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Abstract: This research explores the application of metaheuristic algorithms to refine parameter
estimation in dynamic systems, with a focus on the inverted pendulum model. Three optimiza-
tion techniques, Particle Swarm Optimization (PSO), Continuous Genetic Algorithm (CGA), and
Salp Swarm Algorithm (SSA), are introduced to solve this problem. Through a thorough statisti-
cal evaluation, the optimal performance of each technique within the dynamic methodology is
determined. Furthermore, the efficacy of these algorithms is demonstrated through experimental
validation on a real prototype, providing practical insights into their performance. The outcomes
of this study contribute to the advancement of control strategies by integrating precisely estimated
physical parameters into various control algorithms, including PID controllers, fuzzy logic controllers,
and model predictive controllers. Each algorithm ran 1000 times, and the SSA algorithm achieved the
best performance, with the most accurate parameter estimation with a minimum error of 0.015 01 N m
and a mean solution error of 0.015 06 N m. This precision was further underscored by its lowest
standard deviation in RMSE (1.443 99 × 10−6 N m), indicating remarkable consistency across eval-
uations. The 95% confidence interval for error corroborated the algorithm’s reliability in deriving
optimal solutions.

Keywords: parameter estimation; metaheuristic algorithms; dynamic model; inverted pendulum;
particle swarm optimization; continuous genetic algorithm; salp swarm algorithm

MSC: 68T20

1. Introduction

The inverted pendulum symbolizes the equilibrium between stability and instability
within control systems. It finds real-world uses in robotics, transportation, and automa-
tion industries [1]. However, effectively managing inverted pendulum systems entails
gauging their characteristics, a task made difficult by their intricate and nonlinear nature.
Conventional approaches to parameter estimation may not always yield results [2].

1.1. Metaheuristic Algorithms

Over the years, these algorithms have emerged to address this problem. Inspired
by phenomena and social dynamics, these algorithms offer search methods that cover
solution spaces. Through applying optimization principles, metaheuristic algorithms
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support parameter estimation for managing inverted pendulums, leading to stability,
robustness, and effectiveness. Exploring the domain of algorithms for parameter estimation
in controlling inverted pendulums requires a combination of control theory, optimization
tactics, and computational intelligence [3].

Different kinds of algorithms can be found that are centered on the optimization of
mechanical and engineering design problems. Due to the nature of these types of prob-
lems, which are nonlinear non-convex mathematical models, the main kinds of algorithms
used are the metaheuristic techniques such as the particle swarm optimization (PSO) [4],
genetic algorithm (GA) [5], and salp swarm algorithms (SSA) [6], among others. For in-
stance, the work developed by Moraes et al. uses an enhanced PSO algorithm for parameter
estimation of water in oil emulsification in a duct. The methodology implemented can
obtain good-quality solutions, where the objective function describes multiple variables
in a non-convex mathematical model—showing the PSO as an efficient tool [7]. Other
works, in which the PSO was used, have been carried out by Liu et al. [4], where the
authors present a novel variation of the PSO using the Chebyshev functions to improve
the algorithm’s efficiency. The PSO was tested with EC2017 and CEC2022 benchmark func-
tions, where the objective is the dynamic parameter estimation of different mathematical
problems related to control operations. Additionally, Rodriguez et al. implemented a CGA
algorithm to minimize the weight of a drive shaft, solving the mathematical model of the
nonlinear nonconvex type [8]. On the other hand, Ab Wahab et al. implemented a CGA
algorithm for mobile robot global route planning, where the authors developed a set of
constrictions related to blockages in the routes to allow the algorithm to find the optimal
path for each route [9].

