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Abstract: The aim of the paper is to present two results concerning real hypersurfaces in the six-
dimensional sphere S6(1). More precisely, we prove that real hypersurfaces with the Lie-parallel
shape operator A must be totally geodesic hyperspheres. Additionally, we classify real hypersur-
faces in a nearly Kähler sphere S6(1) whose Lie derivative of the shape operator coincides with its
covariant derivative.
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1. Introduction

An almost Hermitian manifold with an almost complex structure J and the Levi-Civita
connection ∇̃ is, respectively, Kähler or nearly Kähler if the tensor field G(X, Y) = (∇̃X J)Y
is vanishing or skew-symmetric. In [1], it was shown that an arbitrary nearly Kähler
manifold can be locally decomposed into manifolds of three particular types, with six-
dimensional nearly Kähler manifolds being one of those types. We recall that it has
been shown by Butruille, see [2], that only four homogeneous, six-dimensional, strictly
nearly Kähler manifolds exist: the six-dimensional sphere S6(1), the manifold S3 × S3, the
projective space CP3, and the flag manifold SU(3)/U(1)× U(1). We note that, out of these
four, only the sphere S6(1) is endowed with standard metrics.

If we denote by N the unit normal vector field on the hypersurface M of an almost
Hermitian manifold, the tangent vector field ξ = −JN is called the Reeb vector field or
characteristic vector field. We denote by g the metric on S6(1) induced by the standard
Euclidean metric ⟨, ⟩ in the space R7. The shape operator of real hypersurfaces M of S6(1)
is denoted by A and satisfies g(AX, Y) = g(h(X, Y), N) for all X, Y tangent to M, where h
is the second fundamental form of M.

We say that a hypersurface M is Hopf if the vector field ξ satisfies Aξ = αξ for a certain
differentiable function α, and then ξ is a principal vector field. We also note that the function
α is locally constant, see [3]. It was shown in [3] that a connected Hopf hypersurface of a
nearly Kähler S6(1) is an open part of either a geodesic hypersphere or a tube around an
almost complex curve in S6(1). Therefore, at each point of a Hopf hypersurface in S6(1),
there exist either one, two, or three different principal curvatures.

The parts of totally geodesic hyperspheres are, of course, umbilical and have only
one principal curvature α. All other Hopf hypersurfaces in S6(1) are parts of tubes around
almost complex curves in S6(1), and the principal curvature α has a multiplicity of 3. If
the almost complex curve is totally geodesic, there is only one other principal curvature µ
that has a multiplicity of 2. If the almost complex curve is not totally geodesic, then it is
one of types (I), (II), or (III), and α has two other principal curvatures, µ and λ, that have a
multiplicity of 1. For details, we refer the reader to [4].

Mathematics 2024, 12, 1668. https://doi.org/10.3390/math12111668 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12111668
https://doi.org/10.3390/math12111668
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2255-2992
https://orcid.org/0000-0002-2111-7174
https://doi.org/10.3390/math12111668
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12111668?type=check_update&version=1


Mathematics 2024, 12, 1668 2 of 8

In recent years, the study of Riemannian hypersurfaces in different ambient spaces
endowed with an almost complex structure has been an active field of research. In particular,
many studies deal with the question of the existence and classification of hypersurfaces
that satisfy various conditions related to their parallelism, particularly related to its shape
operator, such as η-parallelness or pseudo-parallelness; we refer the reader to [5,6]. The
non-existence of real hypersurfaces in complex space forms with a parallel shape operator
was observed in [7]. Additionally, Kimura and Maeda [8] classified real hypersurfaces in
complex projective space whose shape operator is ξ-parallel, i.e., ∇ξ A = 0.

Recall that Lie derivative L of a vector field on M is given by LXY = ∇XY −∇YX,
while the Lie derivative of the shape operator is given by (LX A)Y = ∇X(AY) + A∇YX −
∇AYX − A∇XY for the X, Y tangent of M. The Lie derivative, with respect to the vector
field, has many applications in physics, in particular in mechanics, hydrodynamics, theory
of relativity, and cosmology. Hence, hypersurfaces whose shape operator is invariant
or has at least a certain regularity in its behavior with respect to the Lie derivative are
of particular interest. Ki, Kim, and Lee, see [9], classified real hypersurfaces in complex
space forms whose shape operator is Lie ξ-parallel, i.e., Lξ A = 0. Suh, in [10], provides
a characterization of real hypersurfaces of type A in a complex two-plane Grassmannian
G2(Cm+2), which are tubes over totally geodesic G2(Cm+1) in G2(Cm+2) in terms of the
vanishing Lie derivative of the shape operator A along the direction of the Reeb vector field
ξ. In [11], the authors prove the nonexistence of real hypersurfaces in CP2 and CH2, whose
shape operator satisfies the relation LX A = ∇X A, from the X orthogonal to ξ.

