
Citation: Jia, C.; Cui, Z. Stagewise

Accelerated Stochastic Gradient

Methods for Nonconvex

Optimization. Mathematics 2024, 12,

1664. https://doi.org/10.3390/

math12111664

Academic Editors: Moudafi Abdellatif

and Jüri Majak

Received: 2 April 2024

Revised: 1 May 2024

Accepted: 23 May 2024

Published: 27 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Stagewise Accelerated Stochastic Gradient Methods for
Nonconvex Optimization
Cui Jia 1 and Zhuoxu Cui 2,3,*

1 School of Statistics and Data Science, Ningbo University of Technology, Ningbo 315211, China;
cjia80@whu.edu.cn

2 School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
3 Research Center for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,

Shenzhen 51800, China
* Correspondence: zhuoxucui@whu.edu.cn; Tel.: +86-183429323267

Abstract: For large-scale optimization that covers a wide range of optimization problems encoun-
tered frequently in machine learning and deep neural networks, stochastic optimization has become
one of the most used methods thanks to its low computational complexity. In machine learning and
deep learning problems, nonconvex problems are common, while convex problems are rare. How to
find the global minimum for nonconvex optimization and reduce the computational complexity are
challenges. Inspired by the phenomenon that the stagewise stepsize tuning strategy can empirically
improve the convergence speed in deep neural networks, we incorporate the stagewise stepsize
tuning strategy into the iterative framework of Nesterov’s acceleration- and variance reduction-based
methods to reduce the computational complexity, i.e., the stagewise stepsize tuning strategy is incor-
porated into randomized stochastic accelerated gradient and stochastic variance-reduced gradient.
The proposed methods are theoretically derived to reduce the complexity of the nonconvex and
convex problems and improve the convergence rate of the frameworks, which have the complexity
O(1/µϵ) and O(1/µ

√
ϵ), respectively, where µ is the PL modulus and L is the Lipschitz constant. In

the end, numerical experiments on large benchmark datasets validate well the competitiveness of the
proposed methods.

Keywords: stagewise stepsize tuning strategy; variance reduction; Nesterov’s acceleration; nonconvex

MSC: 90C26; 65K10

1. Introduction

In this thesis, we consider the following empirical risk minimization problem:

min
x∈Rd

F(x) :=
1
n

n

∑
i=1

fi(x) (1)

where x represents the model parameters and fi : Rd → R denotes a smooth but possibly
nonconvex function. In particular, fi(x) := ℓ(x, ai, bi) often denotes the loss function on
given training sample {(ai, bi) ∈ Rd×1}. Therefore, in problem (1), for example, when
ℓ(x, ai, bi) = log(1 + exp(−bixTai)), (1) reduces to the logistic regression [1]; or if we let
ℓ(x, ai, bi) = (σl(wT

l . . . σ1(wT
1 ai))− bi)

2 where x := [w1, . . . , wl] and σs, s = 1, . . . , l denote
activation functions, we obtain the training model of DNNs [2].

To solve problem (1), one of the standard methods is the gradient descent (GD) that
carries out the following updates:

xk+1 = xk −
ηk
n

n

∑
i=1

∇ fi(xk)

Mathematics 2024, 12, 1664. https://doi.org/10.3390/math12111664 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12111664
https://doi.org/10.3390/math12111664
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2646-3794
https://doi.org/10.3390/math12111664
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12111664?type=check_update&version=1

Mathematics 2024, 12, 1664 2 of 18

where ηk is the stepsize. Since the above recursion needs to evaluate derivatives n times
at each iteration, it is impracticable for problems in larger scales. To break this bottleneck,
there has been a growing interest on stochastic methods to reduce the computational cost,
among which the method of stochastic gradient descent (SGD) [3–5] is a typical one. In
particular, the SGD reads as

xk+1 = xk − ηk∇ fik (xk),

where ik is an i.i.d. random variable taking value in {1, 2, . . . , n} uniformly. Obviously,
the computational complexity of SGD is independent with the size n. Thereupon, SGD
becomes one of the most popular first-order methods to solve large-scale optimization
problems [6–8]. However, because of the random interference caused by the stochastic
gradient, SGD can only tolerate a relatively small stepsize that makes the convergence rate
of SGD slower than its non-stochastic counterpart (i.e., GD). Consequently, it has become a
hot topic to develop accelerated algorithms.

1.1. Related Works

The accelerated methods for optimization can be traced back to the 1960s. Inspired by
the motion of a heavy ball in a potential field, Polyak [9] sped up the convergence of GD
numerically, but without a rigorous analysis. In [10], Nesterov devised a different iterative
framework and obtained a rigorous result in that, by running the Nesterov algorithm with
the complexity at most O(1/

√
ϵ) iterations, one can find an ϵ-minimum, i.e., a point x̊ such

that F(x̊)− F(x∗) ≤ ϵ where x∗ denotes the minimizer of objective F over Rd. Henceforth,
various variations of Nesterov’s acceleration-based methods emerged, see [11–15] and
references therein. However, please note that the convexity has played a pivotal role in
establishing the convergence of the above methods.

In this paper, we mainly focus on acceleration playing a role in stochastic nonconvex
optimization. Different from convex optimization, it is impractical to find a global minimum
for nonconvex optimization in general. Consequently, one aims to seek a weaker guarantee,
i.e., an ϵ-stationary point, that is, a point x̊ with a sufficiently small gradient ∥∇F(x̊)∥ ≤ ϵ
or E[∥∇F(x̊)∥] ≤ ϵ, to surrogate the local optimal. When the objective is assumed to meet
Lipschitz continuously differentiable (l.c.d.) with constant L, Ghadimi and Lan [16] showed
that SGD needs to be run O(L2/ϵ + Lσ/ϵ2) times to find an ϵ-stationary point. To improve
convergence rate, naturally, a number of researchers [17,18] applied Nesterov’s acceleration
to the nonconvex case, but no theoretical guarantees for faster rate were given. Recently,
Ghadimi and Lan [19] devised a new elaborate iterative framework, termed the randomized
stochastic accelerated gradient (RSAG) method, and showed that the iterative complexity
can be reduced to O(L/ϵ + Lσ/ϵ2) to find an ϵ-stationary point, where σ denotes the upper
bound of the standard deviation of the stochastic gradient.

The reason why SGD converges slowly is that, to avoid divergence caused the random
interference, only a relatively small stepsize can be tolerated. Then, reducing the random
interference in stochastic gradient becomes another method for acceleration. For this
purpose, Johnson and Zhang [20] proposed an easy and feasible approach named VR; that
is, after dividing the total iterations into a number of epochs firstly, once the iteration is
performed through an epoch, the full gradient is calculated once to avoid the stochastic
gradient deviating too far. Considering strongly convex objectives, Johnson and Zhang
followed the ideal of VR to propose the stochastic variance reduced gradient (SVRG), for
which a relatively large stepsize becomes acceptable. In particular, Johnson and Zhang
showed that SVRG can achieve a linear convergence rate when the stepsize is chosen
appropriately. However, in modern learning problems, the strong convexity is often
unsatisfied. For this, Reddi et al. [21] extended the SVRG to handle nonconvex objectives
and showed that SVRG can achieve iterative complexity O(n2/3L/ϵ) to find an ϵ-stationary
point. Shang et al. [22] proposed a simple stochastic variance reduction method for machine
learning, termed as VR-SGD.

