,
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whereas low-scale CLAHE reduces noise and mitigates halo artifacts. Middle-scale CLAHE
serves as a connector for combining them. Superior image quality can be achieved through
this synthesis. The parameters of the diagonal matrix result in each pair of parameters
being (n, 2n+1). In this paper, n = 3; thus, three CLAHE layers were synthesized, and the
parameter pairs (βn, Mn × Mn) for each CLAHE layer were set to (1.0, 4 × 4), (2.0, 8 × 8),
and (3.0, 16 × 16), respectively.

The reflectance layer image LR of the luminance channel is divided into tiles of the
corresponding size according to the TileSize parameter Mn × Mn to apply local histogram
equalization. The representation of this process follows:

LR =

LR11 · · · LR1j
...

. . .
...

LRi1 · · · LRij

(1 ≤ i ≤ P
Mn

, 1 ≤ j ≤ Q
Mn

)
, (11)

where LRij represents the regions divided into tiles of size Mn × Mn, and P and Q are the
dimensions of the input image. The ij-th region of the image corresponding to each tile is
as follows:

LRij =

 T11 · · · T1MN
...

. . .
...

TMn1 · · · TMn Mn

, (12)

where TMn Mn represents the pixel values of the ij-th tile of the input image.
Histogram equalization is applied to each tile by limiting the number of histogram

bins based on the ClipLimit value. First, the probability mass function (PMF) is constructed
from the pixel values of each tile to obtain the CDF, which serves as a means of applying
histogram equalization, as follows:

hij(l) = ∑Mn
x=1 ∑Mn

y=1 δ
(
Txy − l

)
, l = 0, 1, 2, · · · , L − 1, (13)

where hij represents the PMF of the ijth tile, Txy denotes the pixel value at the xy-th position
within the ij-th tile, and L represents the maximum pixel value. Additionally, δ is the
impulse function that determines which brightness value the Txy corresponds to.

The PMF must be limited so that it does not have more than a certain number of pixels
at specific brightness values to prevent excessive brightness in certain areas. Moreover, if
the limit is exceeded, the excess pixels are redistributed evenly across the entire brightness
range. This process is conducted according to the following equations:

Nexcess = ∑L−1
k=0 max

((
hij(k)− βn

)
, 0
)
, (14)

Naverage =
Nexcess

L
, (15)

hclipped(l) = hij(l) + Naverage, (16)

where Nexcess represents the number of pixels exceeding the ClipLimit βn, L denotes the
maximum brightness value of the pixels (256 for an 8-bit image), and Naverage indicates the
number of pixels to be evenly redistributed across the entire brightness range. In addition,
hclipped represents the new PMF of the ijth tile after the redistribution.

After redistribution, the process is repeated by limiting the pixel count again until
Nexcess reaches zero. Finally, hclipped takes the following form:

hclipped(l) =
{

βn (h(l) ≥ β)
hij(l) + Nup (h(l) < β)

. (17)

The number of pixels exceeding the ClipLimit is constrained to βn, whereas the number
of pixels less than βn increases by the amount of Nup which is the amount of the pixels for
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redistribution. The formula for obtaining the CDF for histogram equalization using the
constrained PMF is as follows.

Cij(l) =
1

M2
n
∑l

k=0 hclipped(k), (18)

where Cij represents the CDF to be multiplied by each pixel value of the ij-th tile. In this
process, the CDF is normalized by dividing by the total number of pixels in the tile, M2

n, to
ensure that the slope of the CDF does not exceed 1 within the tile.

The CDF, Cij, obtained from Equation (18), is applied to the ij-th tile. Then, histogram
equalization is performed by multiplying by the maximum pixel intensity value, L − 1, to
the tile. This process is conducted according to the following equation:

L′
Rij(x, y) = Cij

(
LRij(x, y)

)
× (L − 1), (19)

where L′
Rij represents the ij-th tile of the LR image, where CLAHE was applied, and the ×

symbol is the multiplication operator.
After performing local histogram equalization for each tile, block artifacts occur

(Figure 5). Pixel values between tile boundaries do not smoothly transition, resulting in
noticeable gaps. Bilinear interpolation is applied to each pixel based on the tile centers to
address this problem. Before applying the technique, pixels are categorized into internal
regions, boundary regions, and corner regions based on their positions and neighboring
tiles (Figure 6). Different equations are applied to each region accordingly.
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First, the transformation function for pixels in the internal region is calculated as
follows for the inside region:

