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Abstract: This paper investigates the stability issues of time-varying delay systems. Firstly, a novel
augmented Lyapunov functional is constructed for a class of bounded time-varying delays by introducing
new double integral terms. Subsequently, a time-varying matrix-dependent zero equation is introduced
to relax the constraints of traditional constant matrix-dependent zero equations. Secondly, for a class
of periodic time-varying delays, considering the monotonicity of the delay and combining it with an
augmented variable approach, Lyapunov functionals are constructed for monotonically increasing and
monotonically decreasing delay intervals, respectively. Based on the constructed augmented Lyapunov
functionals and the employed time-varying zero equation, less conservative stability criteria are obtained
separately for bounded and periodic time-varying delays. Lastly, three examples are used to verify the
superiority of the stability conditions obtained in this paper.
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1. Introduction

The time delay phenomenon is ubiquitous in control systems, stemming from the
nature of real-world control environments where the transmission, processing, and ex-
ecution of information necessitate a specific duration, thereby inducing a temporal lag
between inputs and outputs [1]. This delay, commonly called a time delay, is observable in
various systems, including networked control systems, electronic and biological systems,
and economic models. Within these systems, time delays affect dynamic characteristics
such as the stability and response speed and can lead to a spectrum of complex behav-
iors, including oscillations, instability, and even chaos. Even a small delay may have a
great impact on the performance and security of systems that are sensitive to time delays.
Therefore, conducting stability analyses for delayed systems is crucial. This analysis helps
pre-emptively predict and mitigate potential issues caused by time delays and provides
crucial insights for developing effective control strategies and optimizing system designs.
Currently, research on time-delay systems has achieved numerous advancements and
breakthroughs, laying a solid foundation for addressing more complex time-delay issues
and paving new paths for future technological development and innovation [2–10].

One of the most commonly used approaches in the stability analysis of delay systems
is the Lyapunov functional method, which is primarily characterized by the construc-
tion of specific functionals to analyze a system’s stability. These functionals are generally
non-negative real-valued functions closely related to the system’s state and are primarily
employed to quantify the system’s energy or level of stability. There is no widely applicable
Lyapunov functional construction framework, which that urges researchers to explore and
develop new functional construction approaches to reduce the conservatism of stability
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conditions. Examples of such approaches are the piecewise Lyapunov functional [11,12], the
augmented Lyapunov functional [13,14], the delay-product-type Lyapunov functional [15]
and the time-varying Lyapunov functional [16] methods. Ding et al. [17] constructed a new
delay-partitioning Lyapunov functional to study the stability issues of neutral-type delay
systems. In [18], the stability of linear systems with differentiable time-varying delays was
studied using an auxiliary equation-based method. Among these functional construction
methods, augmented functionals and delay-product-type functionals are widely used be-
cause they can capture more effective system information or delay information. However,
when augmented functional methods are combined with delay-product-type functional
methods, the functional derivative is likely of a quadratic form with delayed higher-order
terms. Such nonlinear high-order delay terms cannot be directly solved with the help of
linear matrix inequality tools. As a result, researchers have developed some methods to
determine the high-order delay inequality, such as second-order delay inequality determi-
nation methods [19–22], third-order delay inequality determination methods [23,24], and
n-th (n ≥ 2) order delay inequality determination methods [25]. Although these determina-
tion methods effectively address the problem of determining high-order inequalities, they
may introduce an additional manual computational complexity or numerous redundant
decision variables. Fortunately, it has been revealed in [26] that generating high-order
time-delay terms can be avoided by augmenting additional variables. This eliminates
the complicated calculation process of transforming high-order delay inequalities into
linear delay inequalities. Since the augmented variable method can avoid high-order delay
terms, some new augmented terms can be introduced to improve traditional augmented
Lyapunov functionals based on this method, which motivates the research in this article.

Researchers are also focusing on improving the accuracy of the integral term estimates
in Lyapunov functional derivatives to further lower the conservatism in the stability de-
termination criteria of delay systems. Many inequalities for integral term estimation have
been developed, such as the Wirtinger-based inequality [27], the Jensen inequality [28],
the Bessel–Legendre inequality [29], the reciprocally convex inequality [30–33] and the
free-matrix-based inequality [34]. These advanced integral inequality methods improve
the accuracy of stability analyses and broaden the application of Lyapunov functionals in
complex time-delay systems. Some integral inequalities are used to construct complex Lya-
punov functionals or to relax the positive definiteness requirement of Lyapunov functionals.
Therefore, in the field of stability analyses for delay systems, the development of more
effective Lyapunov functionals and the enhancement in the accuracy of integral term esti-
mates have emerged as two crucial and urgent directions for improvement, underscoring
the relevance and importance of our research.

Based on the above discussion, this paper aims to improve the stability determination
criteria from a functional construction perspective. We will primarily analyze two types
of delay systems: those with a class of bounded time-varying delays and those with
periodic time-varying delays. The augmented variable and delay-product-type methods
are used to construct the Lyapunov functional. The relationship between augmented and
traditional variables is established using the time-varying matrix dependence zero equation.
Based on this, less conservative stability criteria are derived for these two time-varying
delay cases. Finally, three numerical examples verify the advantages of the constructed
Lyapunov functional.

