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Abstract: This work proposes an innovative approach to enhance the localization of unmanned
aerial vehicles (UAVs) in dynamic environments. The methodology integrates a sophisticated object-
tracking algorithm to augment the established simultaneous localization and mapping (ORB-SLAM)
framework, utilizing only a monocular camera setup. Moving objects are detected by harnessing
the power of YOLOv4, and a specialized Kalman filter is employed for tracking. The algorithm
is integrated into the ORB-SLAM framework to improve UAV pose estimation by correcting the
impact of moving elements and effectively removing features connected to dynamic elements from
the ORB-SLAM process. Finally, the results obtained are recorded using the TUM RGB-D dataset.
The results demonstrate that the proposed algorithm can effectively enhance the accuracy of pose
estimation and exhibits high accuracy and robustness in real dynamic scenes.
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1. Introduction

In recent years, unmanned aerial vehicles (UAVs), commonly known as drones, have
undergone significant advancements due to technological breakthroughs that have en-
hanced their design and functionality. This evolution has expanded their practical ap-
plications across various sectors, significantly improving their operational efficiency and
capabilities. In agriculture [1], UAVs are indispensable for precise crop mapping, real-time
harvest analyses, and early pest detection, leading to better crop management strategies.
In search and rescue operations [2], drones quickly cover large areas, locate distressed
individuals, and provide crucial information in disaster-stricken areas. The military sector
benefits from UAVs through advanced reconnaissance and immediate intelligence [3], revo-
lutionizing modern warfare and strategy. At the same time, in environmental conservation,
they respond swiftly to forest fires, conduct air quality studies, and track wildlife [4].

Commercially, UAVs have transformed business methodologies by offering a safer,
more cost-effective alternative to manned aerial data collection [5] compatible with diverse
payloads like high-resolution cameras and sensor arrays. This adaptability hints at fu-
ture developments such as enhanced autonomous navigation and sophisticated delivery
systems. Additionally, UAVs are becoming crucial to urban development, promising to
improve traffic management, urban planning, and public safety in Smart Cities [6–8]. They
are also set to revolutionize the transportation industry by introducing drone taxis and
automated delivery services [9], indicating a significant shift in urban mobility and logistics.
Regulatory bodies are changing policies to balance the benefits of UAVs against privacy
and security concerns, ensuring their smooth and beneficial integration into society.
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However, as with any emerging technology, UAVs face challenges in maintaining
precision and dependability while performing autonomous tasks in real-world settings,
particularly in regions with weak or nonexistent GPS signals. One methodology involves
the application of SLAM, which leverages optical data to discern features, thereby enabling
the real-time determination of a UAV’s trajectory and spatial orientation while simulta-
neously facilitating the generation of a navigational map [10]. A supplementary strategy
integrates visual sensing with laser and/or inertial measurement units to enhance loca-
tional accuracy [11]. Additionally, deploying GNSS-augmented LiDAR systems offers a
robust alternative via the augmentation of positional data with high-fidelity topographical
information [12]. Another approach merges the functionalities of optical sensors with
LiDAR technology, capitalizing on the complementary strengths of both systems to refine
navigational precision [13]. However, these techniques, which use multiple sensors, can
become costly and cumbersome when used in applications like low-cost drones or in
scenarios such as city surveillance in which weight restrictions are imposed. They pose
challenges as they are sometimes memory-intensive and time-consuming, requiring more
powerful processing to run in real time.

In response to these challenges, efforts have been made to explore alternative naviga-
tion techniques, such as visual SLAM (VSLAM), that are used only on sensor monocular
cameras. Most visual SLAM systems are designed to operate in static environments, leading
to error accumulation when environmental changes occur. This reduces the accuracy and
reliability of these systems. Recent advancements in machine learning [14] have spurred
the development of new visual SLAM approaches that incorporate deep learning to ad-
dress these dynamic issues. Notably, SLAM methods now increasingly incorporate object
detection algorithms such as YOLO to identify dynamic objects within a scene.

Using YOLO for object detection helps create precise and real-time tracking systems
by accurately identifying and categorizing dynamic elements in an environment. This is
particularly effective in environments in which the contours of dynamic objects are usually
clear and distinct from static backgrounds. This clarity aids in refining the detection outlines
of dynamic objects, enhancing the overall performance of the SLAM system. Moreover,
its robustness in varying lighting and weather conditions enhances its utility in outdoor
applications. However, challenges persist due to the limited diversity of recognizable
objects and the size of the training dataset. These limitations can result in incomplete
coverage of dynamic objects, thereby reducing the number of dynamic objects detected
in scenes. Consequently, these objects may not be accurately filtered out of the SLAM
process, thereby affecting the correct estimation of the camera’s position and the mapping
of its surroundings.

