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Abstract

:

It is becoming increasingly common for software to operate in various environments. However, even if the software performs well in the test phase, uncertain operating environments may cause new software failures. Traditional proposed software reliability models under uncertain operating environments suffer from the problem of being well-suited to special cases due to the large number of assumptions involved. To improve these problems, this study proposes a new software reliability model that assumes an uncertain operating environment. The new software reliability model is a model that minimizes assumptions and minimizes the number of parameters that make up the model, so that the model can be applied to general situations better than the traditional proposed software reliability models. In addition, various criteria based on the difference between the predicted and estimated values have been used in the past to demonstrate the superiority of the software reliability models. Also, we propose a new multi-criteria decision method that can simultaneously consider multiple goodness-of-fit criteria. The multi-criteria decision method using ranking is useful for comprehensive evaluation because it does not rely on individual criteria alone by ranking and weighting multiple criteria for the model. Based on this, 21 existing models are compared with the proposed model using two datasets, and the proposed model is found to be superior for both datasets using 15 criteria and the multi-criteria decision method using ranking.
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1. Introduction


Software is a set of programs organized by an algorithm to perform a specific task. With the development of technology, many fields have become increasingly dependent on software. As software is used in many areas, there has been significant interest in its reliability. Software reliability is a measurement of how long software can be used without failure. Because software is utilized in many fields, if it fails or is unreliable, it will cause significant problems, highlighting the importance of software reliability.



Considerable research has been conducted on software reliability. Various methods have been used to estimate and predict software failures, such as error-seeding models, failure rate models, curve-fitting models, time series models, and nonhomogeneous Poisson processes (NHPPs). The NHPP software reliability model (SRM) is the most representative of these research methodologies. The NHPP SRM was developed by Goel and Okumoto in 1979. They proposed an SRM assuming that the occurrence of failures increases exponentially over time [1,2]. Based on this, an SRM that assumes that the cumulative failure of software increases in an S-shaped curve was developed [3,4,5,6], and research on SRMs that reflects the various efforts put into the testing phase to measure software reliability was conducted. In addition, SRMs that assume incomplete debugging, that is, where failures and defects that occur may not be corrected, have been proposed [7], and many SRMs that assume generalized incomplete debugging have been studied [8,9,10,11,12].



Software structures have become increasingly diverse and complex because they are actively used in many industries. Because of the complex organization of software, the failures that occur are not independent, and software failures can have dependent effects on other software failures [13,14]. Kim et al. [15] and Lee et al. [16] proposed an SRM that assumed that software failures occur in a dependent manner.



Because software is used in many different ways, its roles have become very diverse, and the environment provided to each piece of software has also become very diverse. Many studies have been conducted on SRMs that assume uncertainty in operating environments [17,18,19,20,21,22,23,24,25,26]. Here, uncertain operating environments refer to the environments used by actual consumers. To assume uncertain operating environments, Teng and Pham [18] and Pham [19] proposed an SRM utilizing a gamma distribution, and Song et al. [20] assumed the uncertain operating environments to be exponential and applied the failure detection rate function as a monotonically increasing function to present a new model for uncertain operating environments. Many researchers have proposed an SRM that considers uncertain factors [21,22,23,24]. Chang et al. [25] proposed an SRM that considers testing coverage, which indicates whether sufficient tests have been performed in uncertain operating environments. Lee et al. [26] proposed an uncertain operating environment SRM that assumes dependent failures to reflect a complex software structure.



In this study, we propose a new NHPP SRM that considers the uncertain operating environments of software. Traditional NHPP SRMs that consider uncertain operating environments include several mathematical assumptions, which make the model very complicated and suffer from the problem that it only fits well in special cases with assumptions. Our proposed new NHPP SRM minimizes the mathematical assumptions and can be better applied to general situations than traditional SRMs. In addition, while past software reliability studies judged the excellence of a model based on various criteria such as the difference between the predicted and estimated values of the developed SRM, we propose a multi-criteria decision method using ranking (MCDMR) that considers multiple criteria simultaneously through ranking. Section 2 introduces the SRM and the new NHPP model that considers uncertain operating environments. Section 3 introduces integrated criteria enabling the consideration of multiple criteria simultaneously, and Section 4 explains the numerical example results. Finally, Section 5 concludes this paper.