1.2. Applications and Challenges in Control Systems

Inverted pendulum systems find applications across automotive, aerospace, man-
ufacturing, and robotics sectors. Within the field of robotics, these systems play roles
in navigation, manipulation, and surveillance tasks. Utilizing the dynamics of inverted
pendulums, mobile robots and humanoid platforms can attain agility, maneuverability,
and adaptability when operating in environments [10]. Inverted pendulum control sys-
tems are pivotal in maintaining vehicle stability, ensuring safe navigation, and improving
overall performance and safety in autonomous vehicles, especially in challenging ter-
rains or adverse weather conditions. Accurate parameter estimation techniques such as
mass distribution, moment of inertia, and friction coefficients enable precise control and
trajectory tracking [11]. In industrial automation, inverted pendulum systems optimize the
operation of conveyor belts, robotic arms, and other automated machinery to improve effi-
ciency, throughput, and reliability in production processes [12]. The aerospace industry also
utilizes this type of control system in designing and operating unmanned aerial vehicles
(UAVs) and spacecraft, enhancing UAVs’ maneuverability, stability, and payload capacity
for tasks such as surveillance, reconnaissance, and aerial photography. In rehabilitation
robotics, inverted pendulum-based systems assist individuals with mobility impairments
or neurological disorders. By providing dynamic balance support and gait assistance, these
systems aid in rehabilitation therapy, helping patients regain mobility, improve their motor
control, and enhance their overall quality of life. Accurate parameter estimation is crucial
for achieving optimal performance and functionality across diverse applications of inverted
pendulum systems [13,14].

1.3. Relevance of Torque Prediction in Mechanical Systems

Torque is a fundamental parameter in determining a mechanical system’s dynamic
behavior and stability. An accurate understanding of torque through dynamic modeling is
essential for developing effective control strategies. An inadequate torque prediction can
compromise a system’s efficiency, reliability, and safety. Therefore, dynamic modeling en-
ables engineers to understand how a system responds to external inputs and disturbances.
Accurately predicting the torque on mechanical systems is extremely important in control
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engineering. This prediction significantly affects the control system’s design, operation, and
performance in various applications [15]. However, without precise torque predictions, the
dynamic model may mischaracterize the system’s behavior, leading to ineffective control
strategies. Control algorithms such as PID (Proportional–Integral–Derivative) controllers,
model predictive controllers, and adaptive control schemes rely heavily on accurate torque
predictions [16]. These predictions help generate control actions that stabilize the system
and achieve the desired performance objectives. Estimating the torque allows controllers to
efficiently manage the system performance, adjusting for disruptions and uncertainties as they
occur. This involves reducing energy usage, lessening strain, and optimizing effectiveness [17].
Engineers can optimize control strategies by accurately estimating the torque, ensuring the sys-
tem operates safely while attaining the desired performance metrics. Where energy-efficient
control schemes can be implemented, they prolong the mechanical components’ lifespan [18].
In safety-critical applications such as automotive systems, robotics, and industrial machinery,
accurate torque prediction is imperative for ensuring the safety and reliability of the controlled
system. Overestimation or underestimation of the torque can lead to unexpected system be-
havior, potentially resulting in equipment failure, operational accidents, or injury to personnel.
Control systems can implement appropriate safety measures and ensure reliable operation by
accurately predicting the torque under varying conditions. Optimizing performance metrics
like speed, accuracy, and precision requires a deep understanding of torque dynamics. Accu-
rate torque prediction equips control systems to achieve optimal performance while adhering
to operational constraints and performance specifications [19].

Researchers in control engineering continually strive to enhance the accuracy and
efficiency of torque prediction in mechanical systems for control purposes. Advanced
modeling techniques and optimization algorithms have emerged as promising avenues for
improving torque prediction accuracy and optimizing control strategies. However, existing
studies have identified limitations and challenges associated with current approaches, ne-
cessitating further exploration and refinement of methodologies. A torque-based nonlinear
predictive control approach has been proposed for automotive powertrains, highlighting
the significance of dynamic torque control [20]. This approach underscores the importance
of accurate torque estimation for optimizing powertrain performance and efficiency. Sim-
ilarly, sensorless control techniques have been developed for synchronous motor drives
to achieve resilient torque control, particularly in the presence of parameter errors [21,22].
However, limitations such as applicability under large parameter errors and accuracy
constraints at lower speeds have been noted, underscoring the need for robust torque esti-
mation methods. Nonlinear model predictive control (NMPC) has garnered attention for
internal combustion engines, offering enhanced performance through advanced modeling
and optimization [23]. Yet, challenges remain, including potential tracking errors induced
by predictive model inaccuracies. Similarly, real-time model predictive control (MPC) of
drive systems with elastic transmission has shown promise but faces limitations in ad-
dressing severe torsional vibrations and load disturbances [24]. Metaheuristic optimization
techniques have been explored for tuning proportional–integral controllers in drive sys-
tems, demonstrating their potential to improve the control efficiency [25]. However, further
investigation is necessary to explore their applicability across different control scenarios and
systems. Furthermore, the optimization-based motion prediction of mechanical systems
has been investigated, highlighting the benefits of sensitivity analysis for optimizing lifting
motion. The ongoing quest to enhance torque prediction accuracy and control efficiency un-
derscores the interdisciplinary nature of control engineering. By addressing the limitations
and challenges identified in the current research, there is a way to develop more robust and
effective control strategies for various mechanical systems. This study aims to contribute
to this topic by investigating novel torque prediction using optimization methodologies
for parameter estimations, drawing upon insights from advanced modeling techniques,
optimization algorithms, and practical applications in various domains. In the pursuit of
advancing torque prediction and control methodologies, several seminal studies have laid
the groundwork for current research. For instance, a torque-based nonlinear predictive con-
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trol approach has been proposed for automotive powertrains, emphasizing the importance
of dynamic torque control. Despite its potential, challenges remain, including the risk of
tracking errors due to predictive model inaccuracies. Innovative approaches leveraging
metaheuristic optimization techniques have been explored for optimizing control strategies
in drive systems. While these approaches can improve control efficiency, their applicability
across different scenarios and systems warrants further investigation [26]. Integrating
advanced modeling techniques, optimization algorithms, and practical applications repre-
sents a fertile ground for advancing torque prediction and control strategies. Using these
strategies, engineers can enhance performance and efficiency across various mechanical
systems [27].