To address the aforementioned issues and enhance the accuracy and robustness of
pose estimation in visual SLAM systems operating within dynamic indoor environments,
the primary contributions of the proposed method are outlined as follows:

(1) The capabilities of YOLOv4 are leveraged to accurately identify and classify various
objects in images or videos. Additionally, a specific Kalman filter that utilizes the
centroids of objects for enhanced tracking accuracy is integrated.

(2) An algorithm has been developed to selectively filter features associated with dy-
namic objects.

(3) These object detection and tracking models are integrated into the ORB-SLAM
process. This integration involves deleting feature information from dynamic objects
to prevent them from adversely affecting the SLAM performance. This approach
ensures that the system can more effectively navigate and map environments in
which object movement occurs using only a monocular camera.

In the following sections, existing studies pertinent to this challenge are examined, this
study’s approach is outlined, and the findings of this study are delved into. The technique
is applied to a widely recognized dataset to evaluate the extent of improvements made by
the proposed methods.
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2. Related Work

This section offers a concise summary of the research topics explored in this paper.
Firstly, monocular SLAM is explored in the context of its application to UAVs. This
part delves into the specifics of using monocular SLAM, discussing its development, its
application in UAVs, and how it differs from other SLAM techniques such as stereo or
LiDAR-based SLAM. Secondly, the integration of SLAM and object tracking for UAV
localization is examined. This discussion focuses on recent works demonstrating how
combining SLAM and object tracking can enhance UAV localization.

2.1. Monocular SLAM in UAVs

SLAM has been a focal point of research for many years and has recently sparked
increased interest due to its application in fields like autonomous vehicle navigation in
the automotive industry [15]. A number of methods can be used to create effective SLAM
based on the specific type of sensor utilized for position determination and environmental
mapping. The literature [16] presents solutions integrating visual (RGB) and inertial
sensors. However, significant interest remains in visual SLAM (vSLAM) approaches in
which either monocular or stereo cameras are employed in real time to concurrently map
the environment and pinpoint the camera’s location. In this paper, our focus is restricted
to monocular SLAM as it currently provides the most lightweight option suitable for
integration into small UAVs. This approach aligns with the objective to develop a low-cost
drone for surveillance missions. Additionally, the choice is influenced by the European
regulatory framework, which limits the weight of autonomous drones to 900 g, particularly
for UAVs operating near people [17]. Within the field of visual monocular SLAM, there
are two leading state-of-the-art methodologies as feature-based and direct techniques.
Feature-based methods, exemplified by algorithms like ORB-SLAM, as mentioned in
Reference [18], focus on extracting feature details from each image frame, such as blobs and
corners. These features are then used to achieve mapping and localization by tracking their
positions across successive frames. An example of a high-speed algorithm in this category
is provided by Artal et al. [10].

Conversely, direct methods adopt an alternative strategy, as detailed in Reference [19].
A prominent example of this is the Large-Scale Direct SLAM (LSD-SLAM) method [20].
Unlike feature-based methods, direct methods use the entire dataset in an image, compare
complete images to reference them, and use image intensities to obtain information about
the location and map [21]. This comprehensive data usage provides direct methods higher
levels of robustness and accuracy. However, this comes at the cost of an increased com-
putational demand, especially when compared to the efficiency of feature-based methods
like ORB-SLAM. There are also combined techniques; for example, semi-direct SLAM is
combined with feature-based SLAM [22].

2.2. Dynamic SLAM

In the field of UAV localization, SLAM is of paramount importance, especially in
dynamic environments in which the behavior of moving objects presents significant chal-
lenges [23]. Dynamic objects, which are characterized by their unpredictable motion and
changing appearances, complicate the task of accurate navigation and mapping. To address
these complexities, the integration of object tracking with SLAM has emerged as an effective
solution [24] . This combination enhances the ability of UAVs to accurately perceive and
navigate their surroundings by continuously adapting to changes in the environment, thus
ensuring more reliable and precise localization in various operational contexts.

In this scenario, the research presented in [25] unveils an innovative mapping tech-
nique that integrates the ORB-SLAM2 algorithm with the YOLOv5 (You Only Look Once)
network. The function of the YOLOv5 network is to identify dynamic objects in each
frame of a video followed by the exclusion of dynamic feature points, with the aim of
improving the precision and dependability of the SLAM procedure. This method marks
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a substantial progression in tackling the difficulties associated with dynamic settings in
UAV localization.