As discussed earlier, in SGD, a large stepsize may amplify the random interference
to cause the iterates to diverge. On the other hand, a too-small stepsize may make it

Mathematics 2024, 12, 1664 3 of 18

difficult for the iterates to escape saddle points. In the process of solving DNN and other
nonconvex models [23–26], one empirically finds a phenomenon that the optimization
algorithms equipped with SSTS, which start from a relatively large stepsize and decrease it
geometrically after a number of iterations, can improve the convergence speed effectively.
In terms of theoretical analysis, Xu et al. [27] showed that the convergence rate of stagewise
SGD (i.e., SGD equipped with SSTS), abbreviated as S-SGD, for convex objectives can
be significantly improved with different degrees under different local growth conditions.
However, the convexity plays an important role in deriving the above result, which is not
met for modern learning problems in general, such as training DNNs. Recently, the Polyak–
Łojasiewicz (PL) condition has been observed and proved for training DNNs [28–32]. For
the vanilla SGD under PL condition, Arjevani et al. [33] studied the lower bounds of ϵ−3 to
find an ϵ -stationary point by using stochastic first-order methods in the certain condition.
Horváath et al. [34] showed the iterative complexity to find an ϵ-approximate solution
that can fall in between O(1/(µ2ϵ2)) and O(1/(µϵ)) where µ denotes the PL modulus. In
learning DNNs, µ ≪ 1 generally, which dampens its performance severely. Wang et al. [35]
proposed the momentum stochastic method to achieve an ϵ-stationary solution under a
constant step size with O(1/(ϵ2)) computation complexity. Yuan et al. [36] considered SSTS
work for the nonconvex objective meeting PL condition, and then answered the question in
the affirmative in [37]. Particularly, they showed that the iterative complexity of SGD for
nonconvex objective meeting PL condition can be reduced to O(L/µϵ) (which is smaller
than O(1/(µ2ϵ)) significantly due to µ ≪ 1) when SSTS is adopted.

In this paper, we mainly consider whether we can further improve the convergence
rate or reduce iterative complexity by incorporating the SSTS into the iterative framework
of Nesterov’s acceleration based methods and VR based methods. We will answer this
question in the affirmative. Specifically, we will develop SSTS-equipped RSAG and SVRG
algorithms respectively and give their corresponding their theoretical analysis.

1.2. Contributions

In this paper, we mainly develop and analyze two accelerated algorithms, namely,
SSTS equipped RSAG and SVRG. Specifically, the main contributions of the paper are
summarized as follows:

• Incorporating the SSTS into the iterative framework of RSAG, we propose the stage-
wise RSAG, abbreviated as S-RSAG, and show that the iterative complexities of it are
at most O(L/µϵ) to find an ϵ-stationary point for nonconvex objective and O(1/µϵ) to
find an ϵ-minimum for convex objective, which are significantly reduced with respect
to its non-stagewise counterpart RSAG, the complexities of which are O(L2/ϵ + L/ϵ2)
and O(L/

√
ϵ + 1/ϵ2) respectively, where µ is the PL modulus and L is the Lipschitz

constant. Compared to existing stagewise algorithm S-SGD, the complexities of our
S-RSAG are more superior under the convex condition (i.e., O(1/µϵ) with respect
to O(L/µϵ), where L ≫ 1 in general) and at the same level under the nonconvex
condition.

• With the same methodology, we propose the stagewise SVRG, abbreviated as S-SVRG
and show that the iterative complexities of it are at most O(Lm/(µ

√
ϵ)) to find an

ϵ-stationary point for nonconvex objective and O(Lm/(µ2√ϵ)) to find an ϵ-minimum
for convex objective, where m is an arbitrary constant and denotes the number of inner
iterations for VR. It is worth mentioning that the iterative complexities of S-SVRG
are both significantly superior to its non-stagewise counterpart SVRG and existing
stagewise algorithm S-SGD under convex and nonconvex conditions.

• We also numerically evaluate our algorithms through the experiments on a number of
benchmark datasets. The obtained results are consistent with our theoretical findings.

The remainder of this paper is organized as follows. Section 2 provides some notions
and preliminaries. The accelerated methods based on SSTS are proposed and analyzed in
Section 3. Experiments performed on several real-world datasets are presented in Section 4.

Mathematics 2024, 12, 1664 4 of 18

Discussion about the proposed methods are reported in Section 5. Lastly, Section 6 gives
some concluding remarks. All the proofs are presented in the Appendix A.

2. Notions and Preliminaries

In this paper, we use ∥ · ∥ to denote a general norm without specific mention. Given
any X ⊆ Rd, we say f is Lipschitz continuously differentiable (l.c.d.) with Lipschitz
constant L > 0 over X, if ∥∇ f (y)−∇ f (x)∥ ≤ L∥y − x∥ for any x, y ∈ X. What is more,
we can also verify the following inequality:

| f (y)− f (x)− ⟨∇ f (x), y − x⟩| ≤ L
2
∥y − x∥2. (2)

We say f is convex over X, if any intermediate value is at most the average value, i.e.,

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y)

for any x, y ∈ X and λ ∈ (0, 1). We say f is a PL function or meets the PL condition over X
with modulus µ > 0, if

2µ(f (x)− f (x∗)) ≤ ∥∇ f (x)∥2 (3)

where x∗ is the minimizer of f over X. Note that such a function f need not be convex.
However, it is also easy to show that a λ-strongly convex function is a PL function with
modulus 1/2λ. Furthermore, for f meeting the PL condition, it holds that

∥x − x∗∥2 ≤ 1
2µ

(f (x)− f (x∗)). (4)

The proof of above inequality can be found in [38] directly.

3. Stagewise Accelerated Algorithms Development

In this section, we propose to consider the SSTS playing an accelerated role in Nes-
terov’s acceleration-based method (RSAG) and VR-based method (SVRG). Particularly, we
incorporate SSTS into the iterative framework of RSAG or SVRG to create a new way to
accelerate the convergence rate further. Next, let us discuss stagewise RSAG and stagewise
SVRG one by one.

3.1. Stagewise RSAG Development

Nesterov’s acceleration is devised according to Polyak’s heavy ball, the acceleration
principle behind which is mainly based on the effectiveness of momentum on physics.
Nesterov’s acceleration has attracted much interest due to the increasing need to solve large-
scale problems. However, Nesterov’s acceleration requires explicitly convexity assumption
for establishing convergence. Recently, Ghadimi and Lan [19], based on Nesterov’s acceler-
ation, redesigned an elaborate iterative framework RSAG. On the other hand, in the process
of optimizing nonconvex models such as DNNs, sparse regularization, one empirically
finds out a phenomenon that the optimization algorithms equipped with SSTS, which
starts from a relatively large stepsize and decreases it geometrically after a number of itera-
tions, can improve the convergence speed effectively. SSTS makes the objective function to
fastly find the space of the optimal. Thereupon, SSTS has been viewed as another simply
implemented way to accelerate convergence rate.

In this section, we incorporate the SSTS into the iterative framework of RSAG which
carries out the following updates (Algorithm 1): In Algorithm 1, the number of total
iterations has been divided into T epochs, and the iteration is implemented Sk times at the
kth epoch. At the first epoch, we choose a relatively large η0, and decrease it by half, i.e.,
η1 = η0/2, at the second epoch, and so on. The SSTS procedure contains the T epochs times
Sk epoch, which starts from a relatively large stepsize and decreases it geometrically after a
number of iterations. The stepsize is decreased in half through each epoch in Algorithm 1.