1.4. Contributions and Research Objective

The findings of this study have implications for advancing control systems engi-
neering by providing solutions to improve the performance and reliability of inverted
pendulum-based applications across different fields. Using algorithms, we aim to address
the challenges related to parameter estimation in a mathematical model of inverted pen-
dulum systems, for more resilient and adaptable control strategies in real-world settings.
This research is based on a range of literature exploring methods and approaches to find
the physical parameters to estimate the torque in the mechanism, and three optimization
techniques are proposed: the PSO, CGA, and SSA, where a statistical evaluation was carried
out to obtain the best evaluation and response of each technique attained to the dynamic
methodology.

2. Methodology

This section presents the methodological strategies employed in estimating the model
parameters for a mechanism using experimental data. The model parameters were effec-
tively ascertained through the experimental measurements from an actual implementation
of the mechanism with a metaheuristic algorithm.

2.1. Inverted Pendulum System

The inverted pendulum system comprises a planar double inverted pendulum. A
DC motor drives the initial link, whereas the subsequent link is an underactuated simple
pendulum. θ1 and θ2 represent the angular positions of the links, u stands for the control
torque input, while m1 and m2 are the masses of the links. The lengths of the links are
denoted by l1 and l2, and lc1 and lc2 indicate the distances to the center of masses. Finally,
I1 and I2 stand for the inertia of the links. The system is shown in Figure 1.

��

��

l1

g

m1,I1

m2,I2

lcm1

l2

lcm2
��

Figure 1. Schematics of the Pendubot system.



Mathematics 2024, 12, 1625 5 of 16

Mathematical Model

Underactuated Euler–Lagrange systems of fourth order can be generally represented
as [28]

P(q(t))u(t) =M(q(t))q̈(t) + C(q(t), q̇(t))q̇(t) + g(q(t)). (1)

Here, q(t) =
[
q1(t) q2(t)

]⊺ denotes the generalized coordinates, M(q(t)) ∈ R2×2

represents the inertia matrix, and C(q(t), q̇(t)) ∈ R2×2 describes the Coriolis and centrifugal
forces. The vector g(q(t)) ∈ R2 represents the gravitational forces, and P(q(t)) ∈ R2 maps
the external forces. Additionally, u(t) ∈ R signifies the control input.