Meanwhile, Ref. [26] details a novel approach to SLAM in dynamic environments that
utilizes a machine learning algorithm for tracking moving objects. This research employs
a blend of LiDAR and camera sensors to determine the presence of objects and obtain
depth data in real time. It introduces an inventive variation of the RANSAC methodology,
known as multilevel RANSAC (ML-RANSAC), which is incorporated into an extended
Kalman filter (EKF) setup for tracking multiple targets (MTT). The extended Kalman filter
incorporates the robot’s model for improved tracking performance.

In [27], the DynaSLAM system is presented, which enhances tracking, mapping,
and inpainting in dynamically populated environments. This system merges dynamic ob-
ject detection with background inpainting within the ORB-SLAM framework, a renowned
visual SLAM architecture. Tailored for dynamic environments, it supports various camera
setups including monocular, stereo, and RGB-D configurations. DynaSLAM’s versatility
enables effective mapping and localization in environments undergoing significant changes.

Conversely, Ref. [28] presents a technique that combines the Visual–Inertial Navigation
System (VINS) with dynamic object detection to enhance the accuracy of autonomous
vehicles functioning in dynamic environments. The method employs the YOLOv5 network
for dynamic object recognition, disregards feature points within these objects’ vicinities,
and models GPS data as general factors to mitigate cumulative errors. The approach is
validated and demonstrates its efficacy in reducing the influence of moving objects and
accumulating navigational errors, thereby offering improved navigational guidance for
autonomous vehicles.

Reference [29] introduces Dynam-SLAM, a stereo visual–inertial SLAM system de-
signed to perform effectively in highly dynamic environments. It achieves this by identify-
ing and closely integrating dynamic and static features alongside an Inertial Measurement
Unit (IMU) for nonlinear optimization.

The authors of [30] present a technique that establishes a mutually beneficial rela-
tionship between SLAM (simultaneous localization and mapping) and object detection.
This technique incorporates deep learning-based object detection, effectively eliminating
features associated with dynamic objects. Through this approach, the suggested frame-
work empowers unmanned aerial vehicles (UAVs) to execute tasks adeptly in changing
surroundings. Furthermore, it bolsters the capabilities of object detection systems, making
them more proficient at handling demanding scenarios.

In Reference [31], the authors introduce an enhancement to visual odometry by lever-
aging the single-shot multibox detector (SSD) algorithm within dynamic settings, aiming
to refine in pose estimation caused by data derived from mobile objects. The methodology
integrates the SSD algorithm with optical flow methods to identify and eliminate dynamic
feature points. These adjustments are subsequently merged with ORB-SLAM2, enhancing
the precision of pose estimation.

Reference [32] presents a Distribution- and Local-based Random Sample Consensus
(DLRSAC) algorithm crafted for isolating static features within dynamic environments. This
is achieved by discerning inherent distinctions between moving and stationary elements.

3. Dynamic Object Tracking and Elimination

This research introduces a robust VSLAM algorithm tailored for UAV localization in
dynamic settings which is mindful of the existence of moving objects [33]. This methodol-
ogy is implemented using the ORB-SLAM algorithm, a monocular visual SLAM technique.
To ensure its efficacy in dynamic settings, ORB-SLAM [34] is augmented with a YOLO-
Kalman framework which merges YOLOv4, an object detection algorithm [35], with the
Kalman filter, thereby enhancing localization and mapping.

The structure of the proposed approach is depicted in Figure 1. The blue component
represents ORB-SLAM, while the orange component corresponds to the proposed object
detection and tracking module. This module is integrated with ORB-SLAM to address
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dynamic objects. This schematic representation aims to help visualize the workflow and
understand key steps in the ORB-SLAM process and the overall proposed methodology.

Figure 1. The flowchart for ORB-SLAM and object tracking using a Kalman filter.

ORB-SLAM is a prevalent algorithm for conducting SLAM in 3D settings through the
use of photographic sensors. It incorporates three main components: TRACKING, LOCAL
MAPPING, and LOOP CLOSING. These elements collaboratively facilitate the real-time
determination of a camera’s position, the creation of a local map, and the identification of
loops to maintain the global map’s consistency.

3.1. Camera Tracking

The camera tracking component is crucial in determining the camera’s position in
real time as it navigates through an environment. This involves initializing the camera’s
position, selecting key images, extracting and matching features between the key images
and the current image, estimating the camera’s position using the matches, and relocating
if tracking is lost. The aim is to continuously track the camera’s position and orientation as
accurately as possible.