Throughout this paper, Rn represents the n-dimensional Euclidean space; Rn×m and
Sn
+ are the set of n × m real matrices and of n × n symmetric positive definite matrices,

respectively; N represents a set of positive integers; diag{· · · } is a block diagonal matrices;
and Sym{H} = H + HT .
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2. Problem Statement and Preliminaries

This paper considers linear systems with time-varying state delays, which are de-
scribed as follows: {

ẋ(t) =Ax(t) + Adx(t − ℓ(t))

x(t) =ϕ(t), t ∈ [−dM, 0]
(1)

where A and Ad are system matrices and ϕ(t), ℓ(t) and x(t) are the initial condition,
time-varying delay, and system state, respectively.

This article aims to establish a sufficient stability condition for linear systems with delays,
aiming to maximize the stability region of the delays. Before unveiling our main findings, let
us first introduce a lemma that is fundamental to developing these primary results.

Lemma 1 ([34]). Define differentiable function χ: [λ1, λ2] → Rn and ξ̄ ∈ Rm. For a matrix
E ∈ Sn

+ and any matrix M ∈ R3n×m, inequality (2) holds:

−
∫ λ2

λ1

χ̇T(v)Eχ̇(v)dv ≤ 2ξ̃TΠ̃T Mξ̄ + (λ2 − λ1)ξ̄
T MTẼ−1Mξ̄ (2)

where

ξ̃ =

[
χT(λ2), χT(λ1),

1
λ2 − λ1

∫ λ2

λ1

χT(s)ds,
1

(λ2 − λ1)
2

∫ λ2

λ1

∫ λ2

θ
χT(s)dsdθ

]T

,

Π̃ =
[
g̃T

1 − g̃T
2 g̃T

1 + g̃T
2 − 2g̃T

3 g̃T
1 − g̃T

2 + 6g̃T
3 − 12g̃T

4
]T ,

Ẽ =diag{E, 3E, 5E},

g̃κ =
[
0n×(κ−1)n In 0n×(4−κ)n

]
, κ = 1, 2, . . . , 4.

3. Main Results
3.1. A Class of Bounded Time-Varying Delays

In this subsection, we investigate the stability issues of systems with bounded time-
varying delays. It is crucial to emphasize that our research, while unable to determine the
specific characteristics of the delay, has rigorously defined upper and lower bounds for
the delays and their derivatives considered in this paper. These bounds are based on the
following assumptions:

0 ≤ ℓ(t) ≤ dM, − µ ≤ ℓ̇(t) ≤ µ (3)

where µ and dM are real numbers.
Next, some stability conditions will be obtained for system (1) meeting delay condition

(3). First, the following simplified symbols are given.

ρ0(t) =
[

xT(t) xT(t − ℓ(t)) xT(t − dM)
]T

ρ1(t) =
[∫ t

t−ℓ(t)
xT(ς)dς

1
ℓ(t)

∫ t

t−ℓ(t)

∫ t

s
xT(ς)dςds

]T

ρ2(t) =
[∫ t−ℓ(t)

t−dM

xT(ς)dς
1

dM − ℓ(t)

∫ t−ℓ(t)

t−dM

∫ t−ℓ(t)

s
xT(ς)dςds

]T

ρ3(t) =
[∫ t

t−ℓ(t)

∫ t

s
xT(ς)dςds

∫ t−ℓ(t)

t−dM

∫ t−ℓ(t)

s
xT(ς)dςds

]T

φ1(t) =
[
ρT

0 (t) ρT
1 (t) ρT

2 (t) ρT
3 (t)

]T
, φ2(t) =

[
xT(t) ẋT(t)

]T
.

Theorem 1. For given delay parameters µ and dM, linear system (1) with delays satisfying bound-
ary restriction condition (3) is stable if there exist some positive definite matrices, R1, R2, Q1, Q2;
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symmetric matrices, P0, P1, satisfying P0 + ℓ(t)P1 > 0; and arbitrary matrices W1, W2, N1, N2,
such that (4) and (5) are feasible: [

Ξ(0, ℓ̇(t)) dMN T
2

∗ −dMR̂2

]
< 0 (4)

[
Ξ(dM, ℓ̇(t)) dMN T

1
∗ −dMR̂1

]
< 0 (5)

where

Ξ(ℓ(t), ℓ̇(t)) = Ξ0(ℓ(t), ℓ̇(t)) + Ξ1(ℓ(t), ℓ̇(t))

Ξ0(ℓ(t), ℓ̇(t)) = Sym{DT
1 (P0 + ℓ(t)P1)λ1}+DT

2 Q1D2 + ℓ̇(t)DT
1 P1D1

− (1 − ℓ̇(t))DT
3 (Q1 −Q2)D3 −DT

4 Q2D4

+ dMgT
0 R1g0 − (1 − ℓ̇(t))(dM − ℓ(t))gT

4 (R1 −R2)g4

Ξ1(ℓ(t), ℓ̇(t)) = Sym{LT
1 N1 + LT

2 N2 + (W1 + ℓ̇(t)W2)Ψ(ℓ(t))}

with

D1 =[gT
1 , gT

2 , gT
3 , gT

10, gT
11, gT

12, gT
13, gT

14, gT
15]