Motivated by these results, we consider a similar line of research regarding the nearly
Kähler sphere S6 and prove the following theorems.

Theorem 1. Let M be a real hypersurface in S6(1). The shape operator A on M is Lie-parallel, i.e.,
LX A = 0, X ∈ TM, if and only if M is a totally geodesic hypersphere in S6(1).

Theorem 2. Let M be a real hypersurface in S6(1). The shape operator A on M satisfies Lξ A =
∇ξ A, if and only if M is a totally geodesic hypersphere in S6(1).

Additionally, given that totally geodesic hyperspheres also satisfy the stronger condi-
tion LX A = ∇X A, for all X ∈ TM, we obtain the following:

Corollary 1. Let M be a real hypersurface in S6(1). The shape operator A on M satisfies LX A =
∇X A, for all X ∈ TM, if and only if M is a totally geodesic hypersphere in S6(1).

In particular, we note that most of the known results dealing with this type of problem
regard hypersurfaces of Kähler manifolds. In this case, the almost complex structure is
parallel, making it easier to conduct calculations. For hypersurfaces of the nearly Kähler
sphere S6, the covariant derivative of the almost complex structure, tensor G, is skew-
symmetric, which, in a technical sense, imposes the need to approach the problem in a
different manner, see [12,13]. As a consequence, we need to use a suitable moving frame
along the hypersurface, which is nicely suited to the given structure, in order to obtain its
properties and analyze them.

2. Preliminaries

First, we provide a brief exposition of how the standard nearly Kähler structure J on
S6(1) arises in a natural manner from the multiplication of Cayley numbers O. A vector
cross product × given as follows:

u × v =
1
2
(uv − vu),

and is well defined on the space of purely imaginary Cayley numbers O, which we may
identify with R7.
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Then, vectors e1, ...e7 of the standard orthonormal basis of the space R7 satisfy the
relations provided in the following table of multiplication.

× e1 e2 e3 e4 e5 e6 e7
e1 0 e3 −e2 e5 −e4 −e7 e6
e2 −e3 0 e1 e6 e7 −e4 −e5
e3 e2 −e1 0 e7 −e6 e5 −e4
e4 −e5 −e6 −e7 0 e1 e2 e3
e5 e4 −e7 e6 −e1 0 −e3 e2
e6 e7 e4 −e5 −e2 e3 0 −e1
e7 −e6 e5 e4 −e3 −e2 e1 0

Any orthonormal basis or frame for which the relations of this table hold is called a
G2 basis or frame. Then, for an arbitrary point p ∈ S6(1) and X ∈ TpS6(1), the (1,1)-tensor
field J is defined by

JpX = p × X

and is an almost complex structure.
We will denote by ⟨, ⟩ the standard metric in the space R7 and, by g, the induced metric

on S6(1). Further, we denote D and ∇̄ by the corresponding Levi–Civita connections.
Let M be a Riemannian submanifold of the sphere S6(1) with a Hermitian structure

(J, g). The tensor field G of type (2, 1), defined by G(X, Y) = (∇̄X J)Y, is skew symmetric,
which makes the almost complex structure a nearly Kähler one. The tensor field G has the
following properties:

G(X, JY) + JG(X, Y) = 0, g(G(X, Y), Z) + g(G(X, Z), Y) = 0.

Additionally, for tangent vector fields X, Y, and Z, see [14], it holds that

(∇̄G)(X, Y, Z) = g(X, Z)JY − g(X, Y)JZ − g(JY, Z)X. (1)

Let ∇ and ∇⊥ be, respectively, the Levi–Civita connection of the submanifold M and
the normal connection in the normal bundle T⊥M of M in S6(1). The formulae of Gauss
and Weingarten for the hypersurface are as follows:

∇̄XY = ∇XY + h(X, Y), ∇̄X N = −AX +∇⊥
X N,

where X and Y are tangent vector fields and N is a normal vector field on the hypersur-
face. Here, A and h denote the shape operator and the second fundamental form. The
relationship between them is given by g(h(X, Y), N) = g(AX, Y). The Gauss equation for
the hypersurface is as follows:

R(X, Y, Z, W) =g(X, W)g(Y, Z)− g(X, Z)g(Y, W)

+ g(h(X, W), h(Y, Z))− g(h(X, Z), h(Y, W)), X, Y, Z, W ∈ TM, (2)

where we denote by R the Riemannian curvature tensor of M.
Now, let M be a hypersurface in S6(1). Using the almost complex structure J on

S6(1), the normal vector field N on M, we define the corresponding Reeb vector field
ξ = −JN with dual 1-form η(X) = g(X, ξ). Then, D = Ker η = {X ∈ TM | η(X) = 0} is
a four-dimensional almost complex distribution on M.

