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Abstract: This study extensively explores the Biswas–Milovic equation (BME) with Kerr and power
law nonlinearity to extract the unique characteristics of optical soliton solutions. These optical soliton
solutions have different applications in the field of precision in optical switching, applications in
waveguide design, exploration of nonlinear optical effects, imaging precision, reduced intensity
fluctuations, suitability for optical signal processing in optical physics, etc. Through the powerful
(G′/G, 1/G)-expansion analytical method, a variety of soliton solutions are expressed in three distinct
forms: trigonometric, hyperbolic, and rational expressions. Rigorous validation using Mathematica
software ensures precision, while dynamic visual representations vividly portray various soliton
patterns such as kink, anti-kink, singular soliton, hyperbolic, dark soliton, and periodic bright soliton
solutions. Indeed, a sensitivity analysis was conducted to assess how changes in parameters affect
the exact solutions, aiding in the understanding of system behavior and informing decision-making,
especially in accurately designing or analyzing real-world optical phenomena. This investigation
reveals the significant influence of parameters λ, τ, c, B, and K on the precise solutions in Kerr and
power law nonlinearities within the BME. Notably, parameter λ exhibits consistently high sensitivity
across all scenarios, while parameters τ and c demonstrate pronounced sensitivity in scenario III.
The outcomes derived from this method are distinctive and carry significant implications for the
dynamics of optical fibers and wave phenomena across various optical systems.

Keywords: (G′/G, 1/G)-expansion method; exact solutions; Biswas–Milovic equation; Kerr and
power law nonlinearity; optical soliton solutions; sensitivity analysis

MSC: 35C07; 35G20; 35C08; 49Q12

1. Introduction

Nonlinear equations (NLEs) are not just mathematical puzzles; instead, they are the
hidden language of nature’s most captivating phenomena. Unlike the straightforward lines
of linear equations, NLEs capture the intricate dances of heat flow, light waves, and more,
revealing the true complexity of our world. These equations unlock the secrets of solitons,
solitary waves that travel through optical fibers, and hold the key to unraveling countless
scientific mysteries. From the scorching heat of a furnace to the shimmering ripples of
light pulses, NLEs provide a powerful lens to understand and harness these phenomena.
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By deciphering their stories, mathematicians and engineers can build better fiber optic
networks, design efficient heat transfer systems, and unlock the mysteries beyond the
realm of light, shaping the future in remarkable ways. Furthermore, understanding and
controlling soliton dynamics are crucial for various optical applications, encompassing
optical communication, nonlinear optics, and ultrafast photonics. Optical solitons offer
unique benefits, such as stable propagation over long distances and the preservation
of pulse shape and integrity. As a result, accurate modeling of soliton dynamics is of
paramount importance for advancing and optimizing optical devices and systems tailored
for these specific applications [1–4]. Within the realm of optical fiber communication, the
significance of the BME is notable, as it stands as a valuable tool for modeling diverse soliton
solutions. These solitons represent solitary waves capable of traversing long distances
without altering their form, a characteristic crucial for transmitting information without
distortion [5,6]. Furthermore, their equations are integrable, indicating that they harbor an
infinite number of conservation laws. This investigation delves into the interaction between
parabolic and power law nonlinearities within the framework of the BME. Here is the form
of the BME [5]:

i(Mn)t −
{(

BC|M|2
)
− τ

}
Mn − K

{
(Mn)xx + (Mn)yy

}
= 0; i2 = −1. (1)

where M = M(x, y, t) correspond to the complex function, and (Mn)t =
∂Mn

∂t , (Mn)xx =
∂2Mn

∂x2 and (Mn)yy = ∂2Mn

∂y2 . In Equation (1), there are three components: the first signi-
fies the overall evolution, the second term encapsulates the function C, representing the
nonlinearity, and the third term encompasses the group velocity dispersion. Also, C is a
real-valued algebraic function, and n serves as a constraint that extends from the nonlinear
Schrödinger equation (NLSE) to the BME. The variables x, y, and t are independent spatial
and temporal variables, while B, K, and τ are real quantities.

Generally, n is larger than or equal to 1, and once n equals 1, Equation (1) shortens to the
(2 + 1)-dimensional NLSE structure of the BME. This investigation centers on Equation (1),
which shows evident nonlinearity, with the hypothesis that n corresponds 1 is a basic NLSE
form for optical systems, particularly optical fibers.

Numerous researchers have developed various methodologies to derive precise solutions
for NLSEs, employing diverse approaches such as the G′

G′+G+A method [7,8], the Sardar sube-
quation method [9,10], the Riccati equation method [11,12], the Hirota bilinear method [13,14],
the Lie group method [15,16], the (G′/G)-expansion technique [17,18], the extended Jacobi
elliptic function method [19,20], the functional variable technique [21,22], the homogeneous
balance method [23,24], the Hirota bilinear formulation with N- soliton [25,26], the new auxiliary
equation method [27,28], the tanh–function method [29–31], the tanh–coth method [32,33], the
generalized Kudryshov method [34,35], the exp(−φ(ξ)) - expansion method [36,37], the unified
method [38,39], the multiple exp-function method [40,41] and so on.