2. A New Software Reliability Model


2.1. Software Reliability Model


Software reliability assesses how long a piece of software can be used without failure. The reliability function   R ( t )   used to evaluate the software reliability is given by the following equation:


  R   t   = P ( T > t ) =   ∫  t   ∞    f   u     d u  











It is defined as the probability that the system is still operating after time   t  . The reliability function   R ( t )   is derived from the probability density function   f ( t )   by assuming the lifetime or failure time to be a random variable   T  . To calculate the reliability function   R ( t )  , the number of failures per unit time is assumed to be Poisson distributed with mean   λ  . However, the mean number of failures per unit time is a constant and does not depend on time. To improve this, many traditional SRMs follow a non-homogeneous Poisson process (NHPP) with a time-dependent mean value function   m ( t )   per unit time. The NHPP is represented by the following equation:


    Pr    { N   t   = n }   =   {   m ( t ) }   n     n !     e   − m ( t )   ,   n = 0 , 1 , 2 , ⋯ , t ≥ 0  








where   N ( t )   is the total number of events in a given time and   m ( t )   is the mean value function from time   0   to time   t  . The   m ( t )   is derived as follows:


  m   t   =   ∫  0   t    λ   s     d s  








  m ( t )   is the integral of the intensity function   λ ( t )  , which is the instantaneous number of failures at time   t  , and the mean number of failures from time   0   to time   t  . From this relationship, the reliability function   R ( t )   is derived as follows.


  R   t   =   e   −   ∫  0   t    λ   s     d s   =   e   − m   t      











The reliability function   R ( t )   is calculated from the intensity function   λ ( t )   and   m ( t )   to improve software reliability.




2.2. Proposed NHPP SRM


The mean value function   m ( t )   through the NHPP is calculated as a differential equation, where   a ( t )   is the number of failures at each time point and   b ( t )   is the failure detection rate. The most basic differential equation is shown in Equation (1).


    d m ( t )   d t   = b   t   [ a   t   − m ( t ) ]  



(1)







It assumes that the software has the same operating environment and that software failures occur independently. Traditional SRMs define   a ( t )   and   b ( t )   as in Equation (1) and solve the differential equation to obtain the SRM in Equation (2).


  m ( t ) =   e   −   ∫    t   0     t    b   τ   d τ     [   m   0   +   ∫    t   0     t    a   τ   b   τ     e   −   ∫    t   0     t    b   τ   d τ     d τ   ]  



(2)




where     m   0     is the initial condition, and     t   0     is the start time of the debugging process.



However, the environment in which the software operates varies significantly depending on the function or environment of the software. For example, the operating system and computer specifications of users of the developed software vary widely, but it is not practical for companies to release tests that consider all situations; therefore, the errors that may occur in different environments vary widely. Therefore, considering the uncertainty of the environment in which the software is operated can increase software reliability. In this study, we propose an NHPP SRM that considers uncertain operating environments. Furthermore, our proposed NHPP SRM that considers uncertain operating environments follows the following assumptions.




	⯀

	
The initial condition of the   m   t     is   m   0   = 0 ;  




	⯀

	
  a   t   = N   is the expected number of software faults before testing;




	⯀

	
  η   follows a gamma distribution with   α   and   β  ;




	⯀

	
  β   is a parameter containing the failure detection rate.









Our proposed SRM considers uncertain operating environments by extending the differential equations that derive the traditional SRM to assume uncertain operating environments. The differential equation for the model is derived by adding the uncertain operating environment parameter   η  , as in Equation (3):


    d m ( t )   d t   = η b   t     a   t   − m   t      



(3)




where the parameter   η   follows a gamma distribution with parameters   α   and   β  , and the scale parameter,   β  , contains the fault detection rate of the software.



The proposed model uses   α   and   β   drawn from the gamma distribution rather than the other parameters that make up the traditional   a ( t )   and   b ( t )  . The parameter   η   in Equation (3) follows a gamma distribution with parameters   α   and   β  , where   a ( t )   is   a   t   = N   and   b   t     is   b   t   =     β   2   t   β t + 1    .   N   is the total expected number of failures, and   α   and   β   are the shape and scale parameters for parameter   η   in uncertain operating environments. Substituting this into Equation (3) gives Equation (4):


  m   t   =   N   1 −   β   α +   ∫  0   t    b   s     d s       α    



(4)







In Equation (4), because   b   t     is   b   t   =     β   2   t   β t + 1    , through substitution and summary, the NHPP SRM assumes uncertain operating environments expressed in the final form of Equation (5). Traditional NHPP SRMs for uncertain operating environments have proposed models with multiple assumptions, often consisting of four or more parameters [18,19,20,25,26]. However, these models make a number of assumptions that may be appropriate for particular situations. The proposed NHPP SRM contains fewer parameters than the previously proposed uncertain operating environment SRM. It does not contain many assumptions and can be judged as a model for general situations rather than for special situations.


  m   t   =   N   1 −   β   α +   ∫  0   t        β   2   t   β t + 1     d s       α   =   N   1 −   β   α + β t − l n    β t + 1         α    



(5)







Table 1 shows the mean value functions of the traditional SRM and the proposed model. Models 1–14 are SRMs with independent assumptions, models 15–18 are SRMs considering uncertain operating environments, models 19 and 20 are SRMs considering dependent failures, model 21 is an SRM considering dependent failure models and uncertain operating environments, and model 22 is the proposed SRM considering uncertain operating environments. For detailed construction information on models 1 to 21, see the papers on the proposed models.