Such systems, described by (1), can be alternatively expressed in state space as

ẋa(t) =xb(t)

ẋb(t) = f (xa(t), xb(t)) + ζ(xa(t))u(t), (2)

where xa(t) represents the joint positions vector
[
q1(t) q2(t)

]⊺, xb(t) denotes the articular
velocities vector

[
q̇1(t) q̇2(t)

]⊺, and

f (xa(t), xb(t)) =− M(q(t))−1[C(q(t), q̇(t))q̇(t) + g(q(t))] (3)

ζ(xa(t)) =M(q(t))−1P(q(t)). (4)

Utilizing the Euler–Lagrange formalism, the dynamic model of the system can be
represented as

M(q(t))q̈(t) + C(q(t), q̇(t))q̇(t) + g(q(t)) = Pτ(t), (5)

where

q(t) =
[
θ1(t) θ2(t)

]⊺ (6)

P =
[
1 0

]⊺ (7)

M(q) =
[

β1 + β2 + 2β3 cos(θ2(t)) M1,2(θ)
β2 + β3 cos(θ2(t)) β2

]
(8)

C(q, q̇) =
[
−β3θ̇1(t) sin(θ2(t)) β3C1,2(θ)
β3θ̇1(t) sin(θ2(t)) 0

]
(9)

g(q) =
[

β4g cos(θ1(t)) + β5g cos(θ1(t) + θ2(t))
β5g cos(θ1(t) + θ2(t))

]
, (10)

where

β1 = m1l2
c1
+ m2l2

c2
+ I1 (11)

β2 = m2l2
c2
+ I2 (12)

β3 = m2l1lc2 (13)

β4 = m1lc1 + m1l1 (14)

β5 = m2lc2 . (15)

2.2. Experimental Setup

The experimental pendulous prototype is displayed in Figure 2. It has a
DC motor model NC5475, manufactured by NISCA, Tokio, Japan; to drive the first link. The
angular positions of both links are monitored with incremental encoders of 10,000 counts
per revolution, consistent with the earlier example. Power amplification is facilitated by the
amplifier model VoltPAQ-X2, manufactured by Quanser, Markham, Canada. The control
strategy is implemented in the Matlab–Simulink platform, with a sampling time of 0.001 s.
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Link1

Encoder

Link2

DC Motor

Figure 2. Experimental pendulum prototype.

The actual physical parameters of the prototype are outlined below and were measured
before the assembly:

• Link inertias: I1 = 0.00053 [kg·m2] and I2 = 0.00077 [kg·m2].
• Masses of the links: m1 = 0.210 [kg] and m2 = 0.1 [kg].
• Lengths of the links: l1 = 0.15 [m] and l2 = 0.3 [m].
• Distances to the center of mass: lc1 = 0.12 [m] and lc2 = 0.15 [m].
• Armature resistance: kτ = 0.0724 [Ω].
• Torque constant: τm = 2.983 [Ω].

The provided values do not encompass any joints, glue, screws, or any accessories that
are not part of the model. To refine the model, it is necessary to compute the equivalent
values of mass, center of mass location, and inertia for each link. To assess the dynamic
model, a trajectory is suggested with the initial conditions set as x1(0) = π

2 [rad] and
x3(0) = 0 [rad]. The trajectory involves a seamless transition from rest to rest.

y∗f (t) =
β2 + β3

β2
x∗δ1(t) + x∗δ3(t)

y∗f (t) =
β2 + β3

β2
(θ∗1 (t)−

π

2
) + θ∗2 (t) (16)

Initially, at t = 0, the trajectory starts from y∗f (0) = 0, setting θ∗1(t) =
π
2 and θ∗2(t) = 0. At

t = 4.5, it moves to y∗f (6) =
β2+β3

β2

(
π
6
)
−
(

π
6
)

with θ∗1(t) =
3
2 π and θ∗2(t) = −π

6 over a duration

of 2.5 seconds. Subsequently, at t = 9.5 [s], it transitions to y∗f (13.5) = − β2+β3
β2

(
π
6
)
+

(
π
6
)

with
θ∗1(t) =

π
3 and θ∗2(t) =

π
6 within 4 s. Finally, at t = 17.5 [s], it returns to the initial position until

the test concludes. Figure 3 illustrates the rest-to-rest positions of the pendulum.
The velocity and angular acceleration for each link will be estimated from the position

values derived from the smooth trajectory. These kinematic features will inform the evalua-
tion of the prototype’s dynamic behavior, facilitating the acquisition of the experimental
torque data necessary to proceed with the parametric estimation.

The experimental torque is estimated based on the motor’s angular velocity ( ˙ϕ(t)) and
the supply voltage (V(t)), expressed as

τ =
k1

Ra
V(t)− k1k2

Ra
ϕ̇. (17)
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Here, k1 represents the torque constant, k2 denotes the back-EMF constant, and Ra
stands for the winding resistance.