Among various methods, the
(

G′
G , 1

G

)
-expansion method is a powerful analytical

technique utilized in solving NLEs. It involves representing solutions as power series,
where coefficients are figured out using two variables G′

G and 1
G . These coefficients are

obtained by substituting the series into the equation and matching coefficients of simi-
lar terms. This method is widely employed to reveal optical solutions effectively. Nu-
merous researchers [42–49] have utilized this technique to reveal solutions for various
NLEs. Throughout history, researchers have applied diverse mathematical models like
the parabolic law, Kerr law, power law, and Kudryashov’s quintuple power law to probe
optical soliton solutions within the framework of the BME equation, employing various
solving techniques. While earlier investigations primarily centered on revealing bright and
dark soliton solutions, our study takes a different approach, aiming to investigate a wider
array of soliton patterns. This includes kink, anti-kink, singular soliton, hyperbolic, dark
soliton, and periodic bright soliton patterns. As of present, there has been no investiga-
tion of BME employing this technique with Kerr law and power law nonlinearity. This
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investigation aims to use the above-mentioned methodology to derive soliton solutions for
the provided nonlinear equations. In addition to our primary investigation, we embarked
on a comprehensive first-order sensitivity analysis, colloquially termed local sensitivity
analysis. This analysis aims to elucidate the nuanced impacts of minor perturbations in
each input parameter on the resultant outcomes within a specific operational context. This
analytical endeavor involves the meticulous computation of sensitivities about the output
concerning each input parameter, employing numerical methodologies such as finite differ-
ences. By scrutinizing these sensitivities, we tried to unveil the intricate interplay between
individual input parameters and their consequential effects on the overarching solutions.
Such insights are pivotal in augmenting our understanding of the complex dynamics of
the BME’s exact solutions. This paper is divided into several sections: (i) Methodology
overview in Section 2. (ii) Discussion of parabolic and power law nonlinearity in Section 3.
(iii) Application of the methodology to derive solutions from the equations in Section 4.
(iv) Exploration of dynamic representations, showcasing soliton behaviors through 3D
graphs, 2D graphs, and contours, along with sensitivity analysis of obtained solutions in
Section 5. (v) Concluding remarks in Section 6. (vi) Finally, a list of relevant references.

2. A Short Overview of (G′/G, 1/G)-Expansion Technique

Here, we provide an in-depth explanation of the basic steps required to apply the
(G′/G, 1/G) technique, which was first suggested by [50], to the analysis of NLEs. To aid
in this analytical process, a careful formulation of an auxiliary linear ordinary differential
equation of the following form is required:

G′′(φ) + λG(φ) = η, (2)

where ‘′’ denotes first derivatives concerning φ, and the variables are:

ℊ = G′(φ)
G(φ)

F = 1
G(φ)

}
. (3)

Equation (3) satisfies the subsequent correlations:

ℊ′ = −ℊ2 + ηF − λ
F ′ = −g ∗ F

}
. (4)

The result of Equation (2) mentioned earlier fluctuates depending on λ, which falls
into three separate scenarios [43,51]:

Scenario I: For λ > 0.
Equation (2) gives the following form of the general solution (GS):

G(φ) = l1sin
(

φ
√

λ
)
+ l2cos

(
φ
√

λ
)
+

η

λ
, (5)

which generates:

F 2 =

(
ℊ2 − 2ηF + λ

A1λ2 − η2

)
λ, (6)

where A1 = l2
1 + l2

2 is the arbitrary constant.
Scenario II: For λ < 0
Equation (2) yields the succeeding form of the GS:

G(φ) = l1sinh
(

φ
√
−λ
)
+ l2cosh

(
φ
√
−λ
)
+

η

λ
, (7)
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subsequent in:

F 2 = −λ

(
ℊ2 − 2ηF + λ

A2λ2 + η2

)
, (8)

where A2 = l2
1 − l2

2 is the arbitrary constant.
Scenario III: For λ = 0
Equation (2) results in the following form of the GS:

G(φ) =
ηφ2

2
+ l1 φ + l2, (9)

which gives:

F 2 =

(
ℊ2 − 2ηF
l2
1 − 2ηl2

)
, (10)

where l1 and l2 are the arbitrary constant.
Consider a general form of NLEs incorporating three independent variables (x, y, and

t) as follows:

L
(
M,Mx,Mxx,My,Myy,Mxy,Mt,Mtt,Mxt,Myt

)
= 0, (11)

where L denotes a polynomial function reliant on the variables encompassed in M and
Mx = ∂M

∂x , My = ∂M
∂y , Mt =

∂M
∂t , Mxx = ∂2M

∂x2 , Myy = ∂2M
∂y2 , Mtt =

∂2M
∂t2 , Mxt =

∂M
∂x∂t ,

Mxy = ∂M
∂x∂y and so on.