L′′
Rij(x, y) =

s
r + s

(
q

p + q
f
(

L′
Ri−1j−1

)
+

p
p + q

f
(

L′
Rij−1

))
+

r
r + s

(
q

p + q
f
(

L′
Ri−1j

)
+

q
p + q

f
(

L′
Rij

))
(20)

where L′
Rij, L′

Ri−1j, L′
Rij−1, and L′

Ri−1j−1 are the center pixels of the four adjacent tiles of
a desired pixel, in which each tile is subjected to contrast restriction histogram equalization.
The values of p, q, s, and r represent distances between the current pixels from the centers
of the four adjacent tiles. f

(
L′

Rij
)
, f

(
L′

Ri−1j
)
, f

(
L′

Rij−1
)
, and f

(
L′

Ri−1j−1
)

represent the
value of the center pixel of each tile, and L′′

Rij(x, y) indicates the pixel value after the
interpolation method is applied.

The transformation functions for the boundary and edge regions, respectively, are
similarly expressed as follows:

L′′
Rij(x, y) =

s
r + s

f
(

L′
Rij−1

)
+

r
r + s

f
(

L′
Rij

)
, (21)

L′′
Rij(x, y) = L′

Rij(x, y). (22)

Hence, each output image fully processed by CLAHE with each scale is represented
as follows:

Lmapped,n =

L′′
R11 · · · L′′

R1j
...

. . .
...

L′′
Ri1 · · · L′′

Rij

(1 ≤ i ≤ P
Mn

, 1 ≤ j ≤ Q
Mn

)
. (23)

The combined image of the obtained output images at each scale is represented
as follows:

L f used = ∑N
n=1 wnLmapped,n, (24)

where Lmapped represents the reflection layer image LR with the high-scale SSR and single-
scale CLAHE applied, where wn denotes the weight applied to each image. In addition,
N indicates the number of images for fusion, which is set to N = 3 in this paper. Finally,
L f used denotes the reflection layer image with multiscale CLAHE applied.

3.3. Color Compensation

After the conversion to the Lab color space, the color information of the original image
is separated into the a and b channels, whereas the luminance information is represented
by the L channel. Therefore, changes in the luminance channel L due to tone adjustments
do not affect the original color information. However, imbalances may occur between
the modified luminance channel L and the color channels a and b, leading to unnatural
color representation. Additionally, when applying Retinex theory, some colors may distort
during the tone-mapping process, differing from the intended colors. Retinex theory
incorporates gray world assumption (GWA) theory [4]. GWA is a technique based on the
assumption that the mean values of the R, G, and B channels of an image are equal. It
adjusts the gain to make the mean values of the R, G, and B channels equal. While GWA
performs well in images with a uniform range of colors, it can lead to color desaturation
in images where certain colors dominate, resulting in a grayscale appearance. Similarly,
Retinex theory that embeds GWA can cause the same problem. As seen in Figure 7, it can
distort the original colors of plants and buildings, making them gray. Therefore, a process
to restore the distorted grayscale images using the color information from the original
image is necessary.
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Figure 7. Color desaturation caused by Retinex and different L channel ratios with a and b chan-
nels: (a) an original input image, (b) an image without color correction, and (c) an image with
color correction.

Color channels that match the modified luminance channel must be obtained by
correcting the color information of the output image with the color information of the
original image to address these problems. The color correction method uses the MSRCR
technique, which performs color restoration based on multiscale Retinex theory. The
algorithm for color correction is provided as follows:

I′(x, y) =
I(x, y)

∑S
j=0 Ij(x, y)

, (25)

CC(x, y) = γlog
(
αI′(x, y)

)
, (26)

RGBCC(x, y) = CC(x, y)·RGB f used(x, y), (27)

where I represents the input image and Ij represents each R, G, and B channel of the input
image. The term CC is the color correction function obtained for I′ through constants ∝
and γ. In this case, the experimentally determined appropriate values are ∝ = 125 and
γ = 46. The term RGB f used(x, y) represents the image without color correction. Finally,
RGBCC(x, y) represents the result image with color correction.

