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Abstract: In this paper, I explore a specific class of bi-parameter pseudo-differential operators char-
acterized by symbols σ(x1, x2, ξ1, ξ2) falling within the product-type Hörmander class Sm

ρ,δ. This
classification imposes constraints on the behavior of partial derivatives of σ with respect to both spa-
tial and frequency variables. Specifically, I demonstrate that for each multi-index α, β, the inequality
|∂α

ξ ∂
β
x σ(x1, x2, ξ1, ξ2)| ≤ Cα,β(1 + |ξ|)m ∏2

i=1(1 + |ξi|)−ρ|αi |+δ|βi | is satisfied. My investigation culmi-
nates in a rigorous analysis of the Lp-boundedness of such pseudo-differential operators, thereby
extending the seminal findings of C. Fefferman from 1973 concerning pseudo-differential operators
within the Hörmander class.

Keywords: bi-parameter pseudo-differential operators; Lp-boundedness; cone decomposition;
BMO space

MSC: 42B10; 42B20; 42B30

1. Introduction

Consider a Schwartz function denoted by f . We define a pseudo-differential operator
Tσ as follows:

Tσ f (x) =
∫
Rn

e2πix·ξ f̂ (ξ)σ(x, ξ)dξ, (1)

where f̂ (ξ) represents the Fourier transform of f , and σ(x, ξ) ∈ C∞(Rn ×Rn) is referred
to as the symbol. Of primary interest is the symbol class denoted Sm

ρ,δ, commonly known
as the Hörmander class. A symbol σ(x, ξ) belongs to Sm

ρ,δ if it satisfies the following
differential inequalities:

|∂α
ξ ∂

β
x σ(x, ξ)| ≤ Cα,β(1 + |ξ|)m−ρ|α|+δ|β|, (2)

for all multi-indices α, β.
The Lp-boundedness of pseudo-differential operators, defined as in (1) and (2), has

been a topic of extensive investigation in recent decades. Notably, the seminal works of
Calderón and Vaillancourt [1,2] established the L2-boundedness of Tσ for symbols σ ∈ S0

0,0.
Furthermore, Calderón and Vaillancourt showed that Tσ remains bounded on L2 when the
symbol σ belongs to S0

ρ,ρ, 0 < ρ < 1, a class known as the exotic symbol class. However,
the boundedness results are not universal. For instance, consider the symbol σ(ξ) given

by the Fourier transform of the Riemann singularity distribution R(x) = e
i
|x| |x|− 3

2 , then
Tσ is not bounded on Lp for p ̸= 2. More recently, Wang [3] investigated a subclass of the
exotic symbol class and demonstrated that pseudo-differential operators belonging to this
subclass are bounded on Lp for 0 < p < 1.

The primary objective of this paper is to extend the following theorem originally
established by C. Fefferman in 1973 [4].
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Theorem 1 (Fefferman). Let σ(x, ξ) ∈ S−β
1−a,δ with 0 ≤ δ < 1 − a < 1 and β < na/2. Then, Tσ

is bounded on Lp for ∣∣∣∣ 1
p
− 1

2

∣∣∣∣ ≤ γ =
β

n

[
n/2 + λ

β + λ

]
, λ =

na/2 − β

1 − a
.

To be more specific, we turn to the multi-parameter setting. Let σ(x1, x2, ξ1, ξ2) ∈
C∞(Rn1 ×Rn2 ×Rn1 ×Rn2), where n = n1 + n2. We say σ ∈ Sm

ρ,δ if it satisfies the estimates

|∂α
ξ ∂

β
x σ(x, ξ)| ≤ Cα,β(1 + |ξ|)m

2

∏
i=1

(
1

1 + |ξi|

)ρ|αi |−δ|βi |
(3)

for all multi-indices α, β. Moreover, we define the bi-parameter Hörmander class BSm1,m2
ρ,δ ,

we say σ ∈ BSm1,m2
ρ,δ if it satisfies the estimates:

|∂α
ξ ∂

β
xσ(x, ξ)| ≤ Cα,β

2

∏
i=1

(
1

1 + |ξi|

)ρ|αi |−δ|βi |−mi

. (4)

Note that if m = m1 + m2 and m1, m2 ≤ 0, then we have

Sm
ρ,δ ⊂ BSm1,m2

ρ,δ .