Mathematics 2024, 12, 1664 5 of 18

It is easy to verify that the convergence result also holds when the the stepsize is decayed
slower somewhat, i.e., decayed by a factor 1 < c < 2, ηk+1 = ηk/c. In particular, the
recursion shown in the 6th line of Algorithm 1 is the so called RSAG.

Algorithm 1 Stagewise RSAG (S-RSAG).

1: Input: T ≥ 1, parameters {Sk, ηk, αs}T
k=1 ≥ 1 and random variables RSk taking values

in {1, . . . , Sk};
2: Initialize: x0 = 0;
3: for k = 0, 1, . . . , T − 1 do
4: xk,0 = xmd

k,0 = xag
k,0 = xk;

5: for s = 0, 1, . . . , Sk − 1 do
6: 

xmd
k,s+1 =(1 − αs)xag

k,s + αsxk,s

xk,s+1 =xk,s − λk,s∇ fis(xmd
k,s+1)

xag
k,s+1 =xmd

k,s − ηk∇ fis(xmd
k,s+1)

7:
8: end for
9: xk+1 =xag

k,RSk
, if F is convex

xk+1 =xmd
k,RSk

, elsewise

10: end for
11: Output: xT .

3.2. Theoretical Aspects of S-RSAG

The goal of this section is to show the results of the convergence rate of Algorithm 1.
For DNNs, the PL condition has been satisfied and proved. So we assume the objective
F meets the PL condition. In particular, we give the following theorem in which the
convergence rate of the Algorithm 1 is characterized.

Theorem 1. Suppose that F is l.c.d. with constant L and meets the PL condition with modulus µ,
and its gradient is bounded by G uniformly.

1. If the parameters are chosen as αs =
2

s+1 , ηk ≤ min
{

1
2L , ϵk

8Lσ2

}
, λk,s ∈

[
ηk, 2s+3

2(s+1)ηk

]
, Sk =

4
µηk

,

and probability mass function of Sk is chosen such that P(RSk = s) =
Ck,sλk,s

∑
Sk
i=1 Ck,iλk,i

for any

s = 1, . . . , Sk, where ϵ0 ≥ ∥∇F(x0)∥2, ϵk+1 = ϵk/2, and Ck,s = 1− L
[

λk,s +
(λk,s−ηk)

2(s+1)2

8λk,s(Sk+1)

]
we can find an ϵ-stationary point (a point x̊ such that E[∥∇F(x̊)∥2] ≤ ϵ) by performing
Algorithm 1 at most O(L/(µϵ)) times.

2. If we further assume F is convex and the parameters are chosen as αs = 2
s+1 ,

ηk ≤ min
{

1
L , ϵk

16σ2

√
µ

3L

}
, λk,s = ηk, Sk =

√
12

Lµη2
k
, and probability mass function of Sk is

chosen such that P(RSk = s) = s(s+1)

∑
Sk
i=1 i(i+1)

for any s = 1, . . . , Sk, where ϵ0 ≥ F(x0)− F(x∗)

and ϵk+1 = ϵk/2, we can find an ϵ-minimizer (a point x̊ such that E[F(x̊)− F(x∗)] ≤ ϵ) by
performing Algorithm 1 at most O(1/(µϵ)) times.

where σ denotes the upper bound of the standard deviation of the stochastic gradient.

The proof of Theorem 1 is presented in Appendix A.1.

Remark 1. By the above Theorem 1, the iterative complexities of S-RSAG are at most O(L/µϵ) to
find an ϵ-stationary point for nonconvex objective and O(1/µϵ) to find an ϵ-minimum for convex

Mathematics 2024, 12, 1664 6 of 18

objective. For RSAG, the complexities are O(L2/ϵ + L/ϵ2) and O(L/
√

ϵ + 1/ϵ2), respectively,
where µ is the PL modulus and L is the Lipschitz constant. S-RSAG reduces the complexity
O(1/ϵ2) to O(1/ϵ) under convex and nonconvex conditions. Compared to existing stagewise
algorithm S-SGD, the complexities of our S-RSAG are more superior under a convex condition
(i.e., O(1/µϵ) v.s. O(L/µϵ), where L ≫ 1 in general) and at the same level under a nonconvex
condition. The detail comparison is reported in Table 1. Meanwhile, our algorithm S-RSAG does
not deny the optimality of RSAG for first-order stochastic gradient methods, and further considers
the PL condition.

Table 1. Some recent results in the accelerated stochastic gradient methods.

Methods PL Condition Generally Convex Nonconvex

SGD [16] O(L/ϵ + σ/ϵ2) O(L2/ϵ + Lσ/ϵ2)
SGD [39] ✓ O(1/(µ2ϵ))
RSAG [19] O(L/

√
ϵ + σ/ϵ2) O(L2/ϵ + Lσ/ϵ2)

SVRG [21] O(n2/3L/ϵ)
S-SGD [37] ✓ O(L/µϵ) O(L/µϵ)
S-RSAG ✓ O(1/µϵ) O(L/µϵ)
S-SVRG ✓ O(Lm/(µ2√ϵ)) O(Lm/(µ

√
ϵ))

3.3. Stagewise SVRG Development

As discussed earlier, because SGD can only tolerate a relatively small stepsize, it
suffers from a slow convergence rate consequently. Apart from Nesterov’s method, another
way (VR) is to implement acceleration by reducing the variance of random interference.
The core ideal of the VR technique is realized by calculating a full gradient once at each
epoch and incorporating it into the iteration to adjust the current stochastic gradient so that
it does not deviate too far away from the full one. Benefiting from the VR technique, SVRG
has been shown to possess strong competitiveness with respect to fast convergence rate.

In this section, we mainly consider whether the convergence rate can be further
improved by combining the VR technique and SSTS together. In particular, we incorporate
the SSTS into the iterative framework of SVRG, which carries out the following updates
(Algorithm 2):

Algorithm 2 Stagewise SVRG (S-SVRG).

1: Input: T ≥ 1, m ≥ 1, parameters {Sk, ηk}T
k=1 ≥ 1 and random variables RSk taking

values in {1, . . . , Sk};
2: Initialize: x0 = 0;
3: for k = 0, 1, . . . , T − 1 do
4: xk,0 = xk;
5: for s = 0, 1, . . . , Sk − 1 do
6: x0

k,s = xk,s;
7: for t = 0, 1, . . . , m − 1 do
8: xt+1

k,s = xt
k,s − ηk[∇ fit(xt

k,s)−∇ fit(x0
k,s) +∇F(x0

k,s)];
9: end for

10: xk,s+1 = xm
k,s;

11: end for
12: xk+1 = xk,RSk

;
13: end for
14: Output: xT .

In Algorithm 2, m is an arbitrary constant and denotes the number of inner iteration
for VR, and the rest parameters are set as in Algorithm 1. In particular, the process of the
so-called VR technique has been shown in the 7–9th line of Algorithm 2.

Mathematics 2024, 12, 1664 7 of 18

3.4. Theoretical Aspects of S-SVRG

The goal of this section is to show the results of the convergence rate of Algorithm 2. In
particular, we give the following theorem in which the convergence rate of the Algorithm 2
is characterized.

Theorem 2. Suppose that F is l.c.d. with constant L and meets the PL condition with modulus µ,
and its gradient is bounded by G uniformly.