The color correction function, obtained by applying the proposed method to the
processed luminance channel L f used and the original a and b channels, is multiplied by the
RGB fused image, which is the image transformed into the RGB color space. However, due
to the high correlation between luminance and each color channel in the RGB color space,
the luminance component could be distorted. Therefore, only the color information of
the image after color correction is obtained, and the luminance information is synthesized
using the luminance channel L f used of the proposed method. For this purpose, the RGBCC
image is converted back to the Lab color space, and only the a and b color channels are
extracted. Finally, the synthesized luminance channel L f used and color channels acc and bcc,
processed by the color correction method, are combined, and the final synthesized image is
obtained after converting it to the RGB color space.

4. Simulations
4.1. Experimental Results

In this paper, we tested our model with various images, including benchmark datasets,
i.e., CS [16] and Meylan et al. HDR [17,18] datasets, and self-images [19]. The results of
several tone-mapping algorithms and the proposed method were compared to evaluate the
performance of the proposed method. Low-light images for comparing tone compression
in bright and dark areas, outdoor images for comparing detail compensation, and a color
booth image suitable for the simultaneous comparison of color reproduction and tone
compression of input images were used for the performance evaluation. The experiments
and evaluation were implemented on Windows 10 Pro 64bit and an Intel(R) Core(TM)
i7-7700 CPU @ 3.60 GHz, using Python 3.11.4 and MATLAB R2023a. Figures 8–14 depict
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the comparison results for images with a wide range of brightness, from dark to bright
areas. For existing methods, such as Reinhard [5] and L1L0, the tone increases across
the brightness range, resulting in saturation in bright areas and reduced visibility in dark
areas. Although iCAM06 and the method by Kwon et al [12]. ensure visibility in dark
areas, color distortions, such as saturation, occur in some areas, and an overall reddish
tone appears in the image. In contrast, the proposed method effectively compresses tones
while maintaining visibility in dark areas without saturation in bright areas. Furthermore,
detailed areas, such as tree trunks, leaves, tiles, and tire surfaces, display strong contrasts
according to each area, effectively representing detailed information.
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Figure 13. Input and result images: (a) Original, (b) Reinhard (2012) [5], (c) L1L0, (d) iCAM06,
(e) Kwon et al. [12], and (f) proposed.

Figures 15 and 16 present the comparison results for the night-time images. The
existing methods often suffer from oversaturation, leading to saturation in some areas
or decreased color contrast, causing overall haziness or reduced detail. Especially in
Figure 16, areas like the sky lack accurate color reproduction and appear hazy. In contrast,
the proposed method represents colors without oversaturation, maintaining a clear color
contrast and accurately expressing details in the walls, patterns, and vegetation.
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Figure 17 illustrates the performance comparison of a color chart. The Reinhard and
L1L0 methods effectively represent the primary colors of the color chart, but the achromatic
colors exhibit saturation. In contrast, the iCAM06 and Kwon et al. methods suffer from
oversaturation, resulting in an inaccurate color representation and excessive brightness in
the image. In contrast, the proposed method accurately reproduces natural colors for both
the primary and achromatic color charts while demonstrating great detailed representation
in the buildings and floor tiles.

4.2. Objective Assessment

To conduct an objective evaluation, we performed six quantitative metrics: the local
phase coherence–sharpness index (LPC_SI), cumulative probability blur detection (CPBD),
maximum contrast with minimum artifacts (MCMA), tone-mapped image quality index
(TMQI), natural image quality evaluator (NIQE), and perception-based image quality
evaluator (PIQE) to compare image quality using 17 images. First, LPC_SI evaluates the
sharpness of the image based on the weakening of the local phase coherence intensity
through blur [20]. The CPBD evaluates the sharpness and blur level of the image based on
a probabilistic model detecting blur at the edges from the changing contrast values [21].
In addition, MCMA is a metric similar to human perception, evaluating the visual quality
enhancement and detail preservation by comparing the original and enhanced images [22].
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Further, the TMQI is an evaluation metric for tone-mapped images, including a multiscale
structural fidelity measure and a statistical naturalness measure [23]. The TMQI indicates
the level of structural distortion and provides an overall quality score for the enhanced
image compared to the original. These four metrics indicate better image quality and
sharpness as their values increase. The PIQE is a no-reference evaluation method, esti-
mating localized distortions in images and evaluating image quality through the local
variance of distorted blocks [24]. Further, PIQE scores range from 0 to 100, with lower
values indicating higher image quality. The NIQE provides a perceptual quality score for
images based on a model computed from natural images compared to the image itself [25].
Similar to the PIQE, the NIQE scores range from 0 to 100, with lower values indicating
higher image quality.
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Figure 15. Input and result images: (a) Original, (b) Reinhard (2012) [5], (c) L1L0, (d) iCAM06,
(e) Kwon et al. [12], and (f) proposed.
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Figure 18 presents the results of the evaluation based on the scores for 17 comparison
images and their averages. Table 1 represents the average values of the 17 experimental
images in the specific numerical form.
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Table 1. Comparison with metric scores.