The classical theory of harmonic analysis may be described as around the Hardy–
Littlewood maximal operator and its relationship with certain singular integral operators
which commute with the classical one-parameter family dilations δ : x → δx = (δx1, . . . , δxd),
δ > 0. The multi-parameter theory, sometimes called product theory corresponds to a
range of questions which are concerned with issues of harmonic analysis that are in-
variant with respect to a family of dilations δ : x → δx = (δ1x1, . . . , δdxd), δi > 0,
i = 1, . . . , d. Such multi-parameter symbol classes, associated with singular integral opera-
tors, pseudo-differential operators, and Fourier integral operators, have been the subject of
extensive study by various authors. Notable contributions include works by Müller, Ricci,
and Stein [5], Yamazaki [6], Wang [7], Chen, Ding, and Lu [8], Huang and Chen [9,10],
Hong, Zhang, and Lu [11–14], Muscalu, Pipher, Tao, and Thiele [15,16], among others.

Main Results

Main Theorem:

(a) Let σ(x1, x2, ξ1, ξ2) ∈ S−β
1−a,δ with 0 ≤ δ < 1 − a < 1, β < na

2 , and n1, n2 ≥ 2. Then, Tσ

is bounded on Lp for∣∣∣∣ 1
p
− 1

2

∣∣∣∣ ≤ γ =
β

n

[
n/2 + λ

β + λ

]
, λ =

na/2 − β

1 − a
. (5)

(b) Let σ(x1, x2, ξ1, ξ2) ∈ S−na/2
1−a,δ . The critical Lp space is L1, while Tσ is unbounded on

L1, it is bounded on the Hardy space H1.

Remark 1. C. Fefferman originally proved the above theorem with symbols belonging to the classical
Hörmander class Sm

ρ,δ. Thus, the sharpness of the theorem follows from Fefferman’s theorem, as
Sm

ρ,δ ⊂ Sm
ρ,δ.

The results in [17] lead to the following propositions.

Proposition 1. Let σ(x, ξ) ∈ S0
1−a,δ for 0 ≤ δ < 1 − a < 1. Then, Tσ is a bounded operator from

L2 to L2.
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Proposition 2. Let σ(x, ξ) ∈ S−na/2
1−a,δ for 0 ≤ δ < 1 − a < 1. Then, Tσ is a bounded operator

from L∞ to BMO.

Here, BMO(Rn) denotes the class of functions of bounded mean oscillation defined by
F. John and L. Nirenberg in [18]. A locally integrable function f on Rn belongs to BMO if

|| f ||BMO = sup
Q

1
|Q|

∫
Q
| f (x)− fQ|dx < ∞,

where Q is an arbitrary cube in Rn and fQ = 1
|Q|

∫
Q f (x)dx.

We will prove the L2-boundedness of Tσ with σ of order 0 in Section 2, and Tσ is
bounded from L∞ to BMO with σ of order −na/2 in Section 3. We primarily follow the
proofs in [19] and [4] to establish Propositions 1 and 2, respectively. However, a single
Littlewood–Paley decomposition in the ξ-space is insufficient; we require a further cone
decomposition to fully utilize the inequalities in (4).

2. L2-Boundedness of Tσ of Order 0

Since S0
1−a,δ ⊂ BS0,0

1−a,δ ⊂ BS0,0
δ,δ , it suffices to prove

Lemma 1. Suppose that σ(x, ξ) ∈ BS0,0
ρ,ρ, where 0 ≤ ρ < 1. Then the operator Tσ defined in (1) is

bounded from L2(Rn) to iteself.

Proof. First we use the Cotlar–Stein lemma to show that the lemma is true in the case
ρ = 0.

By Plancherel’s theorem, we observe that it suffices to establish the L2-boundedness of
the operator S defined by

S f (x) =
∫
Rn

e2πix·ξ f (ξ)σ(x, ξ)dξ.

Notice that, in view of the assumption of σ, the role of x and ξ in the above symbol class
are perfectly symmetric. We choose a smooth non-negative function ϕi that is supported in
the unit cube

Qi
1 = {xi : |xi

j| ≤ 1, j = 1, 2, . . . , ni}, i = 1, 2

and for which
∑

ki∈Zni

ϕi(xi − ki) = 1.