3. Multi-Criteria Decision Method Using Ranking


To demonstrate the reliability of the software, multiple criteria are used based on the distance between the actual and estimated values. We propose a new measure that integrates the proposed multiple-criteria measures using multi-criteria decision-making (MCDM). The traditional MCDM method integrates qualitative measures of quantitative analysis to reflect the variability of the indicators. In MCDM, the most important issue is determining weights based on these criteria. Singh [27] recommended an approach using Monte Carlo simulation, and Saxena et al. [28], Kumar et al. [29], and Grag et al. [30] used the entropy method to determine the criteria weights, and a technique for order preference by similarity to an ideal solution (TOPSIS) method was used to rank the criteria of SRMs. Our proposed integrated MCDMR reflects the ranking of each suitability among the methods to determine the weights.



First, matrix   C   is constructed using the SRMs to be compared, and the criteria are calculated by the models. The ranking of each model for each criterion is then organized in matrix   R  :


  C =           C   11       C   12         C   21       C   22        ⋯        C   1 k         C   2 k          ⋮   ⋱   ⋮          C   s 1       C   s 1        ⋯     C   s k 1        ,     R =           R   11       R   12         R   21       R   22        ⋯        R   1 k         R   2 k          ⋮   ⋱   ⋮          R   s 1       R   s 1        ⋯     R   s k 1         











Based on this, a new     y   i j     is created by normalizing each fitness by     y   i j   =     C   i j       ∑  i = 1   s      C   i j       ( i = 1 , 2 , ⋯ , m , j = 1 , 2 , ⋯ , n )   for objective criteria, and the ranking of each fitness by     w   i j   =     r   i j       ∑  i = 1   m      r   i j       ( j = 1 , 2 , ⋯ , n )   is transformed to create a weight     w   i j    . Matrix   V   is created by multiplying the new normalized     y   i j     by weight     w   i j    .


  V =           V   11       V   12         V   21       V   22        ⋯        V   1 k         V   2 k          ⋮   ⋱   ⋮          V   s 1       V   s 1        ⋯     V   s k 1        =           w   11     y   11       w   12     y   12         w   21     y   21       w   22     y   22        ⋯        w   1 k     y   1 k         w   2 k     y   2 k          ⋮   ⋱   ⋮          w   s 1     y   s 1       w   s 2     y   s 2        ⋯     w   s k     y   s k         











The MCDMR defines     V   1    ,   ⋯  ,     V   s     as the sum of all components of each row in a matrix   V  . For example,     V   1     for the first row is the sum of the components from     V   11     to     V   1 k    .


  M C D M R =        V   11   +   V   12   + ⋯ +   V   1 k            V   21   +   V   22   + ⋯ +   V   2 k       ⋮          V   s 1   +   V   s 2   + ⋯ +   V   s k        =        V   1            V   2       ⋮          V   s         











After computing the MCDMR for each     V   1     to     V   s    , the smaller the value displayed, the better the corresponding SRGM. This is useful for a comprehensive judgment because it not only relies on individual criteria but also considers criteria with multiple features simultaneously. Therefore, our proposed MCDMR simultaneously considers multiple fits by ranking.




4. Numerical Example


4.1. Data Information


Two datasets were used in this study. The first dataset comprises failure data from software developed by Bell Labs [31]. The software consists of 21,700 instructions written by nine programmers. Failure data were observed for 12 h, and 104 failures were observed. The second dataset was obtained by testing an online software package developed by IBM [32]. The software, which consists of 40,000 lines of code, was tested for 21 days, and 46 cumulative failures were recorded. We demonstrated that the proposed SRM performs well in estimating software failures using these two datasets.




4.2. Criteria


We compared the proposed SRM with several existing SRMs using 15 criteria. The 15 criteria are derived from the difference between the actual and estimated values; Table 2 lists the criteria for each criterion. In Table 2,     m  ^  ( t )   is the estimated value of the model   m ( t )  ,     y   i     is the actual value,   n   is the number of observations, and   m   is the number of parameters in each model.