3.2. Local Mapping

The local mapping component focuses on constructing a local map of the environment.
It performs a variety of tasks, such as triangulating 3D points using correspondences
between keyframes and the current image, eliminating redundant keyframes to optimize
computational efficiency, adjusting the beam locally to fine-tune camera poses and map
points, and updating the keyframe database to maintain a diverse set of keyframes for
robust tracking and loop closure. The local map represents a portion of the environment
around the camera’s trajectory.

3.3. Loop Closing

Loop closing is tasked with identifying and rectifying loop closures, situations in
which the camera revisits a location it has encountered before. Its main aim is to ensure
overall map consistency and reduce drift. Loop closure involves recognizing loop closure
candidates by comparing the current image with key images in the database, checking
loops for geometric consistency and appearance, performing a global bundle adjustment to
optimize the overall map, and updating the covisibility graph representing relationships
between key images to reflect newly detected loop closures. By closing loops, ORB-SLAM
can correct accumulated errors and obtain a more accurate, globally consistent map.

3.4. Detecting and Tracking Objects

Detecting and tracking are based on two components: YOLOv4 and the Kalman filter.
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YOLOv4is trained using the COCO (Common Objects in Context) dataset. This exten-
sive dataset is utilized for tasks such as object detection, segmentation, and captioning. It
encompasses more than 330,000 images with labels spread across more than 80 categories
of objects, establishing it as a frequently employed standard in the study of object detec-
tion. The YOLOv4 algorithm identifies objects within images and videos, delivering high
precision and rapid processing. It provides the coordinates for each object’s bounding box,
specifies its category, and evaluates the detection confidence level. The classification of
objects is crucial for recognizing and sorting moving objects that have been detected.

The Kalman filter is an algorithm that iteratively predicts a system’s state using noisy
measurements. In this context, it continuously tracks an object’s position, even when
measurements from the YOLO detector are unavailable. By integrating YOLOv4 with
the Kalman filter, a robust system capable of effectively detecting and tracking objects in
dynamic environments is created, complementing the ORB-SLAM algorithm.

Integrating deep learning technology and the Kalman tracking module within the
ORB-SLAM framework enables real-time object detection and the elimination of dynamic
objects. This configuration allows ORB-SLAM to monitor the camera’s motion and create a
map of its surroundings, even within changing environments.

To facilitate an understanding of VSLAM techniques, including ORB-SLAM and
the proposed VSLAM, refer to Figures 2–4. These figures present detailed flowcharts
illustrating simplified versions of the processes.

Figure 2. Visual simultaneous localization and mapping.

VSLAM is a technique that processes input from a singular camera to deliver outputs
as a 3D map and an estimate of the camera’s position, as depicted in Figure 2. The estimated
position of the camera is essential for navigation purposes, and the 3D map plays a key
role in comprehending the camera’s surroundings and identifying obstacles.

ORB-SLAM, as a VSLAM technique, employs the ORB (Oriented FAST and Rotated
BRIEF) feature detector to identify keypoints within a camera’s imagery, as illustrated in
Figure 3. ORB keypoints are pinpointed at unique image locations, including corners, edges,
and blobs. The result of ORB-SLAM is an environmental map alongside the estimated
location and orientation of the camera. This map is constructed from tracked keypoints
and their corresponding descriptors, which are refined through bundle adjustment. An es-
timation of the camera’s position and orientation is derived from this map in conjunction
with the camera’s movements.

Figure 3. ORB-SLAM.

In this research, ORB-SLAM is integrated with the method of detecting and tracking
(as illustrated in Figure 4) to address the challenge of localization drift induced by dynamic
objects. The YOLOv4 algorithm is applied alongside Kalman tracking modules for each
keyframe identified by ORB-SLAM. Whenever dynamic objects are detected, a matrix
operation is executed to remove the keypoints situated within the bounding boxes of these
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objects. This approach significantly improves localization accuracy by excluding the drift
caused by keypoints associated with dynamic objects while concurrently endeavoring to
preserve the fidelity of the environmental map.

Figure 4. Proposed SLAM.

Thanks to the capabilities of YOLOv4, as illustrated in Figure 5, a dynamic entity such
as a person is accurately identified. Following the detection of dynamic objects and their
bounding boxes, a movement model of the boxes is integrated with the Kalman filter to
track all identified objects. This strategy is known as the multi-object tracking method,
and further details can be found in [36]. Subsequently, this detection and tracking process is
combined with ORB features to pinpoint features within the predicted boxes, as depicted in
Figure 6. In the final step, algorithms are implemented to remove the keypoints associated
with unwanted dynamic objects, a process showcased in Figure 7.