To transform Equation (11), a new variable φ is introduced, governed by the follow-
ing relation:

M(x, y, t) = eiθZ(φ), (12)

where θ = x + y + νt + σ0 and φ = cx + dy + ϖt.
Equation (12) portrays a wave characterized by a velocity of ϖ, phase described by θ,

and a fixed starting point defined by the phase constant σ0. However, to completely grasp
its behavior, three real values, c, d, and ν, remain unresolved and require determination.

Now, Equation (11) is converted by using the transformation written in Equation (12)
to a new form as follows:

J
(
Z,Z′,Z′′,Z′′′, . . . . . . . . .

)
= 0. (13)

In this context, J is the new polynomial encapsulating Z along with its ordinary
derivatives.

The GS of Equation (13) is provided by the following equation, derived through the
previously discussed method as follows:

Z(φ) = a0 + ∑N
i=1 aiℊ

i(φ) + ∑N
i=1 biℊ

i−1(φ)F (φ). (14)

Here, a0, ai, and bi(i = 1, 2, 3, . . . . . . . . . , N) are the arbitrary constant fulfilling the
requirement a2

N + b2
N ̸= 0, and the parameter N is defined as a positive balance number.

Exact Solution Computation Workflow:
First, applying the homogeneous balance principle to the transformed ODE provides

the value of the balance number, then switching the value of N into Equation (14) and
integrating the modified equation into Equation (13), with the utilization of Equations (6), (8)
and (10), the left-hand side of Equation (13) transforms a polynomial containing the terms ℊ
and F . In this polynomial, the degree accompanying F does not exceed 1, while the degree
of ℊ ranges from 0 to any integer. Establishing a system of algebraic equations involves
equating the coefficients of terms with corresponding powers within the polynomial to 0,
incorporating parameters such as ai, bi, λ, η, and others. Employing Mathematica software
14 aids in solving these algebraic equations to determine the values of these parameters.
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Subsequently, these values are substituted into Equation (13), enabling the extraction of
soliton solutions represented by trigonometric functions (as in Equation (5)), hyperbolic
functions (as in Equation (7)), and rational functions (as in Equation (9)). Through the
utilization of Equation (12), the exact solution of Equation (1) is derived, encompassing
trigonometric, hyperbolic, and rational functions.

3. Implementation of Nonlinearities Laws

In this section, we analyzed Equation (1) using both the Ker and power law nonlinearity.
The implementation of these laws on the BME is detailed in Sections 3.1 and 3.2 below.

3.1. Ker Law

For an exploration of Equation (1) under Kerr law nonlinearity, specifically when
C(Θ) = Θ [52,53], the resulting NLSE is formulated as follows:

iMt −
{(

B|M|2
)
− τ

}
M− K

(
Mxx +Myy

)
= 0. (15)

By inserting Equation (12) into Equation (15), we obtain the following equations from
the imaginary and real components:

{ϖ − 2K(c + d)}Z′(φ) = 0, (16)

and
(τ − c + 2K)Z(φ)−B{Z(φ)}3 − K

(
c2 + d2

)
Z′′(φ) = 0. (17)

Given that Z(φ) is non-zero and shows second-order derivatives, Equation (16) im-
poses the following restriction on the velocity:

ϖ = 2(c + d)K. (18)

Hence, Equation (17) signifies the NODE (nonlinear ordinary differential equation)
form of Equation (15) with Kerr law nonlinearity, subject to the constraint outlined in
Equation (18).

3.2. Power Law

In examining Equation (1) under power law nonlinearity, specifically when
C(Θ) = Θn [52,53], the resulting NLSE is formulated as follows:

iMt −
{(

B|M|2n
)
− τ

}
M− K

{
Mxx +Myy

}
= 0. (19)

In this scenario, for stability, it is imperative that 0 < n < 2. By inserting Equa-
tion (12) into Equation (19) and organizing the resulting expression, the following equations
are derived:

{ϖ − 2K(c + d)}Z′(φ) = 0, (20)

and [
−B{Z(φ)}2n + τ − c + 2K

]
Z(φ)− K

(
c2 + d2

)
Z′′

(φ) = 0. (21)

Likewise, Equation (21) offers the following restriction on the velocity:

ϖ = 2(c + d)K. (22)

Therefore, Equation (21) signifies the NODE form of Equation (19) with power law
nonlinearity, subject to the constraint outlined in Equation (22).
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4. Method’s Application with Nonlinearities Laws

In this segment, we employ the methodologies elucidated in Section 2 to derive the
optical soliton solution for Equation (1).

4.1. Application for Kerr Law

Through the application of the balancing principle in Equation (17) provides N = 1.
Therefore, Equation (14) transforms into the following form:

Z(φ) = a0 + a1ℊ(φ) + b1F (φ). (23)

In this equation, the coefficients a0, a1 and b1 are constants that need to be decided.
Scenario I. λ > 0 (For trigonometric)
To obtain the solutions for Equation (17), we use Equations (4) and (6) and replace

Equation (17) with Equation (23). With this technique, a polynomial with ℊ and F is
created from the left side of Equation (17). This polynomial’s coefficients, a0, a1 and b1, are
involved in a system of algebraic equations when each coefficient is set to zero. Solving
this system of algebraic equations yields the follows arbitrary constants:

a0 = 0

a1 = ±
√

−(c2+d2)K√
2
√
B

b1 = ±
√

−(c2+d2)K
√

λ2A1−η
2

√
2
√
B
√

λ

,

where τ = 1
2
(
2c − 4K + c2Kλ + d2Kλ

)
and K < 0.