1. If the parameters are chosen as ηk ≤ min

{
1

2mGL

√
(1−m2η2

0 L2)ϵk
4+mη0L , 1

2mL

}
, Sk =

4
µmηk(1−2η0mL) ,

and probability mass function of RSk is chosen such that P(RSk = s) = 1
Sk

for any
s = 0, . . . , Sk − 1, where ϵ0 ≥ ∥∇F(x0)∥2 and ϵk+1 = ϵk/2, we can find an ϵ-stationary point
(a point x̊ such that E[∥∇F(x̊)∥2] ≤ ϵ) by performing Algorithm 2 at most O(Lm/(µ

√
ϵ))

times.
2. If we further assume F is convex and the parameters are chosen as Sk =

1+log(4)
µmηk

,

ηk ≤ min
{

µ
√

(1−m2η2
0 L2)ϵk

2mGL , 1
mL , 1

µm

}
and probability mass function are chosen such that

P(RSk = Sk) = 1 and P(RSk = s) = 0 for s = 1, . . . , Sk − 1, where ϵ0 ≥ ∥x0 − x∗∥2 and
ϵk+1 = ϵk/2, we can find an ϵ-minimizer (a point x̊ such that ∥x̊ − x∗∥2 ≤ ϵ) by performing
Algorithm 1 at most O(mL/(µ2√ϵ)) times.

The proof of Theorem 2 is presented in Appendix A.2.

Remark 2. From the above theorem, it easy to verify that the iterative complexities of S-SVRG have
been significantly reduced, which are both more superior than its non-stagewise counterpart SVRG
and existing stagewise algorithm S-SGD under convex and nonconvex conditions. In other words,
the convergence rates of S-SVRG have been significantly improved by SSTS. A detailed comparison
is reported in Table 1.

So far, we have answered the main question considered in this paper in the affirmative;
namely, the incorporation between SSTS and RSAG or SVRG does further improve the
convergence rate.

4. Numerical Experiments

In the previous sections, we proposed two stagewise algorithms S-RSAG and S-SVRG,
and analyzed the acceleration of their convergence rate. Now, we turn to consider their
experimental performances.

4.1. Learning DNNs

In this subsection, we focus on testing our algorithm under the nonconvex condition,
i.e., training DNNs. Particularly, we choose two familiar networks, MLP and VGG net,
to examine the performances of our algorithms. Note that we are not trying to show that
these two networks are the most efficient, but are attempting to show the superiority of our
algorithms based on these two nonconvex models.

Firstly, we compare our stagewise algorithms S-RSAG and S-SVRG with their non-
stagewise counterparts RSAG and SVRG. Then, we also compare them with the other
state-of-art methods including stagewise SGD (S-SGD), VR-SGD [22], and Katyusha [40].
Experiments are performed on two commonly used datasets:

1. MNIST: This dataset contains 28 × 28 gray images from ten-digit classes. To improve
learning efficiency, we load 10 samples per batch. We use 60,000 (6000 × 10) images
for training, and the remaining 10,000 for testing. We adopt the 4-layer MLP network

784FC − 2048FC − 1024FC − 512FC − 256FC − 10SF

Mathematics 2024, 12, 1664 8 of 18

to training, where FC denotes a ReLU full-connected layer and SF denotes a softmax
output layer, for which the “CrossEntropyLoss” is adopted.

2. CIFAR-10: This dataset contains 32× 32 color images from ten object classes. Similarly,
we load 4 samples per batch. We use 50,000 (12,500 × 4) images for training, and the
remaining 10,000 for testing. We adopt the VGG-like architecture

32 × 32 × 3C3 − MP2 − 16 × 16 × 64C3 − MP2

− 8 × 8 × 128C3 − MP2 − 4 × 4 × 512C3 − MP2

− 2 × 2 × 256C3 − MP2 − 10FC

where C3 denotes a 3 × 3 ReLU convolution layer, and MP2 denotes a 2 × 2 max-
pooling layer, and FC denotes a ReLU full-connected output layer, for which the
“CrossEntropyLoss” is adopted.

In this section, the initial stepsize values for stagewise algorithms S-RSAG, S-SVRG
and S-SGD are set as η0 = 0.5 for MLP and η0 = 0.05 for VGG. The iterations of these
algorithms are divided into 5 epochs (T = 5) for MLP and 10 epochs (T = 10) for VGG. At
each epoch, we run the iterations over the entire training set ergodicly, namely, the number
of inner iterations at each epoch satisfies Sk = 6000 for MLP and Sk = 12,500 for VGG. At
last, the stepsize for MLP decays by a factor of 2 and for VGG it decays by a factor of 1.5. In
addition, the more the algorithm can tolerate large stepsize, the faster the convergence rate
of the algorithm is, usually [22]. For other comparison algorithms, we tried several times to
select a large as possible stepsize under the premise of ensuring convergence. We evaluate
the performances of these algorithms in three aspects, i.e., value of loss, classification error
rate on training set (training accuracy), and rate on testing set (testing accuracy). Next, we
design the two following comparative experiments to verify our previous claims.

4.1.1. S-RSAG and S-SVRG vs. Their Non-Stagewise Counterparts

In this test, we attempt to verify the effectiveness of SSTS via comparing our stagewise
algorithms S-RSAG and S-SVRG with their non-stagewise counterparts RSAG and SVRG.
Figure 1 shows the behaviors of all the algorithms considered, in the three aspects (i.e., value
of loss, training error, and testing error). Let us take a close look at the decay of loss function
values: it is easy to find that the proposed S-RSAG and S-SVRG converge faster than their
non-stagewise counterparts RSAG and SVRG, respectively. With respect to the training
and testing accuracy, in most cases, our proposed RSAG and SVRG also can achieve the
best accuracy more quickly.

4.1.2. S-RSAG and S-SVRG vs. Other Methods

In the above test, we have shown the effectiveness of SSTS via comparing the perfor-
mances of our proposed algorithms with their non-stagewise counterparts. In this section,
we verify whether the combination of SSTS and Nesterov’s acceleration or VR can further
accelerate the convergence rate. Specifically, for the full-gradient-free S-RSAG, we compare
it with other full-gradient-free method S-SGD; for the full-gradient-calibration S-SVRG, we
compare it with VR-SGD and Katyusha.

Figure 2 shows the behaviors of all the algorithms considered. For full-gradient-free
methods, as can be seen, S-RSAG outperforms S-SGD obviously in all the three aspects we
considered. For full-gradient-calibration methods, we can see that our proposed S-SVRG
achieves the fastest convergence rate with respect to the value of loss. Since our S-SVRG
takes the last iteration as the output, the stability of the model is susceptible to random
noise interference. From Table 2, it can be seen that S-SVRG and S-RASG have lower
computational times. Therefore, S-SVRG’s performance in terms of training and testing
accuracy is better than other methods.

In the end, from the above numerical results, it can be seen that the combination
of SSTS with Nesterov’s acceleration or VR does further accelerate the convergence rate

Mathematics 2024, 12, 1664 9 of 18

under nonconvex optimization. Next, we will examine the performances of our proposed
algorithms under the convex condition.

Figure 1. Performances of S-SVRG, S-RSAG, SVRG and RSAG on different nonconvex tasks.
(a–c) respectively demonstrate the loss, training accuracy, and testing accuracy of different methods
for MLP networks on MNIST dataset; (d–f) respectively plot the loss, training accuracy, and testing
accuracy of VGG networks on CIFAR-10 dataset.