To construct such a ϕi, simply fix any smooth, non-negative ϕi
0 that equals 1 on the

cube Qi
1/2 = 1/2 · Qi

1 and is supported in Qi
1. Noting that ∑ki∈.Zni ϕi

0(xi − ki) converges
and is bounded away from 0 for all x ∈ Rn, we take

ϕi(xi) = ϕi
0(xi)

[
∑

li∈Zni

ϕi
0(xi − ki)

]−1

.

Next, let k⃗i = (ki, k′i) ∈ Z2ni = Zni × Zni denote an element of Z2ni , and similarly
write j⃗i = (ji, j′i) for another element of Z2ni . We set k⃗ = (⃗k1, k⃗2) and

σ⃗k(x, ξ) =

[
2

∏
i=1

ϕi(xi − ki)

]
σ(x, ξ)

[
2

∏
i=1

ϕi(ξ i − k′i)

]
= ϕ(x − k)σ(x, ξ)ϕ(ξ − k′)

and
S⃗k f (x) =

∫
Rn

e2πix·ξ f (ξ)σ⃗k(x, ξ)dξ.
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Therefore, we have the decomposition

S f (x) = ∑
k⃗∈Z2n

S⃗k f (x).

The main point is then to verify the almost-orthogonality estimates as follows:

||S∗
j⃗
S⃗k|| ≤ A

2

∏
i=1

(1 + |⃗ji − k⃗i|)−2Ni (6)

and

||S⃗kS∗
j⃗
|| ≤ A

2

∏
i=1

(1 + |⃗ji − k⃗i|)−2Ni (7)

Here, || · || denotes the L2 operator norm, Ni is sufficiently large, and the bound A is
independent of k⃗, j⃗.

Now, we can write
S∗

j⃗
S⃗k f (ξ) =

∫
Rn

f (η)K⃗j,⃗k(ξ, η)dη,

where
K⃗j,⃗k(ξ, η) =

∫
Rn

σ⃗j(x, ξ)σ⃗k(x, ξ)e2πix·(η−ξ)dx.

In the above integral, we integrate by parts, using the identities

2

∏
i=1

(I − ∆xi )Ni e2πix·(η−ξ) =
2

∏
i=1

(1 + 4π2|ηi − ξ i|2)Ni e2πix·(η−ξ).

We also note that σ⃗k(x, ξ) and σ⃗j(x, η) are given by

σ⃗k(x, ξ) = ϕ(x − k)σ(x, ξ)ϕ(ξ − k′), σ⃗j(x, ξ) = ϕ(x − j)σ(x, η)ϕ(ξ − j′)

respectively, and so have disjoint x-support unless j⃗i − k⃗i ∈ Qi
1. These observations lead to

the bounds

|K⃗j,⃗k(ξ, η)| ≤
d

∏
i=1

ANi ϕ
i(ξ i − j⃗′i)ϕi(ηi − k⃗′i)
(1 + |ξi − ηi|)2Ni

, if j⃗i − k⃗i ∈ Qi
1, i = 1, 2,

|K⃗j,⃗k(ξ, η)| = 0, otherwise.

Therefore, we have

sup
ξ

∫
Rn

|K⃗j,⃗k(ξ, η)|dη < A
2

∏
i=1

(1 + |⃗ji − k⃗i|)−2Ni ,

and

sup
η

∫
Rn

|K⃗j,⃗k(ξ, η)|dξ < A
2

∏
i=1

(1 + |⃗ji − k⃗i|)−2Ni ,

which implies our desired estimate (6). Moreover, as we have noted, the situation is
symmetric in x and ξ, the same proof also shows the estimate (7). Now, it is only a matter
of applying the Cotlar–Stein lemma; setting Ni sufficiently large, we see

∑
k⃗∈Zn

2

∏
i=1

(1 + |⃗ki|)−2Ni < ∞,

and as a result, S = ∑⃗k S⃗k is bounded from L2(Rn) to itself.
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Now, we prove our Lemma 1.
We start by defining a C∞ function φ with compact support on R, satisfying φ(t) = 1

for |t| ≤ 1 and φ(t) = 0 for |t| ≥ 2. For each i = 1, 2, we set ϕ0(ξi) = φ(|ξi|) and

ϕji (ξi) = φ(2−j|ξi|)− φ(2−j+1|ξi|), ji ∈ Z, ji > 0, i = 1, 2,

and

ϕj(ξ) =
2

∏
i=1

ϕji (ξi), j ∈ Z2.