T

λ1 =[gT
0 , (1 − ℓ̇(t))gT

4 , gT
5 , gT

1 − (1 − ℓ̇(t))gT
2 , gT

1 − (1 − ℓ̇(t))gT
6 − ℓ̇(t)gT

7 ,

(1 − ℓ̇(t))gT
2 − gT

3 , (1 − ℓ̇(t))gT
2 − gT

8 + ℓ̇(t)gT
9 , gT

16 − (1 − ℓ̇(t))gT
10

(1 − ℓ̇(t))gT
17 − gT

12]
T

D2 =[gT
1 , gT

0 ]
T , D3 = [gT

2 , gT
4 ]

T , D4 = [gT
3 , gT

5 ]
T

L1 =[gT
1 − gT

2 , gT
1 + gT

2 − 2gT
6 , gT

1 − gT
2 + 6gT

6 − 12gT
7 ]

T

L2 =[gT
2 − gT

3 , gT
2 + gT

3 − 2gT
8 , gT

2 − gT
3 + 6gT

8 − 12gT
9 ]

T

Ψ(ℓ(t)) =[ℓ(t)gT
6 − gT

10 ℓ(t)gT
7 − gT

11 (dM − ℓ(t))gT
8 − gT

12 (dM − ℓ(t))gT
9 − gT

13

ℓ(t)gT
11 − gT

14 (dM − ℓ(t))gT
13 − gT

15 ℓ(t)gT
1 − gT

16 (dM − ℓ(t))gT
2 − gT

17]
T

R̂i =diag{Ri, 3Ri, 5Ri}, g0 = Ag1 + Adg2.

Proof. On the basis of augmented variables, the functional is selected as:

V(t) =φT
1 (t)(P0 + ℓ(t)P1)φ1(t) +

∫ t

t−ℓ(t)
φT

2 (ς)Q1 φ2(ς)dς +
∫ t−ℓ(t)

t−dM

φT
2 (ς)Q2 φ2(ς)dς

+
∫ t

t−ℓ(t)
(dM − t + ς)ẋT(ς)R1 ẋ(ς)dς +

∫ t−ℓ(t)

t−dM

(dM − t + ς)ẋT(ς)R2 ẋ(ς)dς (6)

where P0 + ℓ(t)P1 > 0, and R1, R2, Q1, Q2 are positive definite symmetric matrices.
Derive V(t) to obtain:

V̇(t) =2φT
1 (t)(P0 + ℓ(t)P1)φ̇1(t) + ℓ̇(t)φT

1 (t)P1 φ1(t) + φT
2 (t)Q1 φ2(t)

− (1 − ℓ̇(t))φT
2 (t − ℓ(t))(Q1 −Q2)φ2(t − ℓ(t))− φT

2 (t − dM)Q2 φ2(t − dM)

− (1 − ℓ̇(t))(dM − ℓ(t))ẋT(t − ℓ(t))(R1 −R2)ẋ(t − ℓ(t))

+ dM ẋT(t)R1 ẋ(t) + J1 + J2, (7)

where

J1 =−
∫ t

t−ℓ(t)
ẋT(ς)R1 ẋ(ς)dς, J2 = −

∫ t−ℓ(t)

t−dM

ẋT(ς)R2 ẋ(ς)dς
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Employing the inequality in (2), the integral terms J1 and J2 can be estimated as follows:

J1 + J2 ≤ ζT(t){Sym{LT
1 N1 + LT

2 N2}+ ℓ(t)N T
1 R̂−1

1 N1

+ (dM − ℓ(t))N T
2 R̂−1

2 N2}ζ(t) (8)

where L1, L2 are listed in Theorem 1, N1, N2 are arbitrary matrices with suitable dimen-
sions, and the new augmented vector

ζ(t) =
[

xT(t) xT(t − ℓ(t)) xT(t − dM) ẋT(t − ℓ(t)) ẋT(t − dM)
1

ℓ(t)
ρT

1 (t)

1
dM − ℓ(t)

ρT
2 (t) ρT

1 (t) ρT
2 (t) ρT

3 (t) ℓ(t)xT(t) (dM − ℓ(t))xT(t − ℓ(t))
]T

. (9)

Define the following vector

Ψ(ℓ(t)) =
[
ℓ(t)gT

6 − gT
10 ℓ(t)gT

7 − gT
11 (dM − ℓ(t))gT

8 − gT
12 (dM − ℓ(t))gT

9 − gT
13

ℓ(t)gT
11 − gT

14 (dM − ℓ(t))gT
13 − gT

15 ℓ(t)gT
1 − gT

16 (dM − ℓ(t))gT
2 − gT

17

]T
(10)

where gκ =
[
0n×(κ−1)n In 0n×(17−κ)n

]
, κ = 1, 2, . . . , 17.