(a)

������

����

(b)

�������

�������

(c)

������

������

Figure 3. Inverted pendulum trajectory. (a) t = 0 s. (b) t = 7 s. (c) t = 13.5 s.

2.3. Algorithm Implementation

To solve the optimization problem addressed, it is necessary to determine the limits
of the optimization parameters, which define the solution space to the algorithms. These
upper and lower limits ensure the algorithm produces accurate and relevant results. By
defining these limits, the algorithm can effectively narrow down the range of potential
solutions, resulting in faster and more efficient problem solving. The data presented in
Table 1 provide the upper and lower limits for the model parameters to be estimated, with
consideration of the physical constraints. These limits were based on the estimated actual
parameters and were determined by ensuring that the center of mass distance was below
the length of the link.

Table 1. Upper and lower limits for the parameters to be estimated on the model.

Parameter m1 [kg] lc1 [m] I1 [kgm2] m2 [kg] lc2 [m] I2 [kgm2]

Upper 0.4 0.15 0.001 0.4 0.3 0.001
Lower 0.001 0.001 0.0001 0.001 0.1 0.0001

To realize the optimization problem, the root mean square error is used as a fitness
function (Equation (18)); this calculates the square root over the average of the squared
differences between the predicted values of the torque and the actual (experimental) values.
This allows evaluation of how closely the model’s predictions match the real-world data [29],
where the main objective is to minimize this function, which means that the mathematical
model with the estimated parameters matches the experimental values. To quantify the
results obtained by the algorithms, the uncertainty associated with the mean solution errors
is evaluated, where the confidence interval of 95% is calculated for each algorithm’s mean
error across the 1000 simulation runs. The confidence interval provides a range in which
the true mean error is expected with a 95% probability.

The mean solution is calculated by a set of RMSE measurements (Equation (18)) for
each algorithm. n is the number of observations, τ̂i is the predicted torque value for the i-th
observation, and τi is the experimental value for the i-th observation.

RMSE =

√
1
n

n

∑
i=1

(τ̂i − τi)2 (18)

The RMSE is a useful fitness function for assessing the effectiveness of a developed
model with the estimated parameters. A lower RMSE implies that the model’s predictions
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are closer to the actual values, which is what we desire. Conversely, a higher RMSE
indicates significant discrepancies between the predictions and actual values, resulting
in poor parameter estimation on the model performance [30]. Therefore, a lower RMSE
denotes more accurate predictions, reflecting a better parameter estimation.

The standard deviation s, is calculated with Equation (19):

s =

√
1

n − 1

n

∑
i=1

(RMSEi − ¯RMSE)2. (19)

The standard error of the mean (SEM) is then given by Equation (20):

SEM =
s√
n

. (20)

We use the standard error and the Z-score corresponding to the desired confidence
level to calculate the 95% confidence interval for the mean error. The Z-score is a sta-
tistical measure that indicates how many standard deviations an element is away from
the mean of a distribution. For a two-tailed test at a 95% confidence level, the Z-score is
approximately 1.96.

Thus, the confidence interval (CI) is calculated as follows:

CI = ¯RMSE ± (Z · SEM). (21)

In this study, we applied this methodology to compute the confidence intervals for the
mean error obtained after applying the three proposed algorithms: SSA, CGA, and PSO.
The computed intervals provide insight into the precision of the mean error estimates and
allow us to ascertain the statistical significance of the differences observed between the
algorithms’ performances in determining the parameters. The algorithms that determine
the parameters of the model are presented in Table 1. Their objective is to minimize the
RMSE, finding the specific parameters that close the gap between the predictive torque and
the experimental measurement, as shown in Equation (18). Each metaheuristic algorithm
proposed in this work is described below. Each algorithm setting was optimized using a
stochastic PSO algorithm to obtain the best parameters and improve the performance for
solving the optimization problem.