3. The Moving Frame for Hypersurfaces in S6(1)

Now, we will present the construction of one of the local moving frames that is, roughly
speaking, compatible with the structure on the hypersurface, and hence, easier to work
with. Also, we will present the relationship between the connection coefficients in this
particular frame, for more details see [12,15].
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For any unit vector field E1 ∈ D, let E2 = JE1, E3 = G(E1, ξ), and E4 = JE3. Then, as
shown in [15], the set {E1, E2, E3, E4, E5 = ξ} is a local orthonormal moving frame. One
such frame is uniquely determined by the choice of the vector field E1 ∈ D.

We note that, additionally, the following relations are also valid for each frame.

Lemma 1 ([15]). The orthonormal frame {E1, E2, E3, E4, E5 = ξ} satisfies the following relations:

G(E1, E2) = 0, G(E1, E3) = −ξ, G(E1, E4) = N, G(E1, ξ) = E3,

G(E1, N) = −E4, G(E2, E3) = −N, G(E2, E4) = ξ, G(E2, ξ) = −E4, (3)

G(E2, N) = −E3, G(E3, E4) = 0, G(E3, ξ) = −E1, G(E3, N) = E2,

G(E4, ξ) = E2, G(E4, N) = E1.

We further denote the coefficients of the covariant derivatives in the given frame as
follows:

gk
ij = g(DEi Ej, Ek), hij = g(DEi Ej, N), 1 ≤ i, j, k ≤ 5. (4)

Since D is a metric connection and the second fundamental form is symmetric, straight-
forwardly, we obtain gk

ij = −gj
ik, and hij = hji.

Using the definition of G(X, Y) = (∇̄X J)Y and the expression for its covariant deriva-
tive, we obtain, the following two lemmas, see [12].

Lemma 2 ([12]). For the previously defined coefficients, we obtain the following:

g3
12 = −g4

11, g4
12 = g3

11, h11 = −g5
12, h12 = g5

11, g3
22 = −g4

21,

g4
22 = g3

21, g5
22 = −g5

11, h22 = g5
21, g3

32 = −g4
31, g4

32 = g3
31,

h13 = 1 − g5
32, h23 = g5

31, g3
42 = −g4

41, g4
42 = g3

41, h14 = −g5
42,

h24 = −1 + g5
41, g3

52 = −1 − g4
51, g4

52 = g3
51, h15 = −g5

52, h25 = g5
51,

g5
32 = 2 + g5

14, g5
42 = −g5

13, g5
31 = −g5

24, g5
41 = 2 + g5

23, h33 = −g5
43,

h34 = g5
33, g5

44 = −g5
33, h44 = g5

43, h35 = −g5
54, h45 = g5

53.

Proof. By taking X ∈ {E1, ..., ξ} and Y ∈ {E1, ..., ξ, N} in the relation

∇̄X(JY) = G(X, Y) + J(∇̄XY),

and using (3), we obtain the proof of the lemma.
For X = E1 and Y = E1, we obtain the following:

g3
12 = −g4

11, g4
12 = g3

11, h11 = −g5
12, h12 = g5

11.

For X = E2 and Y = E1, we obtain the following:

g3
22 = −g4

21, g4
22 = g3

21, g5
22 = −h12 = −g5

11, h22 = g5
21.

In a similar manner, we obtain other relations.

Lemma 3 ([12]). For the coefficient (4), the following holds:

g5
52 = g2

11 + g4
13, g5

51 = −g2
21 − g4

23, g5
54 = g2

31 + g4
33,

g5
53 = −g2

41 − g4
43, h55 = −g2

51 − g4
53. (5)
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Proof. By taking X = E1, Y = E1, and Z = E3 in (1), we obtain the following: g5
52 =

g2
11 + g4

13. Similarly, by taking X = E2, Y = E1, and Z = E3, we obtain g5
51 = −g2

21 − g4
23;

for X = E3, Y = E1, and Z = E3, we obtain g5
54 = g2

31 + g4
33. Finally, for X = E4, Y = E1,

and Z = E3 and X = ξ, Y = E1, and Z = E3, respectively, we get g5
53 = −g2

41 − g4
43 and

h55 = −g2
51 − g4

53. Straightforward computation shows that (1) is then satisfied for an
arbitrary choice of vector fields which completes the proof.