Reinhard (2012) [5] L1L0 iCAM06 Kwon et al. [12] Proposed

LPC_SI (↑) 0.9121 0.9127 0.9178 0.9343 0.9344 1

CPBD (↑) 0.5844 0.5846 0.5830 0.6570 0.6600 1

MCMA (↑) 0.6391 0.6431 0.6236 0.6489 0.6881 1

TMQI (↑) 0.8911 0.8816 0.8863 0.8830 0.9035 1

NIQE (↓) 2.594 2.5796 2.6572 3.2236 2.6838 4

PIQE (↓) 36.1583 35.6512 35.0158 31.7953 33.4686 2

xy indicates that x is ranked as the yth value in the row; x can refer to either a method or a specific evaluation
metric. The bold value represents the best method in the corresponding evaluation metric. The “up arrow”
indicates higher scores are preferable, while the “down arrow” signifies lower scores are preferable.

While the rankings of each image may differ based on the evaluation metrics, the
proposed method demonstrates excellent results across all evaluation metrics on average.
Notably, the CPBD, MCMA, and TMQI metrics display significant performance improve-
ment compared to other synthesis methods. Overall, the proposed method consistently
ranks highly for all evaluation metrics without significant variation, unlike other synthesis
methods that may exhibit considerable discrepancies in performance evaluation across
metrics. Thus, the proposed method is outstanding in image quality performance regard-
ing detail representation, noise reduction, and tone-compression effects compared to the
existing synthesis methods.

5. Conclusions

Conventional tone-mapping algorithms can introduce unnecessary noise and halo
artifacts during the tone-compression process. This paper proposes a tone-mapping algo-
rithm that combines Retinex theory with CLAHE in a multiscale synthesis approach to
resolve these problems and achieve better image quality. The proposed method enhances
tone-compression performance and reduces noise and halo artifacts by performing high-σ
SSR on images with a wide dynamic range. In addition, multiscale CLAHE secures the
visibility and detailed information expression by synthesizing each image with exceptional
detail representation and noise reduction. Finally, the algorithm enhances color repre-
sentation by employing saturation compensation based on the color ratio of the original
image to the synthesized image. Compared to the existing tone-mapping algorithms, such
as MSR, Reinhard, L1L0, iCAM06, and the method by Kwon et al., the proposed algo-
rithm has excellent tone-compression performance and increases local contrast, resulting
in prominent clarity characteristics. Additionally, the color of the original image is well
represented by minimizing the color-channel distortion due to the change in the luminance
channel. In addition to subjective evaluations, objective image quality metrics confirm
the superiority of the proposed method for various aspects of image quality. Thus, the
proposed method outperforms existing methods in image sharpness, visibility, and overall
quality performance.

Additionally, we extend the application of existing theories by employing them at a
multiscale level. CLAHE has primarily been used with a single scale of two parameters.
Two theories, Retinex and CLAHE, rely on their own parameters. As such, the degree
of image improvement has a trade-off relationship depending on the parameter values.
Furthermore, both theories do not have separate optimal parameter values and the values
required for each image are different. Due to these problems, conventional methods have
limitations in their application and effectiveness. By employing conventional theory at
a multiscale level and integrating two theories which are complementary to each other,
this paper overcomes the limitations imposed by trade-offs and enhances the resulting
image quality in various ways. Ultimately, the proposed method presents a more dynamic
approach to using existing theories and combines them to reproduce superior HDR images
from single LDR images compared to traditional techniques.
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