Figure 2. Performances of S-SVRG, S-RSAG, S-SGD, VR-SGD, and Katyusha for various nonconvex
tasks. (a–c) respectively demonstrate the loss, training accuracy, and testing accuracy of different
methods for MLP networks on MNIST dataset; (d–f) respectively plot the loss, training accuracy, and
testing accuracy of VGG networks on CIFAR-10 dataset.

Table 2. The computational time (s) for different methods in the nonconvex condition.

Methods SGD RASG SVRG S-SGD Katyusha S-RSAG S-SVRG

MLP on MNIST 247.57 685.94 292.72 293.61 435.22 293.15 326.78

Mathematics 2024, 12, 1664 10 of 18

4.2. Logistic Regression

In the above section, we have examined the performance of our proposed algorithms under
the nonconvex condition (training DNNs). In this section, we test our algorithms on logistic
regression problem , which is under the convex condition and can be viewed as a one-layer fully
connected network with SoftMarginLoss. Experiments are performed on two commonly used
datasets downloaded from the libsvm website (https://www.csie.ntu.edu.tw/~cjlin/libsvm/).

1. REAL-SIM: This contains 72,309 data points of 20,958 features from two object classes.
We divide it into two sets, i.e., one for training and the other for testing.

2. RCV1: This contains 20,242 data points of 47,236 features from two object classes.
Similarly, we also divide it into two sets, averagely, one for training and the other for
testing.

In this section, the initial values of stepsize for stagewise algorithm S-RSAG, S-SVRG
and S-SGD are chosen as η0 = 5. The iterations are divided into 5 epochs (T = 5). At
each epoch, we set the batch size as 10 and run the iterations over the entire training
set ergodicly, namely, the number of inner iteration at each epoch satisfies Sk = 1500 for
RCV1 and Sk = 5000 for REAL-SIM. For other comparison algorithms, we tried several
times to select as large as possible a stepsize under the premise of ensuring convergence.
We evaluate the performances of these algorithms in the aspects of loss, training, and
testing accuracy.

4.2.1. S-RSAG and S-SVRG vs. Their Non-Stagewise Counterparts

In this test, we attempt to verify the effectiveness of SSTS under the convex condition.
Figure 3 shows the behaviors of all the algorithms considered. With respect to the decay of
loss function values, it is easy to find that the proposed S-RSAG and S-SVRG converge faster
than their non-stagewise counterparts RSAG and SVRG, respectively. With respect to the
training accuracy, S-RSAG and S-SVRG also outperform their non-stagewise counterparts.
As shown in subfigure (f), with respect to the testing accuracy, our proposed methods
are inferior to the comparison methods. This is due to overfitting; that is, the faster the
algorithm converges, the weaker the generalization ability is.

Figure 3. Performances of S-SVRG, S-RSAG, SVRG, and RSAG on convex condition. (a–c) demon-
strate the values of loss, training accuracy, and testing accuracy of various methods for logistic
regression on RVC1 dataset. (d–f) demonstrate the values of loss, training accuracy, and testing
accuracy of various methods for logistic regression on REAL-SIM dataset.

https://www.csie.ntu.edu.tw/~cjlin/libsvm/

Mathematics 2024, 12, 1664 11 of 18

4.2.2. S-RSAG and S-SVRG vs. S-SGD

Figure 4 shows the behaviors of all the algorithms considered. As can be seen, S-RSAG
outperforms S-SGD, and S-SVRG achieves the best performance other than full-gradient-
calibrated methods, in most cases. We have verified the effectiveness of SSTS under the
convex condition.

Figure 4. Performances of S-SVRG, S-RSAG, S-SGD, VR-SGD, and Katyusha on convex condition.
(a–c) demonstrate the values of loss, training accuracy, and testing accuracy of various methods for
logistic regression on RVC1 dataset. (d–f) demonstrate the values of loss, training accuracy, and
testing accuracy of various methods for logistic regression on REAL-SIM dataset.

5. Discussion

Inspired by the phenomenon of optimization algorithms equipped into SSTS and the
continuous strategy in nonconvex optimization, we incorporated SSTS into the iterative
framework of RSAG and SVRG, and proposed S-RSAG and S-SVRG. We show that the
iterative complexities of S-RSAG are significantly reduced with respect to its non-stagewise
counterpart RSAG, and are more superior than the existing stagewise algorithm S-SGD
under the convex condition and at the same level under the nonconvex condition, and
the iterative complexities of S-SVRG are significantly superior than both its non-stagewise
counterpart SVRG and the existing stagewise algorithm S-SGD under convex and noncon-
vex conditions. We will further discuss the lower bound for our proposed methods and
explore the performance of gradient in higher-dimensional constrained optimization in
the future.

6. Conclusions

In this paper, we mainly proposed a conjecture as to whether the incorporation be-
tween SSTS, which is a common method to train DNNs empirically, and Nesterov’s accel-
eration or VR-based methods can further improve the convergence rate. Particularly, we
propose two SSTS equipped accelerated algorithms and answered the above conjecture in
the affirmative theoretically under both convex and nonconvex conditions, respectively. Fur-
thermore, we examine the performance of our equipped algorithms by designing contrast
experiments on training DNNs and logistic regression, which validates the competitiveness
of our methods well.

Mathematics 2024, 12, 1664 12 of 18

Author Contributions: Conceptualization, C.J. and Z.C.; investigation, C.J.; methodology, C.J. and
Z.C.; project administration, C.J. and Z.C.; validation, C.J. and Z.C.; writing—original draft, C.J.;
writing and review and editing, C.J. and Z.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by General project of Zhejiang provincial Department of Education
with No. Y202147627.

Data Availability Statement: We choose to exclude this statement because the study did not report
any data.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

GD gradient descent
SGD stochastic gradient descent
SSTS stagewise stepsize tuning strategy
DNN deep neural network
VR variance reduction
RASG randomized stochastic accelerated gradient
SVRG stochastic variance reduced gradient
S-SGD stagewise stochastic gradient descent
S-RSAG stagewise randomized stochastic accelerated gradient
S-SVRG stagewise stochastic variance reduced gradient
l.c.d. Lipschitz continuously differentiable
PL Polyak–Łojasiewicz
MLP Mmultilayer Perceptron
VGG Visual Geometry Group
FC a ReLu fully connected layer
SF softmax output layer

Appendix A

Appendix A.1. Proof of Theorem 1

Proof. At first, let us review the following convergence result about RSAG in the proof
of Corollary 3 [19]. Suppose F and parameters coincide with the assumptions made in
Theorem 1; then, the iterate generated by Algorithm 1 satisfies the following inequality

E[∥∇F(xk+1)∥2|xk] ≤
2[F(xk)− F(x∗)]

ηkSk
+ 2Lσ2ηk. (A1)

When F is further assumed to be convex, we have

E[F(xk+1)− F(x∗)|xk] ≤
12∥xk − x∗∥

Lη2
k S2

k
+ 2Lσ2η2

k Sk (A2)

where σ denotes the upper bound of the standard deviation of the stochastic gradient.
We firstly show part (1). We prove the result E[∥∇F(xk+1)∥2] ≤ ϵk+1 by induction,

where ϵk+1 := ϵk/2, which is true for k = 0 as long as the initial value ϵ0 is chosen
as ϵ0 := ∥∇F(x0)∥2. We assume E[∥∇F(xk)∥2] ≤ ϵk is true and propose to prove this
inequality holds at k + 1. Plugging PL inequality (3) into (A1), we have

E[∥∇F(xk+1)∥2] ≤E[∥∇F(xk)∥2]

µηkSk
+ 2Lσ2ηk

ϵk
µηkSk

+ 2Lσ2ηk

Mathematics 2024, 12, 1664 13 of 18

Since the parameters are chosen as in Theorem 1, we obtain E[∥F(xk+1)∥2] ≤ ϵk+1. By
induction, after T = ⌈log2(ϵ0/ϵ)⌉ stages, we have E[∥F(xT)∥2] ≤ ϵ, with total iterative
complexity ∑T

k=1 Sk = ∑T
k=1 O(L/(µϵk)) ≤ O(L/(µϵ)).