Mean squared error (MSE) is a measure of the sum of the squares of the differences between the estimated and true values, considering the number of observations and parameters [33]. Root mean squared error (RMSE) is the square root of the mean squared error [33,34]. Predictive ratio risk (PRR) and predictive power (PP) are defined as the difference between the actual and predicted values divided by the predicted and actual values with respect to the model estimation [35].     R   2     is the coefficient of determination of the regression equation, and   a d j _   R   2     is the modified coefficient of determination of the regression equation that considers the number of parameters to determine the explanatory power [36]. Mean absolute error (MAE) is the sum of the absolute values of the difference between the estimated and true values, considering the number of observations and parameters [37,38]. Akaike’s information criterion (AIC) is used to compare likelihood function maximization. It aims to maximize the Kullback–Leibler level of agreement between the model and probability distribution of the data. The Bayes information criterion (BIC) is a fit that increases the sum of the squared residuals and the number of effects in the model and is a modified form of the penalty of AIC [39,40]. It penalizes the model more strongly than AIC. Predicted relative variation (PRV) is the standard deviation of the prediction bias [41]. Root mean square prediction error (RMSPE) provides an estimate of the closeness of each model’s predictions [41,42]. Mean error of prediction (MEOP) is defined as the sum of the absolute values of the deviations between the true and estimated values [37,43]. The Theil statistic (TS) is the average percentage deviation of all the time points from the true value [37]. Pham’s information criterion (PIC) considers the trade-off between the model and the number of parameters included in the model by slightly increasing the penalty for each additional parameter added to the model when the sample is fairly small [44], and Pham’s criteria (PC) is defined to consider more penalties than PIC [45]. Based on the above scale, we compared the existing NHPP SRM with our proposed model. The closer     R   2     and   a d j _   R   2     are to 1 and the closer the other 13 scales are to 0, the better the fit. In addition, we utilized the MCDMR proposed in Section 3 to comprehensively evaluate the various criteria proposed in the literature to determine the superiority of the model by comparing the comprehensive criteria. Using R and MATLAB, we estimated the parameters of each model using the least square estimator method [46], which estimates parameters based on the difference between the model-estimated values and the actual number of failures, and calculated the criteria to compare their superiority.




4.3. Results on Dataset 1


Table 3 shows the estimated parameter values for each model obtained from dataset 1. Our proposed model has   α  ,   β  , and   N  , which are denoted as     α  ^  = 2.7507  ,     β  ^  = 1.4068  , and     N  ^  = 127.7906  . Figure 1 shows a graphical representation of the cumulative number of failures and the estimated values of each time point in dataset 1. The black dots represent the actual data, and the solid red line represents the estimated value of the proposed SRM. The thick black dashed line represents the 95% confidence interval of the proposed model, and the thin black dashed line represents the 99% confidence interval of the proposed model.



Since it is not easy to judge how well the model fits from Figure 1 alone, we interpret the results in conjunction with the information in Table 4. Table 4 shows the results for the criteria calculated from the estimates of each model, based on the parameter estimates obtained from Table 3.   M S E  ,   R M S E  ,   A d j _   R   2    ,   M A E  ,   M E O P  ,   P C  , and   P I C   are the best, with values of   3.834  ,   1.958  ,   0.992  ,   1.878  ,   1.878  ,   1.691  ,   8.420  , and   38.176  , whereas     R   2    ,   P R V  ,   R M S P E  , and   T C   are the second best, with values of   0.994  , 1.771,   1.771  , and   2.156  . This is also among the best fits of the other fits. The newly proposed MCDMR, which considers all 15 fits together, is also the best at   0.00253  .




4.4. Results on Dataset 2


Table 5 shows the estimated parameter values for each model obtained from dataset 2. The estimated parameter values of the proposed model are     α  ^  = 33.6027  ,     β  ^  = 4.9010  , and     N  ^  = 167.9314  . Figure 2 shows a graphical representation of the cumulative number of failures and the estimated values at each time point in dataset 2. The black dots represent the actual data, and the solid red line represents the estimated values of the proposed SRM. The thick black dashed line represents the 95% confidence interval of the proposed model, and the thin black dashed line represents the 99% confidence interval of the proposed model.