Now, using these calculated values in Equation (14), we obtain the following solution
of Equation (17):

Z(φ) = ±
√

−(c2+d2)K√
2
√
B

√
λ

l1cos(φ
√

λ)−l2sin(φ
√

λ)
l1sin(φ

√
λ)+l2cos(φ

√
λ)+ η

λ

±
√

−(c2+d2)K
√

λ2 A1−η
2

√
2
√
B
√

λ
1

l1sin(φ
√

λ)+l2cos(φ
√

λ)+ η
λ

,
(24)

where φ = cx + dy + 2(c + d)Kt.
Reverting to its first form with the aid of Equation (12), we obtain the following form:

M(x, y, t) = eiθ
{
±
√

−(c2+d2)K√
2
√
B

√
λ

l1cos(φ
√

λ)−l2sin(φ
√

λ)
l1sin(φ

√
λ)+l2cos(φ

√
λ)+ η

λ

±
√

−(c2+d2)K
√

λ2 A1−η
2

√
2
√
B
√

λ
1

l1sin(φ
√

λ)+l2cos(φ
√

λ)+ η
λ

}
,

(25)

where φ = cx + dy + 2(c + d)Kt and θ = x + y + νt + σ0.
Scenario II. λ < 0 (For hyperbolic)
To derive the hyperbolic solution, apply the same procedure, resulting in:

a0 = 0

a1 = ±
√

−(c2+d2)K√
2
√
B

b1 = ±
√

−(c2+d2)K
√

η2+λ2A2√
2
√
B
√
−λ

,

where τ = 1
2
(
2c − 4K + c2Kλ + d2Kλ

)
and K < 0.
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Now, using these calculated values in Equation (14), the following solution of Equa-
tion (17):

Z(φ) = ±
√

−(c2+d2)K√
2
√
B

√
−λ

l1cosh(φ
√
−λ)+l2sinh(φ

√
−λ)

l1sinh(φ
√
−λ)+l2cosh(φ

√
−λ)+ η

λ

±
√

−(c2+d2)K
√

η2+λ2 A2√
2
√
B
√
−λ

1
l1sinh(φ

√
−λ)+l2cosh(φ

√
−λ)+ η

λ

,
(26)

where φ = cx + dy + 2(c + d)Kt.
With the help of Equation (12), obtain solution of main PDEs:

M(x, y, t) = eiθ

{
±
√

−(c2+d2)K√
2
√
B

√
−λ

l1cosh(φ
√
−λ)+l2sinh(φ

√
−λ)

l1sinh(φ
√
−λ)+l2cosh(φ

√
−λ)+ η

λ

±

√
−(c2+d2)K

√
η2+λ2 A2√

2
√
B
√
−λ

1
l1sinh(φ

√
−λ)+l2cosh(φ

√
−λ)+ η

λ

} (27)

where φ = cx + dy + 2(c + d)Kt and θ = x + y + νt + σ0.
When l1 is confirmed to be non-zero and both η and l2 are set to zero, Equation (27)

takes on the form of the following soliton solution:

M(x, y, t) = eiθ

{
±
√

−(c2+d2)K√
2
√
B

√
−λcoth(φ

√
−λ)±

√
−(c2+d2)K√
2
√
B
√
−λ

λcosech(φ
√
−λ)

}
,

(28)

where φ = cx + dy + 2(c + d)Kt and θ = x + y + νt + σ0.
Scenario III. For λ = 0 (For rational)
To achieve the rational solution, follow the same procedure outlined in scenario I,

resulting in:
a0 = 0

a1 = ±
√

c2+d2
√

τ−c
2
√
B

b1 = ±
√

c2+d2
√

τ−c
√

l21−2l2η

2
√
B

,

where K = c−τ
2 .

Now, incorporating these computed values into Equation (14), we derive the following
solution for Equation (17):

Z(φ) = ±
√

c2 + d2
√

τ − c
2
√
B

2ηφ+ l1
η
2φ

2 + l1φ+ l2
±

√
c2 + d2

√
τ − c

√
l21 − 2l2η

2
√
B

1
η
2φ

2 + l1φ+ l2
, (29)

where φ = cx + dy + 2(c + d)Kt.
Inserting the transformation variables defined in Equation (12) into the above equation

results in the following generalized solution for Equation (1):