Based on the defined augmented variable (9), it is known that the existence of matrices
W1 and W2 with any suitable dimensions can make the zero Equation (11) hold. The
following zero equality can be derived:

0 =2
(
(W1 + ℓ̇(t)W2)Ψ(ℓ(t))

)
ζ(t). (11)

On the basis of (7), (8) and (11), we have

V̇(t) ≤ζT(t)
(
Ξ(ℓ(t), ℓ̇(t)) + ℓ(t)N T

1 R̄−1
1 N1 + (dM − ℓ(t))N T

2 R̄−1
2 N2

)
ζ(t) (12)

where Ξ(ℓ(t), ℓ̇(t)) is defined in Theorem 1.
By applying the Schur complement lemma, if LMIs (4) and (5) are satisfied, it can be

verified that Ξ(ℓ(t), ℓ̇(t)) + ℓ(t)N T
1 R̄−1

1 N1 + (dM − ℓ(t))N T
2 R̄−1

2 N2 < 0 holds when the
time delay 0 ≤ ℓ(t) ≤ dM. Then, there exists a sufficient ς > 0 such that V̇(t) < −ς|x(t)|2,
which verifies that system (1) is asymptotically stable.

Remark 1. On the basis of the traditional augmented functional, this paper adds double integral
terms

∫ t
t−ℓ(t)

∫ t
s xT(υ)dυds and

∫ t−ℓ(t)
t−dM

∫ t−ℓ(t)
s xT(υ)dυds to φ1(t), and then the new information

of double integral terms can be considered. At the same time, the existence of a delay product
matrix (P0 + ℓ(t)P1) allows more effective delay cross information to be captured by the Lyapunov
functional. Due to the presence of the delay product matrix (P0 + ℓ(t)P1), defining the conventional
ζ(t) would lead to the derived Lyapunov functional derivative being in quadratic form with a
delayed higher order. Therefore, to represent the Lyapunov functional derivative in the form of a
linear quadratic matrix, novel augmented variables [ρ3(t) ℓ(t)x(t) (dM − ℓ(t))x(t − ℓ(t))] are
introduced into ζ(t), as shown in (9). As a result, the derived V̇(t) is a linear quadratic form of ℓ(t).
This method not only simplifies the analysis process of system problems, but also provides a more
efficient and accurate means for analyzing and controlling time-delay systems. Especially when
dealing with complex dynamic systems, this method can significantly reduce the computational
complexity and improve the operability of mathematical models.

Remark 2. Inspired by the literature [35–37], this paper adopts a time-varying matrix W1 + ℓ̇(t)W2 to
link the new variables introduced in ζ(t), allowing for a more flexible connection of the zero equations
generated by the newly augmented variables. This approach breaks away from the traditional
framework that relies on fixed constant connection matrices W1, offering a more diversified and
dynamic way of linking. Additionally, the introduction of the time-varying matrix (W1 + ℓ̇(t)W2)
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provides the possibility of capturing more effective information for stability analysis, which can
reveal more complex dynamic relationships in time-delay systems, thereby offering the potential to
derive better stability criteria.

For the sake of facilitating the verification of the benefits of the augmented functional
constructed in this article, another stability criterion can be easily obtained by removing
double integral terms

∫ t
t−ℓ(t)

∫ t
s xT(ς)dςds and

∫ t−ℓ(t)
t−dM

∫ t−ℓ(t)
s xT(ς)dςds from φ1(t) and

removing [ρT
3 (t) ℓ(t)xT(t) (dM − ℓ(t))xT(t − ℓ(t))] from ζ(t) accordingly.

Corollary 1. For the given delay parameters µ and dM, linear system (1) with delay-satisfying
boundary restriction condition (3) is stable if some positive definite matrices Q̄1, R̄1, R̄2, Q̄2;
symmetric matrices P̄0, P̄1 satisfying P̄0 + ℓ(t)P̄1 > 0; and arbitrary matrices N̄1, N̄2, W̄1, W̄2
exist such that (13) and (14) are feasible:[

Ξ̄(0, ℓ̇(t)) dMN̄ T
2

∗ −dMR̃2

]
< 0 (13)

[
Ξ̄(dM, ℓ̇(t)) dMN̄ T

1
∗ −dMR̃1

]
< 0 (14)

where

Ξ̄(ℓ(t), ℓ̇(t)) = Ξ̄0(ℓ(t), ℓ̇(t)) + Ξ̄1(ℓ(t), ℓ̇(t))

Ξ̄0(ℓ(t), ℓ̇(t)) = Sym{λ̄T
1 (P̄0 + ℓ(t)P̄1)D̄1}+ ℓ̇(t)D̄T

1 P̄1D̄1 + D̄T
2 Q̄1D̄2

+ (1 − ℓ̇(t))D̄T
3 (Q̄2 − Q̄1)D̄3 − D̄T

4 Q̄2D̄4

+ dM ḡT
0 R1 ḡ0 − (1 − ℓ̇(t))(dM − ℓ(t))ḡT

4 (R̄1 − R̄2)ḡ4

Ξ̄1(ℓ(t), ℓ̇(t)) = Sym{(W̄1 + ℓ̇(t)W̄2)Ψ(ℓ(t)) + L̄T
1 N̄1 + L̄T

2 N̄2}

with

D̄1 =[ḡT
1 , ḡT

2 , ḡT
3 , ḡT

10, ḡT
11, ḡT

12, ḡT
13]