We now show part (2). With the same method used above, we prove result
E[F(xk+1)− F(x∗)] ≤ ϵk+1 by induction. We assume E[F(xk)− F(x∗)] ≤ ϵk is true. Plug-
ging PL inequality (4) into (A2), we have

E[F(xk+1)− F(x∗)] ≤6E[F(xk)− F(x∗)]
Lµη2

k S2
k

+ 2Lσ2η2
k Sk

≤ 3ϵk

Lµη2
k S2

k
+ 2Lσ2η2

k Sk

Since the parameters are chosen as in Theorem 1, we obtain E[F(xk+1)− F(x∗)] ≤ ϵk+1.
Similar to the proof of the above part, it is easy to verify that the iterative complexity of
Algorithm under convex condition is O(1/(µϵ)).

Appendix A.2. Proof of Theorem 2

Proof. We first show part (1) by following two steps:
First step: we will show that the following inequality holds for any 0 ≤ k ≤ T:

E[∥∇F(xk+1)∥2|xk]

≤ 2
1 − 2ηkmL

[
F(xk)− F∗

mηkSk
+

m2η2
k G2L2(4 + mηkL)
1 − m2η2

k L2

]
.

(A3)

Now we begin proving the above inequality (A3). Following the recursion (line 8 in
Algorithm 2) directly, we have

xk,s+1 = xm
k,s =xm−1

k,s − ηk[∇ fim−1(xm−1
k,s)−∇ fim−1(x0

k,s)

+∇F(x0
k,s)]

...

=xj
k,s − ηk

m−j

∑
t=1

[∇ fim−t(xm−t
k,s)− fim−t(x0

k,s)

+∇F(x0
k,s)]

...

=x0
k,s − ηk

m−1

∑
t=0

[∇ fit(xt
k,s)−∇ fit(x0

k,s)

+∇F(x0
k,s)].

We further define gt
k,s(xt

k,s) := ∇ fit(xt
k,s)−∇ fit(x0

k,s); then the above recursion can be
rewritten as

xk,s+1 = xk,s − ηkm∇F(xk,s)− ηk

m−1

∑
t=0

gt
k,s(xt

k,s), (A4)

where we make use of the notion x0
k,s = xk,s.

Since f is Lipschitz continuously differentiable with constant L, it holds that

F(xk,s+1) ≤F(xk,s) + ⟨∇F(xk,s), xk,s+1 − xk,s⟩

+
L
2
∥xk,s+1 − xk,s∥2.

Mathematics 2024, 12, 1664 14 of 18

By the recursion (A4) and above inequality, we have

F(xk,s+1)

≤F(xk,s) +
η2

k L
2

∥∥∥∥∥m∇F(xk,s) +
m−1

∑
t=0

gt
k,s(xt

k,s)

∥∥∥∥∥
2

− ηk

〈
∇F(xk,s), m∇F(xk,s) +

m−1

∑
t=0

gt
k,s(xt

k,s)

〉
≤F(xk,s)−

(ηkm
2

− η2
k m2L

)
∥∇F(xk,s)∥2

+

(
4ηk
m

+ η2
k L

)∥∥∥∥∥m−1

∑
t=0

gt
k,s(xt

k,s)

∥∥∥∥∥
2

,

(A5)

where the last inequality follows the Cauchy–Schwarz inequality.

Now, we aim to give the upper bound for the term
∥∥∥∑m−1

t=0 gt
k,s(xt

k,s)
∥∥∥2

. Via direct
computation, we have∥∥∥∥∥m−1

∑
t=0

gt
k,s(xt

k,s)

∥∥∥∥∥
2

≤m
m−1

∑
t=0

∥∥∥gt
k,s(xt

k,s)
∥∥∥2

≤mL2
m−1

∑
t=0

∥xt
k,s − x0

k,s∥
2

=mL2
m−1

∑
t=0

∥∥∥∥∥ t

∑
j=1

(xj
k,s − xj−1

k,s)

∥∥∥∥∥
2

≤mL2
m−1

∑
t=0

t
t

∑
j=1

∥xj
k,s − xj−1

k,s ∥2

=mL2
m−1

∑
j=1

m−1

∑
t=j

t∥xj
k,s − xj−1

k,s ∥2

≤m3L2

2

m

∑
j=1

∥xj
k,s − xj−1

k,s ∥2

(A6)

where we make use of the notion

m−1

∑
t=j

t ≤
m−1

∑
t=1

t =
m(m − 1)

2
<

m2

2

for the last inequality. On the other hand, we have

∥xt
k,s − xt−1

k,s ∥2

=η2
k∥∇ fit−1(xt−1

k,s)−∇ fit−1(x0
k,s) +∇F(x0

k,s)∥
2

≤2η2
k∥∇ fit−1(xt−1

k,s)−∇ fit−1(x0
k,s)∥

2 + 2η2
k∥∇F(x0

k,s)∥
2

≤2η2
k L2∥xt−1

k,s − x0
k,s∥

2 + 2η2
k G2

where we make use of the assumption ∥∇F(x)∥ ≤ G for the last inequality. Taking
summation over t from 1 to m on both sides, we obtain

Mathematics 2024, 12, 1664 15 of 18

m

∑
t=1

∥xt
k,s − xt−1

k,s ∥2 ≤2η2
k L2

m

∑
t=1

∥xt−1
k,s − x0

k,s∥
2 + 2Skη2

k G2

≤m2η2
k L2

m

∑
t=1

∥xt
k,s − xt−1

k,s ∥2 + 2Skη2
k G2

which derives
m

∑
t=1

∥xt
k,s − xt−1

k,s ∥2 ≤
2mη2

k G2

1 − m2η2
k L2

. (A7)

Substituting (A7) into (A6), we have∥∥∥∥∥m−1

∑
t=0

gt
k,s(xt

k,s)

∥∥∥∥∥
2

≤
m4η2

k G2L2

1 − m2η2
k L2

. (A8)

Then, substituting (A8) into (A5), we have(ηkm
2

− η2
k m2L

)
∥∇F(xk,s)∥2

≤F(xk,s)− F(xk,s+1) +
m3η3

k G2L2(4 + mηkL)
1 − m2η2

k L2
.

Taking summation over s from 0 to Sk − 1, we have

(ηkm
2

− η2
k m2L

) Sk−1

∑
s=0

∥∇F(xk,s)∥2

≤F(xk,0)− F(xk,Sk
) +

Skm3η3
k G2L2(4 + mηkL)
1 − m2η2

k L2
.