2.4. Particle Swarm Optimization

The PSO is a metaheuristic technique for optimizing non-convex nonlinear mathe-
matical models. It is a bio-inspired algorithm that simulates the way flocks of birds sweep
a terrain in search of food, where each animal is modeled as a particle. Each particle in
the swarm has a cognitive and social component, allowing the swarm to follow the best
particle that finds the best solution in the current iteration. Adding a velocity that changes
in each iteration depending on its position allows the exploration of the entire solution
space [4,31]. Algorithm 1 shows the process to solve an optimization problem. The RMSE
is often employed as a fitness function in optimization scenarios to reduce the disparity
between the predicted and observed values. The selection of the RMSE as the fitness metric
does not directly impact how the optimization techniques perform; rather, it consistently
gauges the error these algorithms strive to diminish. For instance, the PSO algorithm utiliz-
ing the RMSE offers a continuous error gauge, steering the particles toward the possible
solution. The algorithm fine-tunes particles’ positions to minimize the RMSE. This choice
does not inherently influence how well these optimization techniques function; instead,
they leverage the RMSE to direct their quest for a solution. The efficacy of each technique
in minimizing the RMSE depends on its mechanisms and parameter configurations.
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Algorithm 1: Particle swarm optimization procedure.

1 Read Parameters of the PSO, mathematical model, experimental data
2 for iter = 1 : itermax do
3 if iter == 1 then
4 Generate the particle swarm;
5 Evaluate the mathematical model Equations (1) to (17);
6 Evaluate the fitness function Equation (18);
7 Select the minimal solutions and its positions;
8 else
9 Update the velocities;

10 Update particle swarm positions;
11 Evaluate the mathematical model;
12 Evaluate the fitness function (18);
13 Update the best solutions and its positions;
14 if iter == itermax then
15 Break
16 else

17 Result: Best solution found.

2.5. Continuous Genetic Algorithm

The genetic algorithm is a classic optimization technique widely used to solve contin-
uous problems with nonlinear mathematical models. The algorithm starts by creating an
initial population of individuals, each evaluated based on the objective function and a set
of constraints representing the problem’s physics [5]. These enable the evaluation of the
response viability, allowing the algorithm to consider non-feasible points as potential solu-
tions. This facilitates better exploration and exploitation of the solution space, preventing
the algorithm from getting stuck in local optima. Subsequently, descendant populations are
generated using recombination, selection, and mutation techniques. The objective function
and set of restrictions are evaluated in each iteration, allowing for advancement through
the solution space to find an adequate and viable solution to the analyzed problem [8].
Algorithm 2 briefly details the CGA process to solve an optimization problem.

Algorithm 2: Continuous genetic algorithm procedure.

1 Read Parameters of the CGA, mathematical model, and experimental data
2 for iter = 1 : itermax do
3 if iter == 1 then
4 Generate the initial population;
5 for i = 1 : a do
6 Evaluate the mathematical model Equations (1) to (17);
7 Evaluate the fitness function Equation (18);
8 Determine the best solution;

9 else
10 Generate the descending population;
11 for i = 1 : a do
12 Evaluate the mathematical model Equations (1) to (17);
13 Evaluate the fitness function Equation (18);
14 Update the best solution;

15 Determine the new population;
16 if iter == itermax) then
17 Break

18 Result: Best solution found.
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2.6. Salp Swarm Algorithm

The salp swarm algorithm is a bio-inspired metaheuristic technique with key factors
to avoid being trapped in local optima, allowing the exploration and exploitation of the
solution space [6,30]. This algorithm is based on swarm intelligence, which simulates the
behavior of salps in the ocean, which move in nature in the form of a chain, where the first
individual is taken as the leader particle, and the rest of the salps are the followers, where
in each iteration, the search is carried out for the area in which the food is found, which
represents the optimal zone; then the movement of the leader particle towards the zone
is carried out, solving the mathematical model of the various points where the followers
are located, to update the positions of the leader particle, where the objective is that all the
particles approach the area of the best food, finding the best solution to the problem [32].
Algorithm 3 briefly details the SSA process to solve an optimization problem.

Algorithm 3: Salp swarm algorithm procedure.

1 Read Parameters of the SSA, mathematical model, and experimental data
2 for iter = 1 : itermax do
3 Determine the movement of the salp chain
4 if iter == 1 then
5 Generate the initial population;
6 Evaluate the mathematical model Equations (1) to (17);
7 Evaluate the fitness function Equation (18);
8 Select the best solution as the salp chain leader;
9 Update the position of the leader in the solution space;

10 else
11 Determine the movement of the salp chain;
12 Evaluate the mathematical model Equations (1) to (17);
13 Evaluate the fitness function Equation (18);
14 Select the best solution as the salp chain leader;
15 Update the position of the leader in the solution space;
16 if iter == itermax then
17 Break
18 else

19 Result: Best solution found.

3. Results

Figure 4 presents the experimental torque results correlated with the position, velocity,
and acceleration data outlined in Section 2.2.

