Stability Analysis of Linear Time-Varying Delay Systems via a Novel Augmented Variable Approach
Abstract
:1. Introduction
2. Problem Statement and Preliminaries
3. Main Results
3.1. A Class of Bounded Time-Varying Delays
3.2. Periodic Time-Varying Delay
4. Examples Simulation
0.1 | 0.5 | 0.8 | |
---|---|---|---|
[13] | 4.910 | 3.233 | 2.789 |
[34] | 4.921 | 3.221 | 2.792 |
[42] | 4.93 | 3.09 | 2.66 |
[45] | 4.993 | 3.474 | 3.053 |
[5] | 5.015 | 3.452 | 3.030 |
[14] | 5.102 | 3.411 | 2.981 |
[43] | 5.026 | 3.428 | 2.997 |
[44] | 5.097 | 3.549 | 3.147 |
[35] | 5.110 | 3.593 | 3.119 |
Theorem 1 | 5.122 | 3.598 | 3.1406 |
Corollary 1 | 5.095 | 3.485 | 3.0078 |
Corollary 1 with | 4.949 | 3.339 | 2.9258 |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gu, K.; Kharitonov, V.L.; Chen, J. Stability of Time-Delay Systems; Springer Science & Business Media: Berlin, Germany, 2003. [Google Scholar]
- Zhang, C.K.; He, Y.; Jiang, L.; Wu, M. Notes on stability of time-delay systems: Bounding inequalities and augmented Lyapunov-Krasovskii functionals. IEEE Trans. Autom. Control 2017, 62, 5331–5336. [Google Scholar] [CrossRef]
- Shi, Y.; Ye, D. Stability analysis of delayed neural networks via composite-matrix-based integral inequality. Mathematics 2023, 11, 2518. [Google Scholar] [CrossRef]
- Zhang, C.K.; Chen, W.H.; Zhu, C.; He, Y.; Wu, M. Stability analysis of discrete-time systems with time-varying delay via a delay-dependent matrix-separation-based inequality. Automatica 2023, 156, 111192. [Google Scholar] [CrossRef]
- Xiao, S.; Yu, J.; Yang, S.X.; Qiu, Y. Stability analysis for time-delay systems via a new negativity condition on quadratic functions. Mathematics 2022, 10, 3096. [Google Scholar] [CrossRef]
- Feng, J.; Wang, W.; Zeng, H. Integral sliding mode control for a class of nonlinear multi-agent systems with multiple time-varying delays. IEEE Access 2024, 12, 10512–10520. [Google Scholar] [CrossRef]
- Wang, W.; Liang, J.; Liu, M.; Ding, L.; Zeng, H. Novel robust stability criteria for Lur’e systems with time-varying delay. Mathematics 2024, 12, 583. [Google Scholar] [CrossRef]
- Lee, T.H.; Park, J.H. A novel Lyapunov functional for stability of time-varying delay systems via matrix-refined-function. Automatica 2017, 80, 239–242. [Google Scholar] [CrossRef]
- Zhang, X.M.; Han, Q.L.; Seuret, A.; Gouaisbaut, F.; He, Y. Overview of recent advances in stability of linear systems with time-varying delays. IET Control Theory Appl. 2019, 13, 1–16. [Google Scholar] [CrossRef]
- Peng, T.S.; Zeng, H.B.; Wang, W.; Zhang, X.M.; Liu, X.G. General and less conservative criteria on stability and stabilization of T-S fuzzy systems with time-varying delay. IEEE Trans. Fuzzy Syst. 2023, 31, 1531–1541. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, H.; Lam, J.; Du, B. Stability and stabilization of delayed T-S fuzzy systems: A delay partitioning approach. IEEE Trans. Fuzzy Syst. 2009, 17, 750–762. [Google Scholar] [CrossRef]
- Zhang, X.M.; Han, Q.L. A delay decomposition approach to delay dependent stability for linear systems with time-varying delays. Int. J. Robust Nonlinear Control IFAC-Affil. J. 2009, 19, 1922–1930. [Google Scholar] [CrossRef]
- Zhang, X.M.; Han, Q.L.; Seuret, A.; Gouaisbaut, F. An improved reciprocally convex inequality and an augmented Lyapunov-Krasovskii functional for stability of linear systems with time-varying delay. Automatica 2017, 84, 221–226. [Google Scholar] [CrossRef]
- Duan, W.; Li, Y.; Chen, J. An enhanced stability criterion for linear time-delayed systems via new Lyapunov-Krasovskii functionals. Adv. Differ. Equ. 2020, 2020, 21. [Google Scholar] [CrossRef]