Dividing both sides of the above inequality by (ηkm/2 − η2
k m2L) and noting that

E[∥∇F(xk+1)∥2]

=E[∥∇F(xk,RSk
)∥2] =

1
Sk

Sk−1

∑
s=0

∥∇F(xk,s)∥2,

we conclude

E[∥∇F(xk+1)∥2|xk] ≤
2

1 − 2ηkmL

[
F(xk)− F(xk,Sk

)

mηkSk

+
m2η2

k G2L2(4 + mηkL)
1 − m2η2

k L2

]
.

By using the notion F(xk)− F(xk,Sk
) ≤ F(xk)− F∗, the inequality (A3) is yielded.

Second step: We prove E[∥∇F(xk+1)∥2] ≤ ϵk+1 by induction, where ϵk+1 := ϵk/2,
which is true for k = 0 as long as the initial value ϵ0 is chosen as ϵ0 := ∥∇F(x0)∥2. We
assume E[∥∇F(xk)∥2] ≤ ϵk is true and propose to prove this inequality holds at k + 1.
Plugging PL inequality (3) into (A3), we have

E[∥∇F(xk+1)∥2]

≤ 2
1 − 2ηkmL

[
E[∥∇F(xk)∥2]

2µmηkSk
+

m2η2
k G2L2(4 + mηkL)
1 − m2η2

k L2

]

≤ 2
1 − 2ηkmL

[
ϵk

2µmηkSk
+

m2η2
k G2L2(4 + mηkL)
1 − m2η2

k L2

]

Mathematics 2024, 12, 1664 16 of 18

Since the parameters are chosen as in Theorem 2, we obtain E[∥∇F(xk+1)∥2] ≤ ϵk+1. By
induction, after T = ⌈log2(ϵ0/ϵ)⌉ stages, we have E[∥∇F(xT)∥2] ≤ ϵ, with total iterative
complexity ∑T

k=1 mSk = ∑T
k=1 O(mL/(µ

√
ϵk)) ≤ O(mL/

√
µ2ϵ).

We now show part (2). By recursion (A4), let dk,s := xk,s − x∗, and we have

∥dk,s+1∥2

=

∥∥∥∥∥dk,s − ηkm∇F(xk,s)− ηk

m−1

∑
t=0

gt
k,s(xt

k,s)

∥∥∥∥∥
2

≤ 1
γ
∥dk,s − ηkm∇F(xk,s)∥2 +

η2
k

1 − γ

∥∥∥∥∥m−1

∑
t=0

gt
k,s(xt

k,s)

∥∥∥∥∥
2

where we make use of the notion (a + b)2 ≤ 1
γ a2 + 1

1−γ b2 with γ ∈ (0, 1) for the inequality.
The upper bound for the second term of the right side of the above inequality can be found
in (A8). We now propose to bound the first term as follows:

∥dk,s − ηkm∇F(xk,s)∥2

=∥dk,s∥2 + η2
k m2∥∇F(xk,s)∥2 − 2ηkm⟨dk,s,∇F(xk,s)⟩

≤(1 − 2µmηk)∥dk,s∥2 −
(ηkm

L
− η2

k m2
)
∥∇F(xk,s)∥2

≤(1 − µmηk)
2∥dk,s∥2 −

(ηkm
L

− η2
k m2

)
∥∇F(xk,s)∥2

where we make use of the notion ⟨∇F(x)−∇F(y), x − y⟩ ≥ 1
L∥∇F(x)−∇F(y)∥2, and

−⟨dk,s,∇F(xk,s)⟩ ≤ f (x∗) − f (xk,s) ≤ −2µ∥x∗ − xk,s∥2 for the first inequality. Let
γ = 1 − µmηk, we have

∥dk,s+1∥2 = (1 − µmηk)∥dk,s∥2 +
m3η3

k G2L2

µ(1 − m2η2
k L2)

With a simple derivation, we have

∥dk,Sk
∥2 =(1 − µmηk)

Sk∥dk,0∥2

+
2m3η3

k G2L2

µ(1 − m2η2
k L2)

Sk−1

∑
s=0

(1 − µmηk)
Sk−s−1

≤ exp(1 − µmηkSk)∥dk,0∥2 +
m2η2

k G2L2

µ2(1 − m2η2
k L2)

.

(A9)

Now, we prove ∥xk+1 − x∗∥2 ≤ ϵk+1 by induction, where ϵk+1 := ϵk/2, which is
true for k = 0 as long as the initial value ϵ0 is chosen as ϵ0 := ∥x0 − x∗∥2. We assume
∥xk − x∗∥2 ≤ ϵk is true and propose to prove this inequality holds at k + 1. Making use
of the notion dk,Sk

= xk,Sk
− x∗ = xk+1 − x∗ and dk,0 = xk,0 − x∗ = xk − x∗, following (A9)

directly we have

∥xk+1 − x∗∥2

≤ exp(1 − µmηkSk)∥xk − x∗∥2 +
m2η2

k G2L2

µ2(1 − m2η2
k L2)

≤ exp(1 − µmηkSk)ϵk +
m2η2

k G2L2

µ2(1 − m2η2
k L2)

.

Mathematics 2024, 12, 1664 17 of 18

Since the parameters are chosen as in Theorem 2, we obtain ∥xk+1 − x∗∥2 ≤ ϵk+1. By
induction, after T = ⌈log2(ϵ0/ϵ)⌉ stages, we have ∥xT − x∗∥2 ≤ ϵ, with total iterative
complexity ∑T

k=1 mSk = ∑T
k=1 O(mL/(µ2√ϵk)) ≤ O(mL/(µ2√ϵ)).

References
1. Neter, J.; Khutner, M.H.; Nachtsheim, C.J.; Wasserman, W. Applied Linear Statistical Models; Irwin: Chicago, IL, USA, 1996;

Volyme 4.
2. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [CrossRef] [PubMed]
3. Kushner, H.J.; Yin, G.G. Stochastic Approximation and Recursive Algorithms and Applications; Springer Science & Business Media:

New York, NY, USA , 2003; Volume 35.
4. Bottou, L. Stochastic Gradient Descent Tricks. In Neural Networks: Tricks of the Trade, Reloaded; Springer: Berlin/Heidelberg,

Germany, 2012; pp. 421–436.
5. He, W.; Liu, Y. To regularize or not: Revisiting SGD with simple algorithms and experimental studies. Expert Syst. Appl. 2018,

112, 1–14. [CrossRef]
6. He, W.; Kwok, J.T.; Zhu, J.; Liu, Y. A Note on the Unification of Adaptive Online Learning. IEEE Trans. Neural Netw. Learn. Syst.

2017, 28, 1178–1191. [CrossRef] [PubMed]
7. Bottou, L.; Bousquet, O. The Tradeoffs of Large Scale Learning. In Proceedings of the Neural Information Processing Systems,

Vancouver, BC, Canada, 8–10 December 2008; pp. 161–168.
8. Bottou, L.; Curtis, F.E.; Nocedal, J. Optimization Methods for Large-Scale Machine Learning. SIAM Rev. 2018, 60, 223–311.

[CrossRef]
9. Polyak, B.T. Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 1964, 4, 1–17.