Then, we define the partial operators

Tj f (x) =
∫
Rn

e2πix·ξ f̂ (ξ)σj(x, ξ)dξ, σj(x, ξ) = σ(x, ξ)ϕj(ξ).

Let Ŝj f (ξ) = ϕj(ξ) f̂ (ξ), and we have the decomposition of T

T = ∑
j≥0

Tj = ∑
j≥0

TSj, ∑
j≥0

=
2

∏
i=1

∑
ji≥0

. (8)

It will be convenient to break the sum (8) into two parts

T = ∑
j even

Tj + ∑
j odd

, ∑
j even

=
2

∏
i=1

∑
ji≥0 even

,

so that the summands in each parts have disjoint ξ-support; it suffices to prove the bound-
edness of each sum separately.

Let us consider the sum taken over the odd j. Note that

TjT∗
k = TSj(TSk)

∗ = TSjS∗
k T = 0, j ̸= k,

because the supports of the multipliers corresponding to Sj and Sk are disjoint. Next, we
estimate T∗

j Tk, and we write

T∗
j Tk f (x) =

∫
Rn

K(x, y) f (y)dy,

with
K(x, y) =

∫
Rn×Rn×Rn

σk(z, η)σj(z, ξ)e2πi[ξ·(z−y)−η·(z−x)]dzdηdξ.

First, one carries integration by parts with respect to z-variable by writing

2

∏
i=1

(I − ∆zi )
Ni

(1 + 4π2|ξi − ηi|2)Ni
e2π(ξ−η)·z = e2πi(ξ−η)·z.

Next, one performs a similar process on the η-variable, beginning with

2

∏
i=1

(I − ∆ηi )
Ni

(1 + 4π2|xi − zi|2)Ni
e2πiη·(x−z) = e2πiη·(x−z).

Finally, an analogous step is carried our for ξ-variable. If we take into account the
differential inequalities for the symbols σj, and the restrictions on their supports, we see
that each order of differentiation in the zi-variable gives us a factor of order

(1 + |ξi − ηi|)−1 ∼ 2−max{ki ,ji}
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for every factor of order
(1 + |ξi|+ |ηi|)ρ ∼ 2ρ max{k−i,ji}

that may lose. As a result, the kernel K is dominated by a constant multiple of

2

∏
i=1

2max{ki ,ji}(2ρNi−2Ni+2ni)
∫
Rni

Qi(xi − zi)Qi(zi − yi)dzi.

Now, if we let Ki(xi, yi) =
∫
Rni Qi(xi − zi)Qi(zi − yi)dzi, then

∫
Rni

Ki(xi, yi)dyi =
∫
Rni

Ki(xi, yi)dxi =

(∫
Rni

(1 + |zi|)−2Ni

)2
< ∞,

if 2Ni > ni. Thus, we obtain

||T∗
j Tk|| ≤ A

2

∏
i=1

2max{ki ,ji}(2ρNi−2Ni+2ni), j ̸= k,

which implies that

||T∗
j Tk|| ≤

2

∏
i=1

γi(ji)γi(ki), j ̸= k,

with γi(ji) = A · 2−ϵji , ϵ > 0, if we choose Ni so large that Ni > ni(1 − ρ).
In order to apply the Cotlar–Stein lemma, we need to show that the partial operators

Tj are uniformly bounded in the norm. To prove this, we set

σ̃j(x, ξ) = σj(2−jρx, 2jρξ), 2−jρx = (2j1ρx1, 2j2ρx2), 0 ≤ ρ < 1.

Thus, σ̃j(x, ξ) ∈ S0,0
ρ,ρ for mi = 0, ρi = 0 for each i = 1, 2, . . . , d uniformly in j . Therefore,

the operator

T̃j f (x) =
∫
Rn

e2πix·ξ f̂ (ξ)σ̃j(x, ξ)dξ

is bounded on L2(Rn). Next, define the scaling operators given by

Λj f (x) = f (2jρx) = f (2j1ρx1, 2j2ρx2),

then, as is easily verified,
Tj = ΛjT̃jΛ−1

j .