Also, since it is not easy to judge how well the model fits from Figure 2 alone, we interpret the results in conjunction with the information in Table 6. Table 6 shows the results for the criteria calculated from the estimates of each model, based on the parameter estimates obtained from Table 5.   M S E  ,   R M S E  ,     R   2    ,   A d j _   R   2    ,   A I C  ,   P C  , and   P I C   have the best results with   1.387  ,   1.178  ,   0.995  ,   0.994  ,   76.587  ,   4.891  , and   28.301  , whereas   P P  ,   M A E  ,   B I C  ,   P R V  ,   P M S P E  ,   M E O P  , and   T C   are the second best with values of   0.231  ,   0.998  ,   79.720  ,   1.117  ,   1.117  ,   0.946  , and   4.047  . The newly proposed MCDMR, which considers all 15 fits together, is also the best at 0.00271.





5. Conclusions and Remark


In this paper, we proposed a new NHPP SRM that considers uncertain operating environments. Unlike the existing NHPP SRMs that consider uncertain operating environments, the proposed model minimizes assumptions and fits general situations with fewer parameters. In addition, to demonstrate the superiority of the proposed model, a new MCDMR incorporating multiple criteria for comparing the models has been proposed. The proposed NHPP SRM, which considers uncertain operating environments, was compared with several traditional NHPP SRMs using two datasets, and its superiority was demonstrated.



The development of traditional SRMs is based on limited circumstances and fixed assumptions. However, as the software industry develops, software structures become increasingly complex, and various assumptions are added to predict software failures. This complicates the structure of SRMs for predicting software failures and causes problems because they work well only in special cases. To improve this, there is a significant need for research that minimizes these assumptions. In addition, it is very difficult for traditional NHPP SRMs to model data generated in real time on the fly. Therefore, research is being conducted on SRMs using data-dependent machine learning algorithms [47]. Kumar and Singh [48] and Jaiswal and Malhotra [49] applied well-known machine learning methods such as artificial neural networks, support vector machines, cascade correlation neural networks, decision trees, and fuzzy inference systems to predict software reliability. Wang et al. [50] and Chen et al. [51] predicted software failures using recurrent neural networks that exploit the characteristics of sequential data as a method for predicting SRMs and showed good performance. Zainuddin et al. [52] and Wang et al. [53] proposed a model for predicting software failures using long short-term memory (LSTM) and gated recurrent units (GRU), which are extensions of recurrent neural networks. Research is required on new SRMs that extend the model proposed in this study and assume general rather than specialized situations using machine learning and deep learning.
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Figure 1. Prediction of all models for dataset 1. 
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Figure 2. Prediction of all models for dataset 2. 
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Table 1. SRMs.
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	No.
	Model
	Mean Value Function
	Note





	1
	Goel-Okumoto (GO) [1]
	   m   t   = a   1 −   e   − b t       
	Concave



	2
	Hossain-Dahiya (HDGO) [2]
	   m   t   =   log            e   a   − c         e   a   e   − b t     − c           
	Concave



	3
	Yamada et al. (DS) [3]
	   m   t   = a   1 −   1 + b t     e   − b t       
	S-Shape



	4
	Ohba (IS) [4]
	   m   t   =   a   t 1 −   e   − b t       1 + β   e   − b t       
	S-Shape



	5
	Yamada et al. (YE) [6]
	   m   t   = a   1 −   e   − γ α   1 −   e   − β t           
	Concave



	6
	Yamada et al. (YR) [6]
	   m   t   = a   1 −   e   − γ α   1 −   e     − β   t   2    /  2             
	S-Shape



	7
	Yamada et al. (YID 1) [7]
	   m   t   =   a b   α + b       e   α t   −   e   − b t       
	Concave



	8
	Yamada et al. (YID 2) [7]
	   m   t   = a   1 −   e   − b t       1 −   α   b     + α a t   
	Concave



	9
	Pham-Zhang (PZ) [8]
	   m   t   =   (   c + a     1 −   e   − b t     −     a b   b − α         e   − a t   −   e   − b t     )   1 + β   e   − b t       
	Both



	10
	Pham et al. (PNZ) [9]
	   m   t   =   a   1 −   e   − b t       1 −   α   b     + α a t   1 + β   e   − b t       
	Both



	11
	Pham (IFD) [11]
	   m   t   = a   1 −   e   − b t       1 +   b + d   t + b d   t   2       
	Concave



	12
	Roy et al. (RMD) [12]
	   m   t   = a α   1 −   e   − b t     −     a b   b − β       e   − β t   −   e   − b t         
	Concave



	13
	Zhang et al. (ZFR) [5]
	   m   t   =   a   p − β     1 −         1 + α     e   − b t     1 +   α e   − b t           c   b     p − β         
	S-Shape