M(x, y, t) = eiθ

{
±
√

c2 + d2
√

τ − c
2
√
B

2ηφ + l1
η
2 φ2 + l1 φ + l2

±

√
c2 + d2

√
τ − c

√
l2
1 − 2l2η

2
√
B

1
η
2 φ2 + l1 φ + l2

}
, (30)

where φ = cx + dy + 2(c + d)Kt and θ = x + y + νt + σ0.
When l1 is confirmed to be non-zero and both η and l2 are set to zero, Equation (30)

takes on the form of the following soliton solution:

M(x, y, t) = eiθ

{
±
√

c2 + d2
√

τ − c
2
√
B

1
φ
±

√
c2 + d2

√
τ − c

2
√
B

1
φ

}
, (31)

where φ = cx + dy + 2(c + d)Kt and θ = x + y + νt + σ0.
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4.2. Application for Power Law

Operating the balancing principle in Equation (21), we deduce that N = 1/n. Conse-
quently, the following relation can be defined:

Z(φ) = Y(φ)
1
n . (32)

Thus, employing the transformation, Equation (38) undergoes the following form:

(τ − c + 2K)n2{Y(φ)}2 −Bn2{Y(φ)}4 + K
(

c2 + d2
)
(n − 1)

{
Y′(φ)

}2 − nK
(

c2 + d2
)

Y(φ)Y′′(φ) = 0. (33)

Applying the balancing principle once more and figuring out N = 1, the solution
adopts the following structure:

Y(φ) = a0 + a1ℊ(φ) + b1F (φ). (34)

Now, employing a similar procedure as described in Section 4.1 for all scenarios, we
derive the following solutions for Equation (33), then Equation (21), and finally Equation (1):

Scenario I. λ > 0 (For trigonometric)
The coefficients obtained from this case are as follows:

a0 = 0
a1 = ±

√
c−τ−2K√
B
√

λ

b1 = ±
√

c−τ−2K
√

λ2 A1−η2
√
Bλ

,

where d = ±
√

2c−2τ−4K+c2Kλ
√

λ2 A1−η2
√

λ
√

Kη2−Kλ2 A1
and n = 1.

Now, utilizing these computed values in Equation (34), we derive the following
solution for Equation (33):

Y(φ) = ±
√

c−τ−2K√
B
√

λ

√
λ

l1cos(φ
√

λ)−l2sin(φ
√

λ)
l1sin(φ

√
λ)+l2cos(φ

√
λ)+ η

λ

±
√

c−τ−2K
√

λ2 A1−η2
√
Bλ

1
l1sin(φ

√
λ)+l2cos(φ

√
λ)+ η

λ

,
(35)

where φ = cx + dy + 2(c + d)Kt.
Returning to its original form with the aid of Equation (12), we obtain the follow-

ing equation:

M(x, y, t) = eiθ

{
±

√
c−τ−2K√

B
l1cos(φ

√
λ)−l2sin(φ

√
λ)

l1sin(φ
√

λ)+l2cos(φ
√

λ)+ η
λ

±

√
c−τ−2K

√
λ2 A1−η2

√
Bλ

1
l1sin(φ

√
λ)+l2cos(φ

√
λ)+ η

λ

}
,

(36)

where φ = cx + dy + 2(c + d)Kt and θ = x + y + νt + σ0.
When l2 is confirmed to be non-zero and both η and l1 are set to zero, Equation (36)

takes on the form of the following soliton solution:

M(x, y, t) = eiθ

{
±
√

c − τ − 2K√
B

tan
(

φ
√

λ
)
±

√
c − τ − 2K√

B
sec
(

φ
√

λ
)}

, (37)

where φ = cx + dy + 2(c + d)Kt and θ = x + y + νt + σ0.
When l1 is confirmed to be non-zero and both η and l2 are set to zero, Equation (36)

takes on the form of the following soliton solution:
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M(x, y, t) = eiθ

{
±
√

c − τ − 2K√
B

cot
(

φ
√

λ
)
±

√
c − τ − 2K√

B
cosec

(
φ
√

λ
)}

, (38)

where φ = cx + dy + 2(c + d)Kt and θ = x + y + νt + σ0.
Scenario II. When λ < 0 (For hyperbolic)
The obtained coefficients for this case are as follows:

a0 = 0
a1 = ±

√
τ+2K−c√
B
√
−λ

b1 = ±
√

τ+2K−c
√

λ2A2+η2
√
Bλ

,

where d = ±
√

2c−2τ−4K+c2Kλ
√

λ2 A1+η2
√
−λ

√
Kη2+Kλ2 A2

and n = 1.