Figure 5. Outcomes of dynamic object detection using YOLOv4 (adapted from [37]).

Figure 6. Outcomes of ORB feature function (adapted from [37]).
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Figure 7. Results of dynamic feature point (adapted from [37]).

Integrating visual SLAM with the YOLO-Kalman module offers an effective strategy
for rectifying inaccuracies introduced by dynamic objects within a real-world setting. In this
methodology, the integration of ORB-SLAM and the YOLO-Kalman framework delivers
precise and dependable assessments of the camera’s location and alignment alongside
environmental mapping, even in the presence of dynamic entities. By merging the outcomes
of YOLOv4 object detection with the visual SLAM framework, this approach can avoid any
discrepancies resulting from moving objects.

In the study, the TUM public datasets were utilized for analysis [37]. Figures 5–7 were
derived from this dataset. Modifications to the original data included object detection
using YOLOv4, outcomes of the ORB feature, and the results of dynamic features. These
alterations were made to highlight image features relevant to the research objectives.

3.5. Typical Kalman Filter

A widely adopted method for estimating parameters involves deploying an observer
that relies on a state space model. Such an estimator is capable of inferring unobservable
states within a system, as detailed in the referenced paper on state estimation [38]. By lever-
aging the known input and output signals of a system, it is possible to estimate its internal
states. The main goal is to use an estimator to either monitor states that cannot be directly
measured or to minimize uncertainties associated with real-world sensor data. Nonetheless,
the precision of these estimations hinges critically on the accuracy of the underlying model.

Initially, consider a tracking system in which the state vector xk represents the dynamic
characteristics of the object, with k signifying the temporal aspect of the discretized object
box model. In this context, the aim is to deduce xk based on observed measurements yk.

Consider the following equation that represents the model of the internal state:

xk|k−1 = Fxk−1 + uk (1)

In this context, F represents the transition matrix, while xk denotes the state transition-
ing from time k − 1 to k.

uk is a Gaussian distribution of a random variable N(.) characterized by an average
and a covariance. With a normal probability distribution, p(uk) is as follows:

p(uk) = N(0, Qk) (2)

The state of measurement yk from time k − 1 to k is defined as follows:

yk = Hxk + vk (3)

Here, H denotes the measurement matrix, and vk is the Gaussian distribution of a
random variable N(.) is characterized by an average and a covariance. With a normal
probability distribution, p(vk) is as follows:

p(vk) = N(0, Rk) (4)
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The estimation process is divided into two phases: the time-update equations and the
measurement-update equations. The notation xk|k−1 signifies the state x at time k based
on the data available up to time k − 1. The time-update equations are responsible for
predicting the estimated states (x̂k|k−1) and the estimated error covariance (Pk|k−1) for the
upcoming time step. The overall algorithm is described as follows:

x̂k|k−1 = Fx̂k−1 + uk (5)

Pk|k−1 = FPk−1FT + Qk (6)

The measurement-update equations serve to adjust the predicted estimated states and
error covariance from the time-update phase by comparing the estimated states against
actual measurements. These equations are outlined as follows:

Kk = Pk|k−1HT
k (HkPk HT

k + Rk)
−1 (7)

x̂k|k = x̂k|k−1 + Kk(yk − Hkx̂k|k−1) (8)

Pk|k = (I − Kk Hk)Pk|k−1 (9)

Here, Qk and Rk are positive definite matrices representing the covariances of process
noise and measurement noise, respectively. It is important to note that the process noise
and measurement noise in Kalman filters are assumed to be white Gaussian noise and
are independent from each other. This independence is a crucial prerequisite for the
estimator’s convergence.

3.6. Object Tracking Using Kalman Filter

For the purpose of identifying and monitoring moving objects recorded by a camera, it
is essential to examine their features, such as their positions, geometries, and centroids [39].
The camera employed in this research captures images at a rate of 30 frames per second
(30 fps), resulting in minimal changes between two consecutive frames for moving objects.
This allows us to consider the movement of the target object to be scontinuous over
adjacent frames.

To effectively describe a moving object, focus is placed on its centroid position and the
tracking window size. By using these features, a representation that accurately describes
the object’s motion can be created. Once moving objects have been identified through
learning methods, certain preparatory steps are required for tracking these objects.

A key step involves allocating a tracking window to every moving object within a
scene. To minimize the impact of excessive noise, the tracking window size is maintained
at a modest scale set slightly larger than the object’s image. This approach aids in diminish-
ing noise disturbances, improving image processing efficiency, and increasing the speed
of operation.