	14
	Kapur et al. (KSRGM) [10]
	   m   t   =   A   1 − α     1 −       1 + b t +     b   2     t   2     2       e   − b t       p ( 1 − α )       
	S-Shape



	15
	Chang et al. (TC) [25]
	   m   t   = N   1 −       β   β +     a t     b         α       
	Both



	16
	Teng-Pham (TP) [18]
	   m   t   =   a   p − q     1 −       β   β +   p − q     ln        c +   e   b t     c + 1             α       
	S-Shape



	17
	Song et al. (3P) [20]
	   m   t   = N   1 −     β   β −   a   b     ln          1 + c     e   − b t     1 + c   e   − b t                 
	S-Shape



	18
	Pham (Vtub) [19]
	   m   t   = N   1 −       β   β +   a   b t   − 1       α       
	S-Shape



	19
	Kim et al. (DPF1) [15]
	   m   t   =   a   1 +   a   h         1 + c   c +   e   b t         a       
	Concave,

Dependent



	20
	Lee et al. (DPF2) [16]
	   m   t   =   a   1 +   a   h         b + c   c + b   e   b t           a   b         
	Concave,

Dependent



	21
	Lee et al. (UOP) [26]
	   m   t   =   N   1 −   β   α +   c   b   l n      α +   e   b t     1 + α           α     
	S-Shape,

Dependent



	22
	Proposed Model
	   m   t   =   N   1 −   β   α + β t − l n    β t + 1         α     
	S-Shape










 





Table 2. Criteria for model comparisons.
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	No.
	Criteria
	Formula





	1
	MSE
	       ∑  i = 1   n          m  ^      t   i     −   y   i       2       n − m     



	2
	RMSE
	        ∑  i = 1   n          m  ^      t   i     −   y   i       2       n − m      



	3
	PRR
	      ∑  i = 1   n             m  ^      t   i     −   y   i       m  ^      t   i           2       



	4
	PP
	      ∑  i = 1   n             m  ^      t   i     −   y   i       y   i         2       



	5
	     R   2     
	   1 −     ∑  i = 1   n          m  ^      t   i     −   y   i       2         ∑  i = 1   n          y   i   −     y   i    ¯      2         



	6
	     a d j _ R   2     
	   1 −     1 −   R   2       n − 1     n − m − 1     



	7
	MAE
	       ∑  i = 1   n        m  ^      t   i     −   y   i         n − m     



	8
	AIC
	   − 2   log    L   + 2 m   



	9
	BIC
	   − 2   log    L   + m   log    n     



	10
	PRV
	        ∑  i = 1   n          y   i   −   m  ^      t   i     −   ∑  i = 1   n          m  ^      t   i     −   y   i     n           2       n − 1      



	11
	RMSPE
	        ∑  i = 1   n          y   i   −   m  ^      t   i     −   ∑  i = 1   n          m  ^      t   i     −   y   i     n           2       n − 1   +      ∑  i = 1   n           m  ^      t   i     −   y   i     n         2    .   



	12
	MEOP
	       ∑  i = 1   n        m  ^      t   i     −   y   i         n − m + 1     



	13
	TS
	   100 ∗      ∑  i = 1   n          y   i   −   m  ^      t   i         2         ∑  i = 1   n        y   i     2          



	14
	PIC
	      ∑  i = 1   n           m  ^      t   i     −   y   i       2     + m     n − 1   n − m       



	15
	PC
	     n − m   2   ∗   log          ∑  i = 1   n          m  ^      t   i     −   y   i       2       n       + m     n − 1   n − m       










 





Table 3. Parameter estimation of model from dataset 1.
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	No
	Model
	      a  ^     
	      b  ^     
	      α  ^     
	      β  ^     
	      N  ^     
	      γ  ^     
	      c  ^     
	      p  ^     
	      q  ^     
	      d  ^     
	      h  ^     





	1
	GO
	103.9957
	0.25072
	
	
	
	
	
	
	
	
	



	2
	HDGO
	103.9956
	0.25072
	
	
	
	
	0.003999
	
	
	
	



	3
	DS
	94.42989
	0.64986
	
	
	
	
	
	
	
	
	



	4
	IS
	103.9919
	0.250789
	
	0.000336
	
	
	
	
	
	
	



	5
	YE
	135.4096
	
	0.079955
	0.118615
	
	22.03046
	
	
	
	
	



	6
	YR
	99.87051
	
	0.30301
	0.081458
	
	8.609839
	
	
	
	
	



	7
	YID1
	80.07877
	0.368316
	0.026422
	
	
	
	
	
	
	
	



	8
	YID2
	77.60045
	0.381731
	0.033943
	
	
	
	
	