Now, ||Λj f ||L2 = ∏2
i=1 2ni jiρ/2|| f ||L2 and ||Λ−1

j f ||L2 = ∏d
i=1 2−ni jiρ/2|| f ||L2 ; so to-

gether with the L2-boundedness of T̃j, we have

||Tj|| ≤ A, uniformly in j.

We may therefore conclude that ∑j odd Tj is bounded from L2(Rn) to itself, the sum
∑j even is treated similarly, and our Lemma 1 is proved. □

3. Lp-Boundedness of Tσ

We make a further decomposition, let ξ = (ξ1, ξ2) ∈ Rn1 ×Rn2 . Recalling the defini-
tion of φ in the above section, define

δℓ(ξ) = φ

(
2−ℓ |ξ2|

|ξ1|

)
− φ

(
2−ℓ+1 |ξ2|

|ξ1|

)
, ℓ ∈ Z. (9)
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Note that δℓ(ξ) has a support in the cone region,

Λℓ = {(ξ1, ξ2) : 2ℓ−1 ≤ |ξ2|
|ξ1|

≤ 2ℓ+1}. (10)

By symmetry, we can always assume ℓ is a non-negative integer. Now for fixed j, we
make a cone decomposition in the frequency space, define partial operators

Tℓj f (x) = Tσℓj f (x) =
∫
Rn

e2πix·ξ f̂ (ξ)σℓj(x, ξ)dξ, σℓj(x, ξ) = σ(x, ξ)ϕj(ξ)δℓ(ξ). (11)

Furthermore, we define

T♭
j f (x) = T

σ♭
j

f (x) =
∫
Rn

e2πix·ξ f̂ (ξ)σ♭
j (x, ξ)dξ, σ♭

j (x, ξ) =
∞

∑
ℓ=j

σ(x, ξ)ϕj(ξ)δℓ(ξ), (12)

and

T♯
j f (x) = T

σ♯
j

f (x) =
∫
Rn

e2πix·ξ f̂ (ξ)σ♯
j (x, ξ)dξ, σ♯

j (x, ξ) =
j

∑
ℓ=0

σ(x, ξ)ϕj(ξ)δℓ(ξ). (13)

3.1. A Key Lemma

Let a symbol σ(x, ξ) ∈ Sm
ρ,δ, then we define its norm as

∥σ∥S = sup
|α|≤k,|β|≤N

|∂α
ξ ∂

β
xσ(x, ξ)|(1 + |ξ|)−m

2

∏
i=1

(1 + |ξi|)ρ|αi |−δ|βi |, k, N > n/2. (14)

Let r > 0 be a real number, recall the definitions of ϕj(ξ) and δℓ(ξ), define the par-
tial operators

Tr
ℓj f (x) = Tσr

ℓj
f (x) =

∫
Rn

e2πix·ξ f̂ (ξ)σr
ℓj(x, ξ)dξ, σr

ℓj(x, ξ) = σ(x, ξ)δℓ(ξ)ϕj(rξ), (15)

and
Tr

j f (x) = Tσr
j

f (x) =
∫
Rn

e2πix·ξ f̂ (ξ)σr
j (x, ξ)dξ, σr

j (x, ξ) = ∑
ℓ≥0

σr
ℓj(x, ξ). (16)

Lemma 2. Let the symbol σ(x, ξ) be defined as (4), and Tr
ℓj, Tr

j defined as above, then we have∥∥∥Tr
j f

∥∥∥
L∞

≤ C||σ||S|| f ||L∞ ,

∥∥∥Tr
ℓj f

∥∥∥
L∞

≤ C2−n1ℓ/2||σ||S|| f ||L∞ .
(17)

Moreover, let 2k ≤ r−1 < 2k+1, if σ0(x, ξ) = ∑j≤−k σr
j (x, ξ), we have

∥Tσ0 f ∥L∞ ≤ C||σ||S|| f ||L∞ . (18)