- Lin, W.J.; He, Y.; Zhang, C.K.; Wu, M.; Shen, J. Extended dissipativity analysis for Markovian jump neural networks with time-varying delay via delay-product-type functionals. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 2528–2537. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Dong, J.; Zeng, H.B.; Park, J.H. Stability analysis of delayed neural networks via a time-varying Lyapunov functional. IEEE Trans. Syst. Man. Cybern. Syst. 2024, 54, 2563–2575. [Google Scholar] [CrossRef]
- Ding, L.; Chen, L.; He, D.; Xiang, W. New delay partitioning LK functional for stability analysis with neutral type systems. Mathematics 2022, 10, 4119. [Google Scholar] [CrossRef]
- Yin, Z.; Jiang, X.; Zhang, N.; Zhang, W. Stability analysis for linear systems with a differentiable time-varying delay via auxiliary equation-based method. Electronics 2022, 11, 3492. [Google Scholar] [CrossRef]
- Kim, J.H. Further improvement of Jensen inequality and application to stability of time-delayed systems. Automatica 2016, 64, 121–125. [Google Scholar] [CrossRef]
- Zeng, H.; Lin, H.; He, Y.; Teo, K.; Wang, W. Hierarchical stability conditions for time-varying delay systems via an extended reciprocally convex quadratic inequality. J. Frankl. Inst. 2020, 357, 9930–9941. [Google Scholar] [CrossRef]
- Zeng, H.; Wang, W.M.; Wang, W.; Xiao, H.Q. Improved looped-functional approach for dwell-time-dependent stability analysis of impulsive systems. Nonlinear Anal. Hybrid Syst. 2024, 52, 101477. [Google Scholar] [CrossRef]
- Zhang, C.K.; Long, F.; He, Y.; Yao, W.; Jiang, L.; Wu, M. A relaxed quadratic function negative-determination lemma and its application to time-delay systems. Automatica 2020, 113, 108764. [Google Scholar] [CrossRef]
- Zhang, X.M.; Han, Q.L.; Ge, X.H. Novel stability criteria for linear time-delay systems using Lyapunov-Krasovskii functionals with a cubic polynomial on time-varying delay. IEEE/CAA J. Autom. Sin. 2021, 8, 77–85. [Google Scholar] [CrossRef]
- Long, F.; Zhang, C.K.; He, Y.; Wang, Q.G.; Wu, M. A sufficient negative-definiteness condition for cubic functions and application to time-delay systems. Int. J. Robust Nonlinear Control 2021, 31, 7361–7371. [Google Scholar] [CrossRef]
- Zhang, X.M.; Han, Q.L.; Ge, X.H. Sufficient conditions for a class of matrix-valued polynomial inequalities on closed intervals and application to H∞ filtering for linear systems with time-varying delays. Automatica 2021, 125, 109390. [Google Scholar] [CrossRef]
- He, Y.; Zhang, C.K.; Zeng, H.B.; Wu, M. Additional functions of variable-augmented-based free-weighting matrices and application to systems with time-varying delay. Int. J. Syst. Sci. 2023, 54, 991–1003. [Google Scholar] [CrossRef]
- Seuret, A.; Gouaisbaut, F. Wirtinger-based integral inequality: Application to time-delay systems. Automatica 2013, 49, 2860–2866. [Google Scholar] [CrossRef]
- Gu, K. An integral inequality in the stability problem of time-delay systems. In Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, NSW, Australia, 12–15 December 2000. [Google Scholar]
- Seuret, A.; Gouaisbaut, F. Hierarchy of LMI conditions for the stability analysis of time-delay systems. Syst. Control Lett. 2015, 81, 1–7. [Google Scholar] [CrossRef]
- Park, P.; Ko, J.W.; Jeong, C. Reciprocally convex approach to stability of systems with time-varying delays. Automatica 2011, 47, 235–238. [Google Scholar] [CrossRef]
- Zhang, C.K.; He, Y.; Jiang, L.; Wu, M.; Wang, Q.G. Stability analysis of discrete-time neural networks with time-varying delay via an extended reciprocally convex matrix inequality. IEEE Trans. Cybern. 2017, 47, 3040–3049. [Google Scholar] [CrossRef]
- Seuret, A.; Liu, K.; Gouaisbaut, F. Generalized reciprocally convex combination lemmas and its application to time-delay systems. Automatica 2018, 95, 488–493. [Google Scholar] [CrossRef]
- Lin, H.; Dong, J. Stability analysis of T-S fuzzy systems with time-varying delay via parameter-dependent reciprocally convex inequality. Int. J. Syst. Sci. 2023, 54, 1289–1298. [Google Scholar] [CrossRef]