To provide a clear and direct comparison of the results on the parameter estimation for
the mechanism, Figure 5 shows the plots of the torque predicted using the mathematical
model with the parameters found by the different algorithms. It also compares the experi-
mentally measured torque with the theoretical model alongside the predictions made by
the SSA, CGA, and PSO algorithms. A zoomed view box gives a detailed comparison for a
specific time interval between 5 s and 6.6 s, allowing for closer scrutiny of the algorithms’
performance in relation to the experimental data.

Table 2 shows the parameter estimation found by each algorithm; those values corre-
spond to the minimum RMSE over the 1000 runs.

The proposed mathematical model was validated by comparing it with the experimen-
tal torques. The overlapping lines show that the model closely aligns with the experimental
observations, which serves as a benchmark for the algorithms. The estimated torques of the
SSA, CGA, and PSO algorithms appear as distinct lines. The SSA estimation adheres most
closely to the experimental and theoretical benchmarks, indicating that the SSA’s parameter
optimization can accurately calculate the system dynamics over the observed time. The
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CGA and PSO estimations generally follow the same pattern; however, their divergence
from the experimental and theoretical lines in different points indicates less precision in the
model fitting.

�

�

�

�

�

�

Figure 4. Experimental results for inverted pendulum.

Table 2. Comparative results of parameter estimation.

Parameters Experimental SSA CGA PSO

m1 0.20000 0.20579 0.14958 0.25497
lc1 0.12000 0.15000 0.01194 0.15000
I1 0.00053 0.00059 0.00073 0.00100
m2 0.14000 0.13496 0.20461 0.13557
lc2 0.15000 0.12001 0.10402 0.10000
I2 0.00077 0.00051 0.00012 0.00010

The performance of the SSA algorithm is consistent, as indicated by its proximity to
the experimental and theoretical lines shown in Figure 5. This aligns with the low mean
RMSE and small confidence interval mentioned earlier, which confirms that it is a robust
optimization tool. On the other hand, the CGA and PSO lines exhibit greater variance from
the expected torque values, particularly in areas where sharp changes in torque occur. This
behavior could be attributed to these algorithms’ exploration and exploitation mechanisms,
which may not be as well-tuned as the SSA algorithm to capture the intricacies of the
modeled system.
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Theoretical Tau

Figure 5. Comparison of average RMSE for algorithms.

A comparative result for the performance of the proposed algorithms, with value
numbers, is presented in Tables 3 and 4. The SSA algorithm achieved the best parameter
estimation for the mechanism with a minimum error at 0.015 015 147 N m compared to the
experimental results. This algorithm achieved a mean solution error of 0.015 066 207 N m,
the lowest among the tested algorithms. The standard deviation RMSE for SSA was also
the lowest, 1.443 99 × 10−6 N m, indicating highly consistent results across the 1000 runs.
The 95% confidence interval for the error was narrow, further confirming the reliability
of the SSA in finding the optimal solutions. This algorithm demonstrated a moderate
mean computing time of 916.5614 s, with a standard deviation of 18.7228 s and a closed
confidence interval that suggests consistent performance in terms of time efficiency.

The CGA also offered interesting results, with the best solution RMSE recorded
at 0.015 039 607 N m. However, the error of the mean solution was slightly higher at
0.015 490 795 N m, with the standard deviation of error being more considerable, implying
less consistency in obtaining the best-fit parameters compared to the SSA. The error’s confi-
dence interval was wider than the SSA’s, implying a larger CGA performance variation. The
algorithm also had a higher mean computing time of 954.1851 s, with an identical standard
deviation to the SSA (18.7228 s). The PSO, although the fastest with a mean computing time
of 888.4771 s and a relatively low standard deviation of 17.4958 s, had a higher mean RMSE
solution, the largest among the three algorithms, and the confidence interval for the mean
RMSE was notably broad. These values indicate a significant variation in PSO’s results’
accuracy, making it less reliable for parameter estimation despite its computational speed.

Table 3. Comparative results of metaheuristic algorithms for parameter estimation—error metrics.