Proof. We denote σ̂(x, y) =
∫
Rn e−2πiy·ξ σ(x, ξ)dξ throughout this paper. Now write

Tr
j f (x) =

∫
Rn

f (y)σ̂r
j (x, y − x)dy. (19)

We see that |Tr
j f | ≤ ||σ̂r

j (x, ·)||L1 || f ||L∞ , where ||σ̂r
j (x, ·)||L1 =

∫
Rn |σ̂r

j (x, y)|dy. There-

fore, it suffices to show that ||σ̂r
j (x, ·)||L1 ≤ C||σ||S, ||σ̂r

ℓj(x, ·)||L1 ≤ C2−n1ℓ/2||σ||S and



Mathematics 2024, 12, 1653 8 of 10

||σ̂0(x, ·)||L1 ≤ C||σ||S . Let us consider Tr
j , let b = (2jr−1)a−1. Applying the Cauchy–

Schwartz inequality and Plancherel theorem we see

∫
|y|<b

|σ̂r
j (x, y)|dy ≤ Cbn/2

(∫
|y|<b

|σ̂r
j (x, y)|2dy

) 1
2
≤ Cbn/2

(∫
Rn

|σr
j (x, ξ)|2dξ

) 1
2

≤ C||σ||S (since σr
j lives in |ξ| ∼ 2jr−1),

(20)

and ∫
|y|≥b

|σ̂r
j (x, y)|dy ≤ Cbn/2−k

(∫
|y|≥b

|y|2k|σ̂r
j (x, y)|2dy

) 1
2

≤ Cbn/2−k
(∫

Rn
|∇k

ξ σr
j (x, ξ)|2dξ

) 1
2
≤ C||σ||S

(since σ lives in |ξ| ∼ 2jr−1, k > n/2).

(21)

Thus, ||σ̂r
j (x, ·)||L1 ≤ C||σ||S.

Similarly, we can prove ||σ̂r
ℓj(x, ·)||L1 ≤ C2−n1ℓ/2||σ||S and ||σ̂0(x, ·)||L1 ≤ C||σ||S

once we note that σr
ℓj supported in the region |ξ1| ∼ 2j−ℓ, |ξ2| ∼ 2j and σ0 supported in the

region |ξ| ≤ 1. Therefore, we have proven Lemma 2. □

3.2. Proof of the Main Theorem

Now, we can prove our proposition, fix f ∈ L∞ and Q ⊂ Rn having side r and center
x0. We have to show that

1
|Q|

∫
Rn

|Tσ f (x)− (Tσ f )Q|dx ≤ C|| f ||L∞ . (22)

Case one r < 1. Now let k ≥ 0 be an integer such that

2k < r−1 ≤ 2k+1. (23)

A direct computation shows ∂xi Tσr
j

f (x) = Tσ′r
j

f (x), where σ′r
j (x, ξ) = ∂xi σ

r
j (x, ξ) +

2πiξiσ
r
j (x, ξ). Since σ′r

j (x, ξ) is supported in |ξ| ∼ 2jr−1, then an elementary computation

gives that ||σ′r
j ||S ≤ Cr−12−jc for −k < j ≤ 0. By the Lemma 2,∥∥∥∥∥∂xi

0

∑
j=−k

Tσr
j

f

∥∥∥∥∥
L∞

≤ ∑
j≤0

||Tσ′r
j

f ||L∞

≤ Cr−1 ∑
j≤0

2−jc||σ||S|| f ||L∞ ≤ Cr−1||σ||S|| f ||L∞ .

(24)

Therefore, |∑j≤0 Tσr
j

f (x)− aQ| remains bounded in Q for some constant aQ, so that

1
|Q|

∫
Q

∣∣∣∣∣∑j≤0
Tσr

j
f (x)− aQ

∣∣∣∣∣dx ≤ C||σ||S|| f ||L∞ . (25)

Now, let us turn to j > 0 and let σr(x, ξ) = ∑j>0 σr
j (x, ξ) . Fix a bump function λ on

Rn, with 0 ≤ λ ≤ 10, λ ≥ 1 on Q and λ̂ is supported in |ξ| ≤ ra−1. Then, we write

λ(x)Tσr f (x) = Tσr (λ f )(x) + [λ, Tσr ] f (x) = I1 + I2. (26)
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In order to estimate I1, we write

Tσr (λ f ) = (Tσr · G−na/4) · (Gna/4(λ f )), Ĝα(ξ) = (1 + |ξ|2)−α.