	
	
	



	9
	PZ
	94.9835
	4.728741
	0.203146
	3.469121
	
	
	13.93669
	
	
	
	



	10
	PNZ
	77.57743
	0.382112
	0.033973
	0.000898
	
	
	
	
	
	
	



	11
	IFD
	11.11251
	0.830547
	
	
	
	
	
	
	
	1.07 × 10−0.7
	



	12
	RMD
	20.84912
	0.289209
	5.46394
	0.069861
	
	
	
	
	
	
	



	13
	ZFR
	16.75903
	0.009765
	0.010496
	0.158331
	
	
	1.571965
	0.319499
	
	
	



	14
	KSRGM
	50.34612
	67.63962
	0.504539
	
	
	
	
	0.008162
	
	
	



	15
	TC
	0.123963
	0.887039
	2.764066
	1.760686
	125.3202
	
	
	
	
	
	



	16
	TP
	273.867
	0.001876
	78.32247
	0.094677
	
	
	15.26608
	3.2414
	0.611472
	
	



	17
	3P
	7.009842
	5.44 × 10−8
	
	0.131806
	137.9787
	
	234.0264
	
	
	
	



	18
	Vtub
	1.050673
	0.921887
	1.257807
	0.251814
	127.3638
	
	
	
	
	
	



	19
	DPF1
	99.2143
	0.00489
	
	
	
	
	0.060524
	
	
	
	28.30202



	20
	DPF2
	99.21582
	0.000271
	
	
	
	
	0.058441
	
	
	
	28.30183



	21
	UOP
	0.959106
	0.248168
	1.021567
	0.927368
	133.764
	
	
	
	
	
	



	22
	NEW
	
	
	2.750654
	1.406831
	127.7906
	
	
	
	
	
	










 





Table 4. Comparison of all criteria from dataset 1.






Table 4. Comparison of all criteria from dataset 1.





	Criteria
	GO
	HDGO
	DS
	IS
	YE
	YR
	YID1
	YID2
	PZ
	PNZ
	IFD





	MSE
	6.474
	7.193
	44.306
	7.196
	5.728
	87.848
	3.994
	4.040
	5.413
	4.546
	291.502



	RMSE
	2.544
	2.682
	6.656
	2.683
	2.393
	9.373
	1.999
	2.010
	2.327
	2.132
	17.073



	PRR
	0.037
	0.037
	1.205
	0.037
	0.019
	3.155
	0.012
	0.011
	0.005
	0.011
	3.110



	PP
	0.029
	0.029
	0.323
	0.029
	0.016
	0.505
	0.011
	0.011
	0.005
	0.011
	0.900



	R2
	0.990
	0.990
	0.928
	0.990
	0.993
	0.886
	0.994
	0.994
	0.994
	0.994
	0.574



	adjR2
	0.987
	0.986
	0.912
	0.986
	0.988
	0.821
	0.992
	0.992
	0.989
	0.991
	0.414