T

λ̄1 =[ḡT
0 , (1 − ℓ̇(t))ḡT

4 , ḡT
5 , ḡT

1 − (1 − ℓ̇(t))ḡT
2 , ḡT

1 − (1 − ℓ̇(t))ḡT
6 − ℓ̇(t)ḡT

7 ,

(1 − ℓ̇(t))ḡT
2 − ḡT

3 , (1 − ℓ̇(t))ḡT
2 − ḡT

8 + ℓ̇(t)ḡT
9 ]

T

D̄2 =[ḡT
1 , ḡT

0 ]
T , D̄3 = [ḡT

2 , ḡT
4 ]

T , D̄4 = [ḡT
3 , ḡT

5 ]
T

L̄l =[ḡT
1 − ḡT

2 , ḡT
1 + ḡT

2 − 2ḡT
6 , ḡT

1 − ḡT
2 + 6ḡT

6 − 12ḡT
7 ]

T

L̄l =[ḡT
2 − ḡT

3 , ḡT
2 + ḡT

3 − 2ḡT
8 , ḡT

2 − ḡT
3 + 6ḡT

8 − 12ḡT
9 ]

T

ḡ0 =Aḡ1 + Ad ḡ2, R̃i = diag{R̄i, 3R̄i, 5R̄i}
ḡκ =

[
0n×(κ−1)n In 0n×(13−κ)n

]
, κ = 1, . . . , 13.

Proof. The proof process is consistent with Theorem 1.

3.2. Periodic Time-Varying Delay

Similar to references [38,39], in this subsection, we study the stability of systems
under periodic time-varying delays. It is assumed that the time-delay function ℓ(t) is
monotone decreasing in the intervals [t2p, t2p+1) and monotone increasing in the intervals
[t2p+1, t2(p+1)], where p ∈ N. Assume that the delay and its derivative boundary satisfy:

0 ≤ ℓ(t) ≤ dM, − µ ≤ ℓ̇(t) ≤ µ (15)

Then, we have ℓ(t2p) = dM and ℓ(t2p+1) = 0.



Mathematics 2024, 12, 1638 7 of 14

Considering the known monotonic increasing and decreasing intervals of the time
delay, a Lyapunov function can be constructed separately for each of these intervals.
Inspired by [38,39], based on the loop functional idea, two distinct Lyapunov functionals
were constructed for the monotonic increasing and decreasing intervals, respectively.

Ṽ(t) =

{
V(t) + W1(t), t ∈ [t2p, t2p+1)

V(t) + W2(t), t ∈ [t2p+1, t2(p+1)]
(16)

where

Wi(t) =2χT
1 (t)Xiχ2(t) + (ℓ(t)− dM)

∫ t

t−ℓ(t)
ẋT(ς)Z1i ẋ(ς)dς

+ ℓ(t)
∫ t−ℓ(t)

t−dM

ẋT(ς)Z2i ẋ(ς)dς, i = {1, 2} (17)

with

χ1(t) =
[
ℓ(t)

(
xT(t − dM)− xT(t − ℓ(t))

)
(dM − ℓ(t))

(
xT(t)− xT(t − ℓ(t))

) ]T

χ2(t) = ρ0(t).

In the monotonically decreasing interval [t2p, t2p+1), lim
t→t2p

W1(t) = lim
t→t2p+1

W1(t) = 0 holds,

satisfying the looped function construction rule in [40,41]. For more information about the
looped function, please refer to [40,41]. Based on the looped function defined in [40,41], it is not
necessary to constrain the positive definiteness of W1(t). Consequently, the positive definiteness
of Ṽ(t) = V(t) +W1(t) can be inferred from V(t) > 0. The same is true for the monotonically
increasing interval [t2p+1, t2(p+1)). So, the coupling matrices in W1(t) and W2(t) do not need
to be positive definite, which relaxes the positive definiteness restriction of the constructed
Lyapunov functional.

Theorem 2. For given delay parameters µ and dM, linear system (1) with a periodic delay meeting
boundary restriction (15) is stable if some symmetric matrices Z1i, Z2i; positive definite matrices
R1, R2, Q1, Q2; symmetric matrices P0, P1 satisfying P0 + ℓ(t)P1 > 0; and arbitrary matrices
Xi, F1i, F2i, W1i, W2i(i = 1, 2) exist such that (18)–(21) are feasible,[

Υ1(0, ℓ̇(t)) dMFT
21

∗ −dMR̄z21

]
ℓ̇(t)∈[−µ, 0]

< 0 (18)

[
Υ1(dM, ℓ̇(t)) dMFT

11
∗ −dMR̄z11

]
ℓ̇(t)∈[−µ, 0]

< 0 (19)