Algorithms Best Solution Error Mean Solutions Error Standard Deviation of
Error

Confidence Interval for
Error

SSA 0.015015147 0.015066207 1.44399 × 10−6 [0.01506, 0.01506]
CGA 0.015039607 0.015490795 7.34505 × 10−6 [0.01548, 0.01549]
PSO 0.015045076 0.016549584 1.47122 × 10−5 [0.01654, 0.01655]
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Table 4. Comparative results of metaheuristic algorithms for parameter estimation—time metrics.

Algorithms Mean Time Standard Deviation of
Time

Confidence Interval for
Time

SSA 916.5614 18.7228 [912.89167, 920.23103]
CGA 954.1851 18.7228 [950.51546, 957.85481]
PSO 888.4771 17.4958 [885.04796, 891.90631]

The bar chart in Figure 6 provides a clear visual comparison of the average computing
time required by the three metaheuristic algorithms. The PSO demanded the least amount
of computing time on average, indicating a more time-efficient approach in parameter
estimation, with the average time being noticeably less than that of the other two algorithms.
The confidence limits in the bars suggest consideration of the variability in computing
time, indicating the reliability and consistency of each algorithm’s performance over the
1000 runs. While the PSO led in terms of time efficiency, the SSA algorithm followed as a
close second, displaying a marginally higher average computing time. According to the
analysis, the average CGA algorithm took the longest time to compute, which may not be
ideal when time is critical. Moreover, the analysis indicates an inverse relationship between
the precision of the algorithms discussed in detail in Table 4. This implies that there may
be a trade-off situation where the CGA algorithm, despite its longer computation time,
may not necessarily produce better solutions, as demonstrated by its mean solution error
compared to the SSA and PSO algorithms.

SSA CGA PSO
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Comparison of Computing Time Across Algorithms

Figure 6. Comparison of average computing times for algorithms.

Figure 7 presents a comparative analysis of the average RMSE for the applied meta-
heuristic algorithms. The bar chart reveals that the SSA algorithm has the lowest average
RMSE, indicating the highest level of precision in fitting the experimental measurements to
the mathematical model; it also has a comparatively lower height of the SSA confidence
interval limits with a confidence of 95 %. These error bars indicate variability in the accu-
racy of the algorithms from one run to another, with the SSA showing the least variability,
followed by the CGA and PSO. The CGA algorithm, while surpassing the performance of
the PSO, exhibits a higher average RMSE than the SSA, as visualized by the taller height
of its corresponding bar. This suggests the CGA is less precise than the SSA but more
so than the PSO. The error bars for the CGA and PSO are noticeably longer, particularly
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for the PSO, which signals a greater spread in the RMSE values and, consequently, less
consistent performance. The PSO algorithm’s bar, which is the tallest and the longest error
bar, indicates that it has the poorest response for this problem.
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0.013

0.0135

0.014

0.0145

0.015

0.0155

0.016

0.0165

0.017

M
e
a
n
 E

rr
o
r

Comparison of Mean Error Across Algorithms

Figure 7. Comparison of average RMSE for algorithms.

4. Conclusions

A parameter estimation via dynamic modeling of an inverted pendulum system
was carried out, where the comparison between the mathematical model and the experi-
mental measurements of the torque express a correlation that shows the accuracy of the
methodology described.

To solve the mathematical model for the parameter estimation, three algorithms were
implemented, where the best solution was achieved by the SSA, which was 0.163% better
than the CGA and 0.2% than the PSO. Regarding the repeatability of the solution, the SSA
also presented the best standard deviation, reflecting a better quality of solution compared
with the CGA and the PSO. Finally, in terms of the computing time, the PSO algorithm took
7.013% less time to obtain the response compared with the SSA and CGA. The SSA was
selected as the best algorithm, since, for the problem addressed, the quality of the response
has more influence.

This research introduces an innovative methodology and empirically validates dy-
namic modeling for parameter estimation in inverted pendulum systems. By integrating
metaheuristic algorithm techniques and a comparative analysis of their performance, this
study improves the precision of the modeling of complex dynamic systems. In future work,
it is proposed that these parametric estimation methods be used to determine gains and
control parameters of various linear and nonlinear techniques to control dynamic systems
like mobile robots, drones and other robotic systems. Furthermore, a comparison of the
effectiveness of metaheuristic methodologies with other algorithms to obtain nonlinear
models will be studied, such as in MPC.
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