	MAE
	2.274
	2.526
	5.566
	2.526
	2.510
	8.872
	1.948
	1.963
	2.396
	2.210
	18.217



	AIC
	67.156
	69.156
	115.306
	69.160
	67.385
	158.805
	61.394
	61.667
	68.850
	63.665
	100.809



	BIC
	68.126
	70.610
	116.275
	70.614
	69.325
	160.745
	62.848
	63.121
	71.275
	65.605
	102.264



	PRV
	2.412
	2.412
	6.230
	2.412
	2.036
	7.823
	1.807
	1.817
	1.856
	1.817
	14.116



	RMSPE
	2.425
	2.425
	6.337
	2.425
	2.041
	7.979
	1.808
	1.818
	1.856
	1.818
	15.337



	MEOP
	2.067
	2.274
	5.060
	2.274
	2.231
	7.886
	1.753
	1.766
	2.097
	1.965
	16.395



	TS
	2.953
	2.953
	7.725
	2.953
	2.484
	9.729
	2.200
	2.213
	2.259
	2.213
	18.797



	PC
	10.627
	11.251
	20.244
	11.253
	10.860
	21.781
	8.604
	8.656
	11.881
	9.935
	27.910



	PIC
	66.939
	68.405
	445.261
	68.429
	51.327
	708.287
	39.612
	40.030
	45.746
	41.864
	2627.181



	MCDMR
	0.01486
	0.02002
	0.10848
	0.02181
	0.01322
	0.18699
	0.00254
	0.00414
	0.01381
	0.00577
	0.00904



	Criteria
	RMD
	ZFR
	KSRGM
	TC
	TP
	3P
	Vtub
	DPF1
	DPF2
	UOP
	NEW



	MSE
	6.760
	10.797
	6.542
	5.166
	12.833
	5.352
	5.192
	10.760
	10.760
	4.798
	3.834



	RMSE
	2.600
	3.286
	2.558
	2.273
	3.582
	2.314
	2.279
	3.280
	3.280
	2.190
	1.958



	PRR
	0.028
	0.037
	0.062
	0.006
	0.037
	0.009
	0.006
	0.026
	0.026
	0.005
	0.005



	PP
	0.023
	0.029
	0.043
	0.006
	0.029
	0.009
	0.006
	0.030
	0.030
	0.005
	0.005



	R2
	0.991
	0.990
	0.992
	0.994
	0.990
	0.994
	0.994
	0.986
	0.986
	0.995
	0.994



	adjR2
	0.986
	0.977
	0.987
	0.989
	0.971
	0.989
	0.989
	0.978
	0.978
	0.990
	0.992



	MAE
	2.656
	3.790
	2.495
	2.425
	4.528
	2.531
	2.458
	3.254
	3.254
	2.326
	1.878



	AIC
	68.697
	75.164
	61.969
	67.149
	77.048
	67.226
	66.973
	81.712
	81.710
	67.235
	63.825



	BIC
	70.636
	78.074
	63.908
	69.573
	80.443
	69.650
	69.398
	83.651
	83.649
	69.660
	65.280



	PRV
	2.208
	2.413
	2.152
	1.813
	2.401
	1.845
	1.818
	2.797
	2.797
	1.747
	1.771



	RMSPE
	2.217
	2.426
	2.179
	1.813
	2.414
	1.846
	1.818
	2.797
	2.797
	1.747
	1.771



	MEOP
	2.361
	3.249
	2.218
	2.122
	3.773
	2.215
	2.150
	2.893
	2.893
	2.036
	1.691



	TS
	2.699
	2.954
	2.655
	2.207
	2.940
	2.246
	2.212
	3.405
	3.405
	2.127
	2.156



	PC
	11.522
	16.058
	11.391
	11.718
	19.591
	11.842
	11.736
	13.382
	13.381
	11.459
	8.420



	PIC
	59.581
	75.779
	57.836
	44.021
	79.566
	45.323
	44.203
	91.581
	91.579
	41.444
	38.176



	MCDMR
	0.03436
	0.01289
	0.00987
	0.39357
	0.01903
	0.03164
	0.01472
	0.03334
	0.03262
	0.00745
	0.00253










 





Table 5. Parameter estimation of model from dataset 2.
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	No
	Model
	      a  ^     
	      b  ^     
	      α  ^     
	      β  ^     
	      N  ^     
	      γ  ^     
	      c  ^     
	      p  ^     
	      q  ^     
	      d  ^     
	      h  ^     





	1
	GO
	258479.7
	8.27 × 10−0.6
	
	
	
	
	
	
	
	
	



	2
	HDGO
	709.7827
	0.003083
	
	
	
	
	0.462394
	
	
	
	



	3
	DS
	77.25299
	0.096622
	
	
	
	
	
	
	
	
	



	4
	IS
	59.28546
	0.16839
	
	8.278172
	
	
	
	
	
	
	



	5
	YE
	4709.105
	
	2.411867
	0.000372
	
	0.507832
	
	
	
	
	



	6
	YR
	77.83392
	
	2.677162
	0.004541
	
	0.522922
	
	
	
	
	



	7
	YID1
	19614.07
	8.39 × 10−0.5
	0.030908
	
	
	
	
	
	
	
	



	8
	YID2
	1.491036
	0.306843
	1.745694
	
	
	
	
	
	
	
	



	9
	PZ
	17.01691
	0.153619
	0.16534
	5.82304
	
	
	44.56855
	
	
	
	



	10
	PNZ
	11.71105
	0.195293
	0.198144
	1.382584
	
	
	
	
	
	
	



	11
	IFD
	8.684959
	0.138925
	
	
	
	
	
	
	
	0.023631
	



	12
	RMD
	104.218
	0.033806
	1.146429
	0.149771
	
	
	
	
	
	
	



	13
	ZFR
	38.40169
	0.193953
	5.65856
	0.17475
	
	
	0.178089
	0.753317
	
	
	



	14
	KSRGM
	32.74804
	0.98946
	0.821748
	
	
	
	
	0.108743
	
	
	



	15
	TC
	0.019064
	1.567033
	839.154
	221.1735
	78.78594
	
	
	
	
	
	



	16
	TP
	102.844
	0.173628