[CrossRef]
10. Nesterov, Y. A method of solving a convex programming problem with convergence rate O(1/k2). Sov. Math. Dokl. 1983,

27, 372–376.
11. Nesterov, Y. Introductory Lectures on Convex Optimization: A Basic Course; Kluwer: Boston , MA, USA, 2004.
12. Nesterov, Y. Smooth minimization of non-smooth functions. Math. Program. 2005, 103, 127–152. [CrossRef]
13. Auslender, A.; Teboulle, M. Interior Gradient and Proximal Methods for Convex and Conic Optimization. SIAM J. Optim. 2006,

16, 697–725. [CrossRef]
14. Nesterov, Y. Primal-dual subgradient methods for convex problems. Math. Program. 2009, 120, 221–259. [CrossRef]
15. Lan, G.; Lu, Z.; Monteiro, R.D.C. Primal-dual first-order methods with O(1/ϵ) iteration-complexity for cone programming. Math.

Program. 2011, 126, 1–29. [CrossRef]
16. Ghadimi, S.; Lan, G. Stochastic First- and Zeroth-Order Methods for Nonconvex Stochastic Programming. SIAM J. Optim. 2013,

23, 2341–2368. [CrossRef]
17. Sutskever, I.; Martens, J.; Dahl, G.E.; Hinton, G.E. On the importance of initialization and momentum in deep learning. In

Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 1139–1147.
18. Ochs, P.; Chen, Y.; Brox, T.; Pock, T. iPiano: Inertial Proximal Algorithm for Nonconvex Optimization. SIAM J. Imaging Sci. 2014,

7, 1388–1419. [CrossRef]
19. Ghadimi, S.; Lan, G. Accelerated gradient methods for nonconvex nonlinear and stochastic programming. Math. Program. 2016,

156, 59–99. [CrossRef]
20. Johnson, R.; Zhang, T. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction. In Proceedings of the

Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013; pp. 315–323.
21. Reddi, S.J.; Hefny, A.; Sra, S.; Poczos, B.; Smola, A. Stochastic Variance Reduction for Nonconvex Optimization. In Proceedings of

the International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 314–323.
22. Shang, F.; Zhou, K.; Liu, H.; Cheng, J.; Tsang, I.W.; Zhang, L.; Tao, D.; Jiao, L. VR-SGD: A Simple Stochastic Variance Reduction

Method for Machine Learning. IEEE Trans. Knowl. Data Eng. 2020, 32, 188–202. [CrossRef]
23. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of

the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1106–1114.
24. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the Computer Vision and

Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
25. Cui, Z.X.; Fan, Q. A “Nonconvex + Nonconvex” approach for image restoration with impulse noise removal. Appl. Math. Model.

2018, 62, 254–271. [CrossRef]
26. Fan, Q.; Jia, C.; Liu, J.; Luo, Y. Robust recovery in 1-bit compressive sensing via Lq-constrained least squares. Signal Process. 2021,

179, 107822. [CrossRef]
27. Xu, Y.; Lin, Q.; Yang, T. Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence. In Proceedings

of the International Conference on Machine Learning, Ningbo, China, 9–12 July 2017; pp. 3821–3830.
28. Hardt, M.; Ma, T. Identity matters in deep learning. arXiv 2016, arXiv:1611.04231.
29. Xie, B.; Liang, Y.; Song, L. Diversity leads to generalization in neural networks. arXiv 2016, arXiv:1611.03131v2.
30. Li, Y.; Yuan, Y. Convergence analysis of two-layer neural networks with relu activation. In Proceedings of the Neural Information

Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 597–607.

http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1016/j.eswa.2018.06.026
http://dx.doi.org/10.1109/TNNLS.2016.2527053
http://www.ncbi.nlm.nih.gov/pubmed/26929066
http://dx.doi.org/10.1137/16M1080173
http://dx.doi.org/10.1016/0041-5553(64)90137-5
http://dx.doi.org/10.1007/s10107-004-0552-5
http://dx.doi.org/10.1137/S1052623403427823
http://dx.doi.org/10.1007/s10107-007-0149-x
http://dx.doi.org/10.1007/s10107-008-0261-6
http://dx.doi.org/10.1137/120880811
http://dx.doi.org/10.1137/130942954
http://dx.doi.org/10.1007/s10107-015-0871-8
http://dx.doi.org/10.1109/TKDE.2018.2878765
http://dx.doi.org/10.1016/j.apm.2018.05.035
http://dx.doi.org/10.1016/j.sigpro.2020.107822

Mathematics 2024, 12, 1664 18 of 18

31. Zhou, Y.; Liang, Y. Characterization of gradient dominance and regularity conditions for neural networks. arXiv 2017,
arXiv:1710.06910.

32. Charles, Z.; Papailiopoulos, D.S. Stability and Generalization of Learning Algorithms that Converge to Global Optima. In
Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 744–753.

33. Arjevani, Y.; Carmon, Y.; Duchi, J.C.; Foster, D.J.; Srebro, N.; Woodworth, B. Lower bounds for non-convex stochastic optimization.
Math. Program. 2023, 199, 165–214. [CrossRef]

34. Horváth, S.; Lei, L.; Richtárik, P.; Jordan, M.I. Adaptivity of stochastic gradient methods for nonconvex optimization. SIAM J.
Math. Data Sci. 2022, 4, 634–648. [CrossRef]

35. Wang, Z.; Zhang, J.; Chang, T.H.; Li, J.; Luo, Z.Q. Distributed stochastic consensus optimization with momentum for nonconvex
nonsmooth problems. IEEE Trans. Signal Process. 2021, 69, 4486–4501. [CrossRef]

36. Yuan, K.; Ying, B.; Zhao, X.; Sayed, A.H. Exact Diffusion for Distributed Optimization and Learning—Part I: Algorithm
Development. IEEE Trans. Signal Process. 2019, 67, 708–723. [CrossRef]

37. Yuan, Z.; Yan, Y.; Jin, R.; Yang, T. Stagewise training accelerates convergence of testing error over SGD. In Proceedings of the
Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 2604–2614.

38. Bolte, J.; Nguyen, T.P.; Peypouquet, J.; Suter, B.W. From error bounds to the complexity of first-order descent methods for convex
functions. Math. Program. 2017, 165, 471–507. [CrossRef]

39. Karimi, H.; Nutini, J.; Schmidt, M. Linear convergence of gradient and proximal-gradient methods under the Polyak-Łojasiewicz
condition. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Riva
del Garda, Italy, 19–23 September 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 795–811.

40. Allen-Zhu, Z. Katyusha: The First Direct Acceleration of Stochastic Gradient Methods. J. Mach. Learn. Res. 2018, 18, 1–51.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10107-022-01822-7
http://dx.doi.org/10.1137/21M1394308
http://dx.doi.org/10.1109/TSP.2021.3097211
http://dx.doi.org/10.1109/TSP.2018.2875898
http://dx.doi.org/10.1007/s10107-016-1091-6

	Introduction
	Related Works
	Contributions

	Notions and Preliminaries
	Stagewise Accelerated Algorithms Development
	Stagewise RSAG Development
	Theoretical Aspects of S-RSAG
	Stagewise SVRG Development
	Theoretical Aspects of S-SVRG

	Numerical Experiments
	Learning DNNs
	S-RSAG and S-SVRG vs. Their Non-Stagewise Counterparts
	S-RSAG and S-SVRG vs. Other Methods

	Logistic Regression
	S-RSAG and S-SVRG vs. Their Non-Stagewise Counterparts
	S-RSAG and S-SVRG vs. S-SGD

	Discussion
	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2

	References