[
Υ2(0, ℓ̇(t)) dMFT

22
∗ −dMR̄z22

]
ℓ̇(t)∈[0, µ]

< 0 (20)

[
Υ2(dM, ℓ̇(t)) dMFT

12
∗ −dMR̄z12

]
ℓ̇(t)∈[0, µ]

< 0 (21)

where

Υi(ℓ(t), ℓ̇(t)) = Ξ0(ℓ(t), ℓ̇(t)) + Φi(ℓ(t), ℓ̇(t))

Φi(ℓ(t), ℓ̇(t)) = Sym{λ̄T
1 XiΠ2 + ΠT

1 Xiλ̄2 + (W1i + ℓ̇(t)W2i)Ψ(ℓ(t)) + LT
1 F1i

+ LT
2 F2i}+ (ℓ(t)− dM)

(
gT

0 Z1ig0 − (1 − ℓ̇(t))gT
4 Z1ig4

)
+ ℓ(t)

(
(1 − ℓ̇(t))gT

4 Z2ig4 − gT
5 Z2ig5

)
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with

Π1 =[ℓ(t)(gT
3 − gT

2 ), (dM − ℓ(t))(gT
1 − gT

2 )]
T

λ̄1 =[ℓ̇(t)(gT
3 − gT

2 ) + ℓ(t)(gT
5 − (1 − ℓ̇(t))gT

4 ),

− ℓ̇(t)(gT
1 − gT

2 ) + (dM − ℓ(t))(gT
0 − (1 − ℓ̇(t))gT

4 )]
T

Π2 =[gT
1 , gT

2 , gT
3 ]

T , λ̄2 = [gT
0 , (1 − ℓ̇(t))gT

4 , gT
5 ]

T

R̄zji =diag{Rzji, 3Rzji, 5Rzji}, Rzji = Rj − ℓ̇(t)Zji.

Proof. First, consider the decreasing subinterval [t2p, t2p+1). The derivative of W1(t) gives

Ẇ1(t) =2χ̇T
1 (t)X1χ2(t) + 2χT

1 (t)X1χ̇2(t) + (ℓ(t)− dM)
(

ẋT(t)Z11 ẋ(t)

− (1 − ℓ̇(t))ẋT(t − ℓ(t))Z11 ẋ(t − ℓ(t))
)
− ẋT(t − dM)Z21 ẋ(t − dM)

)
+ ℓ(t)((1 − ℓ̇(t))ẋT(t − ℓ(t))Z21 ẋ(t − ℓ(t)) +K1 +K2. (22)

where

K1 =ℓ̇(t)
∫ t

t−ℓ(t)
ẋT(φ)Z11 ẋ(φ)dφ, K2 = ℓ̇(t)

∫ t−ℓ(t)

t−dM

ẋT(φ)Z21 ẋ(φ)dφ.

Considering the integral terms J1 and J2 in (7) and combining them with Lemma 1,
the following integral estimation expressions can be obtained for any matrices F11 and F21.

J1 + J2 +K1 +K2 ≤ ζT(t){Sym{LT
1 F11 + LT

2 F21}+ ℓ(t)FT
11R̄−1

z11F11

+ (dM − ℓ(t))FT
21R̄−1

z21F21}ζ(t) (23)

where R̄zi1 is the delay derivative dependence matrix, specifically R̄zi1 = diag{Rzi1, 3Rzi1,
5Rzi1}, and Rzi1 = Ri − ℓ̇(t)Zi1.

Additionally, by introducing arbitrary matrices W11 and W21, the time-varying zero
equation in (11) can be modified to the following time-varying zero equality:

0 =2ζT(t)
(
(W11 + ℓ̇(t)W21)Ψ(ℓ(t))

)
ζ(t). (24)

Combining the derivative function V̇(t) in (7) with (22)–(24), the derivative function
of the monotone decreasing interval can be derived:

˙̃V(t) ≤ζT(t)
(
Υ1(ℓ(t), ℓ̇(t)) + ℓ(t)FT

11R̄−1
z11F11 + (dM − ℓ(t))FT

21R̄−1
z21F21

)
ζ(t) (25)

where Υ1(ℓ(t), ℓ̇(t)) is listed in Theorem 2. If LMIs (18) and (19) hold, then Υ1(0, ℓ̇(t)) +
dMFT

21R̄
−1
z21F21 < 0 and Υ1(dM, ℓ̇(t)) + dMFT

11R̄
−1
z11F11 < 0 hold for ℓ̇(t) ∈ [−µ, 0]. Then,

there exists a scalar σ1 > 0 that meets ˙̃V(t) < −σ1|x(t)|2.
For the monotone increasing interval [t2p+1, t2(p+1)], the Lyapunov functional deriva-

tive (26) can be obtained by using a process and method similar to those for the monotone
decreasing interval [t2p, t2p+1).

˙̃V(t) ≤ζT(t)
(
Υ2(ℓ(t), ℓ̇(t)) + ℓ(t)FT

12R̄−1
z12F12 + (dM − ℓ(t))FT

22R̄−1
z22F22

)
ζ(t). (26)

Accordingly, there exists a scalar σ2 > 0 such that ˙̃V(t) < −σ2|x(t)|2 if LMIs (20) and (21)
hold.