The Kalman filter applied in tracking is characterized by its states, the motion model,
and the equation matrix of measurements. The system state vector xk is eight-dimensional
and can be represented as follows:

xk = [x0,k, y0,k, lk, hk, vx,k, vy,k, vl,k, vh,k]
T (10)

Here, x0,k and y0,k denote the horizontal and vertical coordinates of the centroid, while
lk and hk indicate the half-width and half-height of the tracking window, respectively. vx,k,
vy,k, vl,k, and vh,k represent the respective velocities of these parameters.

The measurement vector of the system adopts the following:

yk = [x0,k, y0,k, lk, hk]
T (11)

In what follows, F represents the transition matrix and H denotes the measurement
matrix of our tracking system, accompanied by the Gaussian process uk and the measure-
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ment noise vk. The magnitudes of these noise values rely entirely on the characteristics of
the system under observation and are determined through empirical adjustments.

F =



1 0 0 0 △t 0 0 0
0 1 0 0 0 △t 0 0
0 0 1 0 0 0 △t 0
0 0 0 1 0 0 0 △t
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(12)

The observation matrix H can be defined as follows:

H =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

 (13)

Once the state and measurement equations of the motion model have been estab-
lished, the Kalman filter can be applied in the subsequent frame to predict the position
and dimensions of the object within a limited area, thereby obtaining the trajectories of
moving objects.

4. Results and Discussion

In this section, the outcomes from both the standard ORB-SLAM and the enhanced
ORB-SLAM integrated with YOLO methods are presented, and these results are com-
pared against those obtained from the proposed approach that combines ORB-SLAM and
YOLO-Kalman. For more detailed information regarding ORB-SLAM combined with
YOLO, please refer to previous work [40]. First, the results of the ORB-SLAM method in
comparison to the ORB-SLAM with YOLO-Kalman method are showcased, focusing on
the 3D and xyz axes. Second, a comparison of 2D trajectory results for both algorithms,
ORB-SLAM and ORB-SLAM with YOLO-Kalman, is provided. Finally, a table summarizing
the results for the ORB alone, ORB-SLAM with YOLO, and the proposed ORB-SLAM with
YOLO-Kalman methods is included.

TUM (Technical University of Munich) datasets designed for RGB-D SLAM systems
were utilized for algorithm assessment, as referenced in [37]. This database is extensively
employed in SLAM research and evaluation due to its provision of high-quality data ac-
companied by ground-truth poses crucial for appraising VSLAM algorithms. Essentially,
the TUM datasets encompass a variety of environments and scenarios, such as dynamic
environments, object SLAM, and suboptimal lighting conditions. With its collection of
indoor and outdoor scenes, both dynamic and static objects, and diverse lighting con-
ditions, the TUM database serves as a valuable tool for examining the performance of
SLAM algorithms across a range of situations. Finally, the TUM datasets are primar-
ily utilized within academic and research circles, facilitating the comparison of various
SLAM algorithms’ performances. They are also employed for assessing ORB-SLAM in
Matlab, which aligns with our objective of evaluating our work. While numerous databases
like KITTI [41] and EuRoC [42] are available for SLAM algorithm evaluation in research,
the TUM datasets are especially favored for their capability to assess SLAM performance in
dynamic environments. This preference is due to the datasets’ inclusion of sequences with
substantial dynamic object interactions in addition to their accuracy and broad adoption in
the research community.

Moreover, the choice to use the Matlab environment is driven by its high-level pro-
gramming language and interactive framework, which facilitate the rapid prototyping,
comparison, and visualization of complex algorithms and data. Matlab offers an interactive
suite of tools and functionalities tailored for the robotics community, including several
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specialized toolboxes like the Robotics System Toolbox and Mapping Toolbox. These
toolboxes are equipped with functions designed for managing robot sensors, kinematics,
and mapping tasks. This comprehensive toolset renders Matlab an ideal platform for
devising innovative approaches to addressing the complexities of VSLAM [43].

The evaluation primarily focused on the key feature of the ORB-SLAM and YOLO-
Kalman system, namely the removal of dynamic objects to correct trajectory drift, utilizing
real-time experiments on the public TUM dataset. It should be noted that map accuracy
was not assessed in this study. For the datasets, the TUM freiburg2-desk-with-person
sequence was selected, depicting a typical office setting with an individual sitting and
moving throughout the recording.

This particular sequence is well-suited for assessing the effectiveness of our ORB-
SLAM with YOLO-Kalman system in managing dynamic object removal and model correc-
tion. The video sequence lasts for 142.08 s, during which the camera covers a distance of
17.044 m, moving at an average velocity of 0.121 m per second.