- Zeng, H.B.; Liu, X.G.; Wang, W. A generalized free-matrix-based integral inequality for stability analysis of time-varying delay systems. Appl. Math. Comput. 2019, 354, 1–8. [Google Scholar] [CrossRef]
- Wang, W.; Zeng, H.; Teo, K.; Chen, Y. Relaxed stability criteria of time-varying delay systems via delay-derivative-dependent slack matrices. J. Frankl. Inst. 2023, 360, 6099–6109. [Google Scholar] [CrossRef]
- Zhou, X.; An, J.; He, Y.; Shen, J. Improved stability criteria for delayed neural networks via time-varying free-weighting matrices and S-procedure. IEEE Trans. Neural Netw. Learn. Syst. 2023, 1–7. [Google Scholar] [CrossRef]
- Lin, H.; Dong, J.; Park, J. Robust H∞ control for uncertain T-S fuzzy systems with state and input time delays: A time-varying matrix-dependent zero-equality method. J. Frankl. Inst. 2024, 361, 106540. [Google Scholar] [CrossRef]
- Zeng, H.; He, Y.; Teo, K. Monotone-delay-interval-based Lyapunov functionals for stability analysis of systems with a periodically varying delay. Automatica 2022, 138, 110030. [Google Scholar] [CrossRef]
- Chen, Y.; Zeng, H.; Li, Y. Stability analysis oflinear delayed systems based on an allowable delay set partitioning approach. Automatica 2024, 163, 111603. [Google Scholar] [CrossRef]
- Zeng, H.; Teo, K.; He, Y. A new looped-functional for stability analysis of sampled-data systems. Automatica 2017, 82, 328–331. [Google Scholar] [CrossRef]
- Seuret, A. A novel stability analysis of linear systems under asynchronous samplings. Automatica 2012, 48, 177–182. [Google Scholar] [CrossRef]
- Seuret, A.; Gouaisbaut, F. Stability of linear systems with time-varying delays using Bessel-Legendre inequalities. IEEE Trans. Autom. Control 2018, 63, 225–232. [Google Scholar] [CrossRef]
- Park, J.M.; Park, P.G. Finite-interval quadratic polynomial inequalities and their application to time-delay systems. J. Frankl. Inst. 2020, 357, 4316–4327. [Google Scholar] [CrossRef]
- Wang, W.; Liu, M.H.; Zeng, H.B.; Chen, G. Stability analysis of time-delay systems via a delay-derivative-partitioning approach. IEEE Access 2022, 10, 99330–99336. [Google Scholar] [CrossRef]
- Xiao, S.; Long, Y. Stability analysis of linear systems with time-varying delay via some novel techniques. J. Frankl. Inst. 2024, 361, 12–20. [Google Scholar] [CrossRef]
- Jiang, L.; Yao, W.; Wu, Q.H.; Wen, J.Y.; Cheng, S.J. Delay-dependent stability for load frequency control with constant and time-varying delays. IEEE Trans. Power Syst. 2012, 27, 932–941. [Google Scholar] [CrossRef]
- Zeng, H.; Zhu, Z.J.; Peng, T.S.; Wang, W.; Zhang, X.M. Robust tracking control design for a class of nonlinear networked control systems considering bounded package dropouts and external disturbance. IEEE Trans. Fuzzy Syst. 2024, 1–10. [Google Scholar] [CrossRef]
- Zhou, X.Z.; An, J.; He, Y. Robust stability analysis for uncertain systems with time-varying delay via variable augmentation approach. Int. J. Robust Nonlinear Control 2024, 9, 5590–5604. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, W.; Zeng, H.; Lin, H. Stability Analysis of Linear Time-Varying Delay Systems via a Novel Augmented Variable Approach. Mathematics 2024, 12, 1638. https://doi.org/10.3390/math12111638
Liao W, Zeng H, Lin H. Stability Analysis of Linear Time-Varying Delay Systems via a Novel Augmented Variable Approach. Mathematics. 2024; 12(11):1638. https://doi.org/10.3390/math12111638
Chicago/Turabian StyleLiao, Wenqi, Hongbing Zeng, and Huichao Lin. 2024. "Stability Analysis of Linear Time-Varying Delay Systems via a Novel Augmented Variable Approach" Mathematics 12, no. 11: 1638. https://doi.org/10.3390/math12111638
APA StyleLiao, W., Zeng, H., & Lin, H. (2024). Stability Analysis of Linear Time-Varying Delay Systems via a Novel Augmented Variable Approach. Mathematics, 12(11), 1638. https://doi.org/10.3390/math12111638