Therefore, it is concluded that ˙̃V(t) < −σm|x(t)|2 for t ∈ [t2p, t2(p+1)], where σm =
min{σ1, σ2}. Therefore, the system (1) is stable.

Remark 3. Like references [38,39], this paper constructs two different Lyapunov functionals for
monotone increasing and decreasing intervals, respectively. This method effectively relaxes the
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traditional limitation of constructing only one Lyapunov functional. Thus, information on periodic
time delays can be captured more accurately, improving the stability analysis accuracy. Compared
to [38,39], the Lyapunov functional proposed in this paper incorporates more comprehensive and
practical delay information. This achievement stems from using augmented variable methods,
particularly integrating some delay-product-type augmented terms. These augmented terms enhance
the functional’s ability to capture the system’s dynamic characteristics deeply and create conditions
for obtaining more effective cross-term information. This approach can further optimize the precision
of stability determination criteria. Research on periodic time-varying delays has yet to involve these
enhanced techniques extensively. Therefore, based on these improved techniques, we can derive a
less conservative stability condition for periodic time-varying delay systems, which, to some extent,
extends and deepens the studies in the literature [38,39].

Remark 4. Considering that the defined ζ(t), Ψ(ℓ(t))ζ(t) is always equal to 0, to further relax the
conservatism of the stability determination condition in the case of time-varying periodic delays,
different time-varying zero equations are introduced for these two different delay intervals,
namely

(
(W11 + ℓ̇(t)W21)Ψ(ℓ(t))

)
ζ(t) = 0 for the monotone decreasing interval and

(
(W12 +

ℓ̇(t)W22)Ψ(ℓ(t))
)
ζ(t) = 0 for the monotone increasing interval.

4. Examples Simulation

This part will elucidate the advantages of the stability criteria derived from the meth-
ods presented in this paper through three detailed examples.

Example 1. Consider linear system (1) with the following system matrices:

A =

[
−2.0 0.0
0.0 −0.9

]
, Ad =

[
−1.0 0.0
−1.0 −1.0

]
.

Time-delay systems with the aforementioned system parameters are typically used to
evaluate the advantages and disadvantages of stability determination criteria. Based on
Corollary 1 and Theorem 1 derived in this article, the maximum delay upper bound (DUB)
under the given delay derivative boundary µ = {0.1, 0.5, 0.8} is calculated. The calculated
maximum DUBs and the existing results are presented in Table 1. From this table, it can
be observed that Theorem 1 can obtain a larger DUB, which indicates that the functional
developed in this article plays a positive role in reducing the conservatism of stability
determination criteria. By comparing the DUBs derived from Corollary 1 and Theorem 1,
we observe that the results from Theorem 1 are superior. This finding indicates that the
additional variables and functional terms introduced in this paper contribute to achieving
better stability conditions. These added variables and functional items enhance the stability
analysis results to capture the system’s dynamic information, thereby leading to a more
refined stability criterion. It is worth noting that in [18], it is assumed that the second-order
derivatives of the system state, ẍ(t), can be obtained. Relatively better stability conditions
are achieved by using the information of ẍ(t) to construct the Lyapunov functional. If the
information of ẍ(t) can be obtained and included in the Lyapunov functional constructed
in this paper, similarly good results can be achieved. Additionally, when the time-varying
matrix (W̄1 + ℓ̇(t)W̄2) degenerates to W̄1, the calculated DUBs significantly decrease. This
change indicates that the approach of using time-varying matrices to link the zero equalities
generated by augmented variables in this paper has successfully enhanced the effectiveness
of the stability conditions.

The maximum DUBs of the stability criterion derived in this paper were calculated
under a periodic time-varying delay, and the results are listed in Table 2. For the conve-
nience of a comparison, the existing results under periodic time-varying delay are also
given in Table 2. From Table 2, it can be observed that the maximum DUBs obtained
by Theorem 2 are significantly larger than those in [38,39], indicating that the stability
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conditions derived using the techniques used in this article are superior in the case of
known periodic time-varying delays.

From the results presented in Tables 1 and 2, the stability result obtained in this paper
is only a sufficient condition, and there is still some conservatism. However, compared with
the existing results [5,13,14,34,35,42–45], it is less conservative. Therefore, new methods
must still be explored in the future to obtain the necessary and sufficient stability criteria
for time-delay systems.

Table 1. Maximum DUBs dM for Example 1 with a non-periodic time-varying delay.

µ 0.1 0.5 0.8

[13] 4.910 3.233 2.789
[34] 4.921 3.221 2.792
[42] 4.93 3.09 2.66
[45] 4.993 3.474 3.053
[5] 5.015 3.452 3.030
[14] 5.102 3.411 2.981
[43] 5.026 3.428 2.997
[44] 5.097 3.549 3.147
[35] 5.110 3.593 3.119

Theorem 1 5.122 3.598 3.1406
Corollary 1 5.095 3.485 3.0078

Corollary 1 with W̄2 = 0 4.949 3.339 2.9258

Table 2. Maximum DUBs dM for Example 1 with a periodic time-varying delay.