The methodology for computing the improvement criterion η in terms of the RMSE is
depicted in Equation (14):

η =
RMSE of the ORB-SLAM − RMSE of the ORB-SLAM with YOLO-Kalman

RMSE of the ORB-SLAM
(14)

The method for calculating the RMSE is provided in Equation (15):

RMSE =

√
1
n

n

∑
i=1

|Ai − Fi|2, (15)

where Ai represents the set of points predicted by the ORB-SLAM algorithm, and Fi denotes
the set of points predicted by the ORB-SLAM with YOLO-Kalman enhancement.

The calculation method for the RMSE in the 3D position is given in Equation (16):

RMSE3Daxis =
RMSEXaxis + RMSEYaxis + RMSEZaxis

3
. (16)

In conclusion, this paper defines the deviation error as the maximum amplitude of the
absolute error.

Initially, the proposed method was evaluated against the original ORB-SLAM method,
demonstrating enhanced performance in accurately estimating the camera trajectory, even
in highly dynamic settings. In the subsequent results, the term “without YOLO-Kalman”
refers to the outcomes derived solely from the original ORB-SLAM.

Figure 8 depicts three distinct trajectories: the initial one represents the ground-truth
trajectory, the second is generated by ORB-SLAM, and the third shows the outcome of
implementing ORB-SLAM with the YOLO-Kalman algorithm. The recording appears to
have occurred within a 4-m range on the x-axis, a 1-m range on the y-axis, and a 2-m
range on the z-axis, all while rotating on a desktop table. Further analyses of the impact of
dynamic object removal on ORB-SLAM’s performance will be presented for each axis in
the subsequent results.

The data presented in Figure 9 illustrate the estimated positions and their correspond-
ing errors along the x-axis. From an analysis of the errors, a significant enhancement is
observed. The deviation error for the ORB-SLAM algorithm tops out at just over 30.18 cm,
while the ORB-SLAM algorithm integrated with YOLO-Kalman demonstrates a lower
maximum deviation error of 19.03 cm, showcasing an improvement compared to the
original ORB-SLAM.
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Figure 8. Three-dimensional trajectory outcomes: ORB-SLAM and enhanced ORB-SLAM with
YOLO-Kalman on the freiburg2-desk-with-person dataset.

Figure 9. Estimated positions and errors of ORB-SLAM and ORB-SLAM with YOLO-Kalman applied
on the x-axes.

Figure 10 presents the outcomes of the experiment focused on estimating positions and
errors along the y-axis. The results highlight a limitation in the ORB-SLAM with YOLO-
Kalman method’s precision in estimating the y-axis position. Nonetheless, the overall
conclusion demonstrates that despite this shortcoming, the integration of ORB-SLAM
with YOLO-Kalman results in a method that surpasses the performance of the original
ORB-SLAM in predicting 3D trajectories.
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Figure 10. Estimated positions and errors of ORB-SLAM and ORB-SLAM with YOLO-Kalman
applied on the y-axes.

Figure 11 displays the z-axis trajectory outcomes from our proposed VSLAM algo-
rithm in comparison with those from ORB-SLAM. The trajectory generated by our method
appears to closely match the actual camera trajectory. Regarding deviation error, the ORB-
SLAM algorithm’s maximum reaches just over 41.57 cm. In contrast, the ORB-SLAM
integrated with YOLO-Kalman shows a significantly lower maximum of 20.20 cm, indi-
cating an improvement over the original ORB-SLAM. This demonstrates that the error
in trajectory prediction by the proposed approach is considerably smaller compared to
ORB-SLAM, underscoring the superior quality of the trajectory prediction results achieved
by our proposed method.

Figure 11. Estimated positions and errors of ORB-SLAM and ORB-SLAM with YOLO-Kalman
applied on the z-axes.

Additionally, the keyframe count gives 273 with the YOLO-Kalman method; a keyframe
count of 254 shows the augmented number of keyframes found when using YOLO-
Kalman algorithms.

Figure 12 displays 2D plots from the ORB-SLAM method and the proposed methodol-
ogy with YOLO-Kalman for the dataset “freiburg2-desk-with-person”. It can be observed
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that the estimated trajectory obtained with the proposed method closely aligns with the real
trajectory compared to ORB-SLAM when moving along the y-axis in the right-hand section,
where x is greater than 1.5 m. However, a limitation becomes evident in the left-hand
section when x is less than 0.5, especially when traversing along both the x- and y-axes.