Now, incorporating these calculated values into Equation (34), we derive the following
solution for Equation (33):

Y(φ) = ±
√

τ+2K−c√
B
√
−λ

√
−λ

l1cosh(φ
√
−λ)+l2sinh(φ

√
−λ)

l1sinh(φ
√
−λ)+l2cosh(φ

√
−λ)+ η

λ

±
√

τ+2K−c
√

λ2 A2+η2
√
Bλ

1
l1sinh(φ

√
−λ)+l2cosh(φ

√
−λ)+ η

λ

,
(39)

where φ = cx + dy + 2(c + d)Kt.
Returning to its original form with the aid of Equation (12), we obtain the follow-

ing equation:

M(x, y, t) = eiθ

{
±

√
τ+2K−c√

B
l1cosh(φ

√
−λ)+l2sinh(φ

√
−λ)

l1sinh(φ
√
−λ)+l2cosh(φ

√
−λ)+ η

λ

±

√
τ+2K−c

√
λ2 A2+η2

√
Bλ

1
l1sinh(φ

√
−λ)+l2cosh(φ

√
−λ)+ η

λ

}
,

(40)

where φ = cx + dy + 2(c + d)Kt and θ = x + y + νt + σ0.
When l1 is confirmed to be non-zero and both η and l2 are set to zero, Equation (40)

takes on the form of the following soliton solution:

M(x, y, t) = eiθ

{
±
√

τ + 2K − c√
B

coth
(
φ
√
−λ
)
±

√
τ + 2K − c√

B
cosech

(
φ
√
−λ
)}

, (41)

where φ = cx + dy + 2(c + d)Kt and θ = x + y + νt + σ0.
Scenario III. If λ = 0 (For rational)
The obtained coefficients for this case are as follows:

a0 = 0

a1 = ±
√

c2+d2
√

τ−c
√

1+n
2
√

2n
√
B

b1 = ±
√

c2+d2
√

τ−c
√

l21−2l2η

2
√

2n
√
B

,

where K = c−τ
2 .

Now, using these calculated values in Equation (34), we obtain the following solution
for Equation (33):

Y(φ) = ±
√

c2 + d2
√

τ − c
√

1 + n
2
√

2n
√
B

2ηφ + l1
η
2 φ2 + l1 φ + l2

±

√
c2 + d2

√
τ − c

√
l2
1 − 2l2η

2
√

2n
√
B

1
η
2 φ2 + l1 φ + l2

, (42)
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where φ = cx + dy + 2(c + d)Kt.
Plugging in the transformation variables outlined in Equation (12) into the given

equation produces the following comprehensive solution for Equation (1):

M(x, y, t) = eiθ

{
±

√
c2+d2

√
τ−c

√
1+n

2
√

2n
√
B

2ηφ+l1
η
2 φ2+l1 φ+l2

±

√
c2+d2

√
τ−c

√
l2
1−2l2η

2
√

2n
√
B

1
η
2 φ2+l1 φ+l2

} 1
n

,

(43)

where φ = cx + dy + 2(c + d)Kt and θ = x + y + νt + σ0.
Setting both η and l2 to zero, while ensuring l1 is non-zero, Equation (30) simplifies to

yield the soliton solution in the following manner:

M(x, y, t) = eiθ

{
±
√

c2 + d2
√

τ − c
√

1 + n
2
√

2n
√
B

1
φ
±

√
c2 + d2

√
τ − c

2
√

2n
√
B

1
φ

}
,

1
n

(44)

where φ = cx + dy + 2(c + d)Kt and θ = x + y + νt + σ0.

5. Graphs and Meanings

Harnessing the power of Mathematica, an advanced mathematical computing tool,
we explored the intricate graphical patterns shown by the BME with Kerr law nonlinearity
and BME with Power law nonlinearity. Our presentation encompasses a variety of visual
representations, including 3D renderings, 2D graphical displays, and contour plots. These
visualizations cover a broad range of parameter values for each relevant variable, allowing
us to gain a thorough insight into the graphical behavior of these nonlinear equations
across diverse parameter space.

To ensure clarity and conciseness, we opted for three representative solution sets
for each case (BME with Kerr law nonlinearity and BME with power law nonlinearity)
from our comprehensive results for visual representation, standardizing only three graphs,
including 3D renderings, 2D graphical displays, and contour plots, for each nonlinearity.
The specific constants linked to each graph are detailed in the corresponding figure captions.
In 2D graphs, we consolidated multiple solutions within a single figure by varying the
parameter t.

5.1. Visualization of the BME with Kerr Law Nonlinearity

The depiction in Figure 1, originating from Equation (25), vividly captures the essence
of periodic bright solitons. These solitons, known for their periodic behavior and stable
propagation, hold immense utility across various domains such as optical communications,
nonlinear optics, and fiber optics. Their unique ability to convey information over extended
distances without distortion is highly advantageous. Moreover, they serve as invaluable
tools for studying wave dynamics and nonlinear phenomena, shedding light on the intricate
behavior of light pulses within optical fibers and other waveguides.

The image portrayed in Figure 2, stemming from Equation (28), vividly illustrates the
essence of kink-type solitons with singular characteristics. These solitons are recognized by
their localized wave packets with a kink-shaped profile, showcasing distinctive behavior
during optical fiber propagation. Renowned for their singular attributes, they hold sig-
nificance across diverse optical fiber applications, spanning signal processing, nonlinear
optics, and optical communications. Their exceptional features make them invaluable
for enhancing the stability and efficiency of optical signal manipulation and transmission
within fiber optic networks.
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Figure 1. Graphs of the solution |ℳ(𝑥, 𝑦, 𝑡)|of Equation (25) for 𝜆 = 1.95, Κ = −3.05, ℬ = 2.6, 𝜂 =2.9, 𝑐 = 0.2, 𝑑 = 0.2,  𝑙ଵ = 1.2  and 𝑙ଶ = 0.75 : (a) A three-dimensional visualization showcasing the 
periodic bright soliton, (b) a two-dimensional visualization showcasing the periodic bright soliton, 
and (c) a contour depiction of periodic bright soliton. 