Observe that Tσr · G−na/4 is a pseudo-differential operator with symbol σr(x, ξ)
(1 + |ξ|2)na/4 ∈ S0

1−a,δ, so that by Hörmander’s L2 result,

||Tσr (λ f )||2L2 ≤ C||σ||2S||Gna/4(λ f )||2L2 ≤ C||σ||2S|| f ||2L∞ ||Gna/4λ||2L2 , (27)

now since for α > 0, Gα ∈ L1, Young’s inequality leads to ||Gna/4λ||2L2 ≤ ||Gna/4||2L1 ||λ||2L2 ≤ C|Q|.
Therefore,

1
|Q|

∫
Q
|Tσr (λ f )(x)|dx ≤

(
1
|Q|

∫
Q
|Tσr (λ f )(x)|2dx

) 1
2
≤ C||σ||S|| f ||L∞ . (28)

To estimate I2, we set θr
ℓj(x, ξ) =

∫
Rn e2πix·η λ̂(η)[σr

ℓj(x, ξ)− σr
ℓj(x, ξ + η)]dη, then we

can rewrite I2 as I2 = ∑ℓ≥0 ∑j>0 Tθr
ℓj

f (x). Notice that θr
ℓj is supported in |ξ1| ∼ 2j−ℓr−1,

|ξ2| ∼ 2jr−1. Hence, simple calculations show that ||θr
ℓj||S ≤ C2(ℓ−j)(1−a)||σ||S. Applying

the Lemma 2, we have

||[λ, Tσr ] f ||L∞ ≤ ∑
ℓ≥0

∑
j>0

||Tθr
ℓj

f ||L∞ ≤ ∑
ℓ≥0

∑
j>0

C2−n1ℓ/2||θr
ℓj||S|| f ||L∞

≤ C ∑
ℓ≥0

∑
j>0

C2−n1ℓ/22(ℓ−j)(1−a)||σ||S|| f ||L∞ ≤ C||σ||S|| f ||L∞ , n1 ≥ 2.
(29)

Now putting (28) and (29) into (26), we obtain

1
|Q|

∫
Q
|λ(x) · Tσr f (x)|dx ≤ C||σ||S|| f ||L∞ ,

and since |λ(x)| ≥ 1 on Q, we have

1
|Q|

∫
Q
|Tσr f (x)|dx ≤ C||σ||S|| f ||L∞ ,

and together with (25), this proves (22).
Case two r > 1. We make the decomposition by setting r = 1, then in the region

|ξ| < 1, applying the Lemma 2 and for |ξ| ≥ 1, repeating the proof above, we finally proved
our main theorem.

Remark 2. The above proof shows if a > 1/2, the main theorem holds for n1 = 1 or n2 = 1.

Remark 3. We posit that our results can be further extended to encompass the general bi-parameter
Hörmander class BSm1,m2

ρ,δ . This broader class encompasses a wider range of operators and offers
opportunities for deeper exploration and generalization of our findings.

4. Conclusions

We extend Fefferman’s results on pseudo-differential operators to the bi-parameter
setting by introducing a novel decomposition on the phase space, known as the cone
decomposition. This decomposition allows us to analyze pseudo-differential operators
in a more intricate and nuanced manner, capturing the behavior of operators across
multiple dimensions.

One key observation is that although there are infinitely many partial operators arising
from the cone decomposition, the sum of their norms remains finite. This finiteness arises
from the decay present in each partial operator norm, ensuring convergence in the overall
operator analysis.
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However, a challenge emerges when one subspace dimension is 1. In such cases, the
decay of the partial operator norm may vanish, complicating the analysis and necessitating
alternative approaches for handling these scenarios.

Overall, our paper contributes to advancing the understanding of pseudo-differential
operators in bi-parameter settings, laying the groundwork for future research in this area.
Through our novel decomposition approach and careful analysis, we uncover insights that
extend Fefferman’s seminal work and pave the way for broader applications in harmonic
analysis and operator theory.
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