Figure 12. Two-dimensional trajectory outcomes: ORB-SLAM and enhanced ORB-SLAM with
YOLO-Kalman on the freiburg2-desk-with-person dataset.

After presenting the estimation results figures for the ORB-SLAM and ORB-SLAM with
YOLO-Kalman methods, the outcomes of ORB-SLAM integrated with YOLO are included in
the table below for a comprehensive comparison with the method employing YOLO-Kalman.

The integration of ORB-SLAM with YOLO, as explained in previous work, is a tech-
nique used to enhance VSLAM by eliminating features on dynamic objects, using only
YOLOv4 for object detection. However, this technique suffers from discontinuities in
object detection.

Table 1 presents the trajectory results of the proposed method integrating ORB-SLAM
the YOLO-Kalman algorithm compared against the results from the original ORB-SLAM
and ORB-SLAM enhanced with YOLO methods. In this table, the improvement criterion is
presented in relation to ORB-SLAM. ORB-SLAM with only object detection shows an im-
provement of 23.85% compared to 34.99% when using tracking methods. This highlights the
importance of addressing the weakness of ORB-SLAM with only YOLO, which comprises
in detecting objects that arise from relying solely on detection. The improvement criterion
in ORB-SLAM with YOLO-Kalman validates the choice of the YOLO-Kalman corrector.

The proposed algorithm outperforms others primarily because it operates within
the SLAM framework, where the camera-tracking step relies on features extracted by the
ORB algorithm. This algorithm does not differentiate between dynamic and static objects,
assuming the entire scene is static. This leads to the execution of the "local map tracking"
algorithm based on potentially inaccurate feature measurements from a mistakenly as-
sumed static scene despite the presence of dynamic objects, which makes the environment
dynamic. An incorrect tracking estimation influenced by dynamic objects can result. To ad-
dress this, the algorithm is designed to detect and track objects in real time, effectively
eliminating features associated with dynamic objects and reducing the uncertainty these
objects introduce in the camera-tracking phase.
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Table 1. Comparative results: proposed ORB-SLAM with YOLO-Kalman method vs. original
ORB-SLAM and ORB-SLAM with YOLO methods.

RMSE (m) Improvement Criterion

ORB-SLAM ORB-SLAM with
YOLO [40]

ORB-SLAM with
YOLO-Kalman

ORB-SLAM with
YOLO [40]

ORB-SLAM with
YOLO-Kalman

RMSE of x-axis 0.11 0.09 0.09 21.18% 19.12%
RMSE of y-axis 0.06 0.08 0.08 −29.03% −19.52%
RMSE of z-axis 0.17 0.09 0.06 45.81% 66.38%

RMSE of 3D-axis 0.12 0.09 0.07 23.85% 34.99%

Furthermore, considering all the results discussed in this article, which demonstrate
the enhancement of the ORB-SLAM algorithm for drone localization in a dynamic environ-
ment, it is noteworthy that there is a loss of precision along the y-axis. This underscores
the neeed for further investigation to refine the results and explore the feasibility of inte-
grating the algorithm for dynamic object elimination with other SLAM algorithms. Future
work could also benefit from considering advanced detection techniques, such as object
elimination and inpainting methods, to further enhance accuracy.

5. Conclusions

This paper addresses the challenge of dynamic objects in visual simultaneous localiza-
tion and mapping (SLAM). To tackle this challenge, the Kalman filter was incorporated to
track multiple dynamic objects, assisting the YOLOv4 detector in handling object disconti-
nuities and optimizing keyframe deletion. These efforts significantly enhanced monocular
SLAM performance, utilizing a cost-effective vision sensor and reducing the influence of
dynamic objects in real-time settings.

Future research could explore the feasibility of integrating this dynamic object elimina-
tion algorithm with other SLAM algorithms. Additionally, considering advanced detection
techniques, such as object elimination and inpainting methods, could further improve the
overall system.

The proposed detection and tracking model shows great potential for future appli-
cations, particularly in UAV-based surveillance. Implementing this model in real-world
scenarios can enhance UAV systems’ navigation accuracy and their ability to detect and
track suspicious objects. This integrated approach not only ensures precise position estima-
tion for UAVs but also provides a valuable module for continuous surveillance missions.
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The following abbreviations are used in this manuscript:

UAV unmanned aerial vehicle
IMU inertial measurement unit
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LiDAR laser imaging, detection, and ranging
SLAM simultaneous localization and mapping
MTT multi-target tracking
EKF extended Kalman filter
SSD single-shot multibox detector
RMSE root-mean-square error
YOLO You Only Look Once
ORB oriented fAST and rotated brief
GNSS global navigation satellite system
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