Figure 1. Graphs of the solution |M(x, y, t)| of Equation (25) for λ = 1.95, K = −3.05, B = 2.6,
η = 2.9, c = 0.2, d = 0.2, l1 = 1.2 and l2 = 0.75: (a) A three-dimensional visualization showcasing
the periodic bright soliton, (b) a two-dimensional visualization showcasing the periodic bright soliton,
and (c) a contour depiction of periodic bright soliton.
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Figure 3, originating from Equation (30), showcases dark-type solitons. These soli-
tons, characterized by localized waveforms with reduced intensities, are essential for var-
ious optical communication tasks such as signal amplification, pulse compression, and 
signal regeneration within fiber optic networks. Their unique ability to keep waveform 
integrity during propagation through optical fibers ensures reliable and efficient data 
transmission over long distances in optical communication systems. Geometrically, a dark 
soliton is a depressed section within a wave, where the amplitude falls below the neigh-
boring crests, creating a noticeable trough. This imagery mirrors a dim, less intense area 

Figure 2. Graphs of the solution |M(x, y, t)| of Equation (28) for λ = −5.5, K = −0.05, B = 3.35,
η = 0.2, c = 0.2, d = 0.2, l1 = 0.1 and l2 = −3.41: (a) A 3D depiction of kink-type soliton
solution, (b) a 2D illustration of kink-type soliton solution, and (c) a contour portrayal of kink-type
soliton solution.
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Figure 3, originating from Equation (30), showcases dark-type solitons. These solitons,
characterized by localized waveforms with reduced intensities, are essential for various
optical communication tasks such as signal amplification, pulse compression, and signal
regeneration within fiber optic networks. Their unique ability to keep waveform integrity
during propagation through optical fibers ensures reliable and efficient data transmission
over long distances in optical communication systems. Geometrically, a dark soliton is a
depressed section within a wave, where the amplitude falls below the neighboring crests,
creating a noticeable trough. This imagery mirrors a dim, less intense area amid the brighter
wave peaks, showcasing the soliton’s unique trait of maintaining its shape and conserving
energy while moving through the medium.
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Figure 3. Graphs of the solution |M(x, y, t)| of Equation (30) for K = 0.25, B = 1.1, η = −5.02,
c = −0.01, d = −5.1, l1 = 0.5 and l2 = 0.02: (a) A 3D representation of dark-type soliton, (b) a 2D
representation of dark-type soliton, and (c) a contour representation of dark-type soliton.

5.2. Sensitivity Analysis

Sensitivity analysis involves scrutinizing how variations in input parameters impact
the output of a model or system within a localized region of the parameter space. In recent
studies, researchers [54,55] have utilized this analysis to explore how adjustments in input
parameters influence the output of NLEs. In this section, we conduct a local sensitivity



Mathematics 2024, 12, 1585 13 of 19

analysis of our derived solution for each scenario (for λ = 0, λ < 0, and λ > 0). Figure 4a
illustrates the sensitivity of each parameter in Equation (25) for Scenario I. We note that
parameters (λ, c, d, l1, K) show negative sensitivity, whereas λ demonstrates notably high
negative sensitivity. On the other hand, the remaining parameters (B, η, l2) exhibit positive
sensitivity, although not as pronounced as λ. Additionally, it is apparent that l2 exhibits
almost negligible sensitivity compared to others. For Scenario II (λ < 0), the results remain
largely consistent, with one notable difference: the parameter K shows slightly higher
sensitivity compared to λ, as depicted in Figure 4b. In the case of a rational solution (λ = 0),
the most sensitive parameters are c and τ, but they exhibit opposite directions of sensitivity,
whereas other parameters are nearly negligible, as illustrated in Figure 4c.
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5.3. The Graphical Representation of the BME with Power Law Nonlinearity

Figure 5, originating from Equation (38), depicts a singular soliton type. This variant
of solitons within optical fibers enables the transmission of information over extensive dis-
tances with minimal distortion, representing notable advancements in telecommunications
and optical signal processing. Renowned for their ability to preserve shape and velocity
during propagation, these solitary waves play a critical role in elevating data transmission
rates and mitigating signal degradation in fiber optic communication systems.
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The anti-kink soliton solution, derived from Equation (40) and depicted in Figure 6, is
vital in optical fibers. It effectively counters kinks or distortions, preserving signal integrity
and ensuring reliable long-distance communication. This is crucial in high-speed networks
and fiber optic systems where signal degradation is detrimental. Additionally, anti-kink
solitons enhance overall efficiency and stability, supporting the advancement of optical
fiber-based technologies and high-capacity data transmission networks.
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The anti-kink soliton solution, derived from Equation (40) and depicted in Figure 6, 
is vital in optical fibers. It effectively counters kinks or distortions, preserving signal in-
tegrity and ensuring reliable long-distance communication. This is crucial in high-speed 
networks and fiber optic systems where signal degradation is detrimental. Additionally, 
anti-kink solitons enhance overall efficiency and stability, supporting the advancement of 
optical fiber-based technologies and high-capacity data transmission networks. 