µ 0.1 0.2 0.5 0.8

[38] 5.10 4.57 3.78 3.38
[39] 5.44 5.00 4.18 3.66

Theorem 2 5.70 5.38 4.75 4.32

To verify the results presented in Table 2, we plot the state trajectory under periodic
time-varying delay ℓ(t) = 5.7

2 + 5.7
2 sin( 0.2t

5.7 ) with µ = 0.1 and dM = 5.7, as shown in
Figure 1. Here, the initial condition is set as x0(t) = [0.5,−1]. Clearly, as time progresses,
all states eventually converge to zero, indicating that the system remains stable under
periodic time-varying delay with ℓ(t) = 5.7

2 + 5.7
2 sin( 0.2t

5.7 ).

Figure 1. State trajectory for system (1) with ℓ(t) = 5.7
2 + 5.7

2 sin( 0.2t
5.7 ).

Example 2. Consider linear system (1) with the following system matrices:

A =

[
0 1
−1 −2

]
, Ad =

[
0 0
−1 −1

]
.
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For the specified delay derivative boundaries µ = {0.1, 0.2, 0.5, 0.8}, the maximum
DUB has been calculated based on the stability criteria of Corollary 1 and Theorem 1 and
is presented in Table 3 alongside the existing results. From Table 3, it is evident that the
stability criteria provided by Theorem 1 offer larger DUBs. This further demonstrates the
superiority of the methodology proposed in this paper.

Table 3. Maximum DUBs dM for Example 2.

µ 0.1 0.2 0.5 0.8

[8] 7.176 4.543 2.496 1.922
[13] 7.230 4.556 2.509 1.940
[34] 7.308 4.670 2.664 2.072
[43] 7.651 4.936 2.764 2.114
[5] 7.656 4.992 2.868 2.172
[45] 7.677 4.996 2.815 2.146
[44] 7.730 5.034 2.841 2.176
[35] 7.741 5.054 2.858 2.200

Theorem 1 7.790 5.109 2.893 2.206
Corollary 1 7.721 5.017 2.822 2.158

Corollary 1 with W̄2 = 0 7.557 4.948 2.788 2.130

Example 3. Consistent with [46], an example of single-area load frequency control is considered,
and its model can be expressed as:

x(t) =
[

∆ f ∆Pm ∆Pv
∫

ACE
]T ,

A =


− D

M
1
M 0 0

0 − 1
Tt

1
Tt

0
− 1

TgS 0 − 1
Tg

0
ρ 0 0 0

,

Ad =


0 0 0 0
0 0 0 0

− ρKp
Tg

0 0 − Ki
Tg

0 0 0 0

,

(27)

where
∫

ACE, ∆Pv, ∆Pm, and ∆ f represent the integral of the area control error, valve position
deviation, mechanical generator output and frequency deviation, respectively. In addition, M = 10
and D = 1.0 represent the moment of inertia and generator damping coefficient; Tt = 0.3 and
Tg = 0.1 are the time constants for the turbine and governor. ρ = 21 and S = 0.05 denote
the frequency bias factor and speed drop, while Ki = 0.2 and Kp = 0.05 represent the controller
gain matrix. To compare with the existing results, we chose µ = {0.1, 0.5, 0.9} for simulations,
and the obtained results are given in Table 4. It can be found that the maximum DUBs obtained
by Theorem 1 are better than those in [8,34,44] and Corollary 1, which once again verifies the
advantages of the technology used in this paper.

Table 4. Maximum DUBs dM for Example 3.

µ 0.1 0.5 0.9

[8] - - 4.76
[34] 7.38 7.09 6.98
[44] 7.48 7.27 7.15

Theorem 1 7.4959 7.2950 7.1630
Corollary 1 7.4930 7.2859 7.1563

Corollary 1 with W̄2 = 0 7.4902 7.2681 7.1289
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Based on the maximal DUBs obtained from Theorem 1, the state of system (27) is
plotted in Figure 2. Here, the time delay ℓ(t) is considered as 7.49

2 + 7.49
2 sin( 0.2t

7.49 ), and the
initial condition x0(t) is set to x0(t) = [0.5, − 1, 0.5, 1]. It can also be observed that all
states tend to stabilize.

Figure 2. State trajectory for system (27) with ℓ(t) = 7.49
2 + 7.49

2 sin( 0.2t
7.49 ).

5. Conclusions

This paper has investigated the stability issues of a class of linear systems with
bounded time-varying delays and periodic time-varying delays. Novel Lyapunov function-
als have been constructed using the augmented variable method for these two time-varying
delay cases. Based on the constructed Lyapunov functionals and time-varying matrix-
dependent zero equations, some less conservative stability determination conditions have
been obtained separately for these two delay scenarios. The benefits of the presented
approach have been validated through three numerical examples. In future work, we
will consider the control problem of time-delay systems with disturbances and uncertain-
ties [47,48] and develop a new method with a lower computational complexity and less
conservatism for studying time-delay system control problems.
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