Figure 5. Graphical representations of the solutions |M(x, y, t)| of Equation (38) for λ = 1.2,
K = −1.05, B = 1.5, c = 0.3, d = −2.2, τ = 0.1, l1 = 0.2 and l2 = −0.75: (a) A 3D depic-
tion of singular soliton, (b) a 2D depiction of singular soliton, and (c) contour interpretation of
singular soliton.

The solution derived from Equation (43) and illustrated in Figure 7 is of the hyperbolic
type. Within optical fibers, this type of solution ensures stable signal transmission by
preserving shape and velocity, minimizing distortion across long distances. Offering high
energy and bandwidth, hyperbolic solutions facilitate efficient signal amplification and
support high-capacity data transmission. Their robust characteristics enable extended
transmission distances and improved signal quality. Moreover, hyperbolic solitons enable
nonlinear effects such as soliton self-frequency shifting and supercontinuum generation,
broadening their applications in nonlinear optics and photonics. Overall, they significantly
elevate the performance and capabilities of optical fiber communication networks.
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Figure 6. Graphs of the solution |M(x, y, t)| of Equation (40) for λ = −1.2, K = 1.05, B = 1.5,
η = 3.92, τ = 0.1, c = 0.3, d = 2.2, l1 = 0.2 and l2 = −0.75: (a) A 3D depiction of anti-kink soliton,
(b) a 2D illustration of anti-kink soliton, and (c) contour demonstration of anti-kink soliton.
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Figure 7. Graphical representations of the solutions |M(x, y, t)| of Equation (43) for K = −0.02,
B = 1.1, τ = 0.1, n = 1, η = −0.2, c = −0.2, d = −0.04, l1 = 5.0 and l2 = 0.2: (a) A 3D depiction
of dark soliton (b) A 2D illustration of dark soliton and (c) Contour demonstration of dark soliton.

5.4. Sensitivity Analysis

Similarly, we performed a sensitivity analysis on our derived solution for each scenario
of λ = 0, λ < 0, and λ > 0 for the power law nonlinearity of BME. In Figure 8a, we depict
the sensitivity of each parameter in Equation (36) for Scenario I. Notably, parameters
(λ, c, d, η, τ, K) display negative sensitivity, with λ showing particularly high negative
sensitivity. Conversely, the remaining parameters (B, l1, l2) exhibit positive sensitivity,
albeit not as pronounced as λ. Moreover, l1 demonstrates almost negligible sensitivity
compared to others. For Scenario II (λ < 0), the results remain largely consistent, with a
notable difference: the parameter c, d shows positive sensitivity, as depicted in Figure 8b.
In the case of a rational solution (λ = 0), the most sensitive parameters are c and τ, but they
exhibit opposite directions of sensitivity, whereas other parameters are nearly negligible, as
illustrated in Figure 8c, which is similar to the Kerr law nonlinearity of BME sensitivity.
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6. Conclusions

The (G′/G, 1/G) method was applied, and several precise optical soliton solutions
were obtained for the Kerr and power law nonlinearities of BME. We used an analytical
approach to generate several types of nonlinear wave patterns inside these nonlinearities,
and different exact solutions in rational, hyperbolic, and trigonometric forms were revealed.
Additionally, a sensitivity analysis was conducted to identify parameters that were more
sensitive in both the negative and positive senses. The analysis underscores the profound
influence of parameters λ, τ, c, B, and K on the precise solutions derived across both Kerr
law and power law nonlinearities within the context of BME. Notably, parameter λ emerges
as particularly critical across all scenarios, exhibiting heightened sensitivity. Moreover,
parameters τ and c demonstrate heightened sensitivity specifically within scenario III.
These findings underscore the pivotal role of these parameters in shaping the outcomes of
the studied phenomena, offering valuable insights into the nuanced interplay of resultant
solutions. Validation through Mathematica software 14 ensured precision, while dynamic
visual representations illustrated soliton solutions exhibiting different patterns, including
bright solitons, dark solitons, singular solitons, king solitons, anti-kink, and parabolic types.
These soliton solutions offer advantages such as energy localization, propagation stability,
predictable interactions, precision in optical switching, applications in waveguide design,
exploration of nonlinear optical effects, imaging precision, reduced intensity fluctuations,
and suitability for optical signal processing in optical physics. The outcomes of this study
are novel and hold promise for various forms of BME and related research in optical
physics. Moreover, the demonstrated effectiveness and robustness of the applied method in
obtaining diverse solitons within different forms of BME further underscore its significance.
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