Recall that we still have the possibility of choosing E1 ∈ D. We can decompose the
vector field Aξ into an orthogonal sum of two vector fields, parallel to D and ξ, respectively.
Let E1 be the unit vector field collinear with the first component. Then, we can write

Aξ = βE1 + αξ, (6)

for differentiable functions α and β. Moreover, by choosing the direction of E1, we may
assume that β ≥ 0. Of course, in the case of the Hopf hypersurface, when β = 0, the vector
field E1 is still not uniquely determined by this.

Since Aξ has no components in the direction of vector fields E2, E3, E4, causing it to
vanish, we obtain:

g4
13 = −g2

11 − β, g4
23 = −g2

21, g4
33 = −g2

31, g4
43 = −g2

41, g4
53 = −g2

51 − α.

From the Gauss equation we obtain the next two relations between the coefficients. By
implementing X = E2, Y = E3, Z = E1, and W = E2 into the Gauss Equation (2) we obtain
the following:

E2(g2
31) =g2

21g4
21 − 3g5

21 − 2g5
14g5

21 + 2g5
11g5

24 + g2
11(−g3

21 + g2
31)− 2g4

21g3
31

+ 2g3
21g4

31 + g2
31g4

31 − g2
21g2

41 − g3
31g2

41 − 2g2
51 − g5

14g2
51 + g5

23g2
51 + E3(g2

21),

and then by implementing (X, Y, Z, W) = (E2, E3, E3, E4) in (2), we also obtain the following:

(3 + 2g5
14)g5

21 − 2g5
24(g5

11 + g5
33) + (1 + 2g5

23)g5
34 + (−2 − g5

14 + g5
23)α (7)

+ (−g3
21 + g2

31)β = 0.

4. Proof of the Theorem 1

Let us denote Lk
ij = g((LEi A)Ej, Ek). The condition that the shape operator A is

Lie-parallel is equivalent to Lk
ij = 0, 1 ≤ i, j, k ≤ 5.

Lemma 4. Let M be a hypersurface in S6(1) with Lie ξ-parallel shape operator A. Then, M is a
Hopf hypersurface.

Proof. Suppose that M is a non-Hopf hypersurface, i.e., β ̸= 0. From Li
55 = 0, 1 ≤ i ≤ 4,

we have, respectively,

ξ(β) = −g5
11β, g2

51 = −g5
12, g3

51 = −g5
13, g4

51 = −g5
14.

Using this, from

0 = L5
51 = −3g5

11β,

0 = L5
53 = (−g5

13 + 2g5
24)β,

0 = L5
54 = (−3 − g5

14 − 2g5
23)β,
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we get, respectively g5
11 = 0, g5

13 = 2g5
24 and g5

14 = −3 − 2g5
23. From 0 = L2

51 = 6(1 + g5
23),

we obtain g5
12 = −1, and

0 = L1
52 = (g5

12 + g5
21)

2 + (g5
24)

2 + β2

gives us a contradiction.

Therefore, now we assume M to be a Hopf hypersurface, implying that β = 0 and α
are constant.

Recall that, for Hopf hypersurfaces, we still have the option of choosing E1 ∈ D, and
we can assume that E1 is an eigenvector field for the shape operator A. As

AE1 = −g5
12E1 + g5

11E2 − (1 + g5
14)E3 + g5

13E4,

we obtain g5
11 = 0, g5

14 = −1, g5
13 = 0.

Now, from 0 = L5
22 = 2g5

24, we obtain g5
24 = 0, and then from 0 = L5

24 + L5
13 = −4g5

33,
we obtain g5

33 = 0. Now let us see what the shape operator looks like:

AE1 = −g5
12E1, AE2 = g5

21E2 + (1 + g5
23)E4, AE3 = −g5

34E3, (8)

AE4 = (1 + g5
23)E2 + g5

43E4, AE5 = αE5.

Lemma 5. Let M be a Hopf hypersurface in S6(1) with Lie-parallel shape operator A. Then, the
moving frame can be chosen so that both E1 and E3 are the eigenvectors of the shape operator A for
the eigenvalues α.

Proof. From (8), we want to prove that −g5
12 = α = −g5

34.
Let us first assume that g5

34 ̸= −α. From

0 = L5
23 = (1 − g5

23)(g5
34 + α),

0 = L3
45 = −(g5

34 + α)(g5
43 + g2

51 + α),

0 = L5
43 = (g5

34 − g5
43)(g5

34 + α),

we obtain, respectively, g5
23 = 1, g2

51 = −g5
43 − α, and g5

43 = g5
34. Next, from 0 = L3

54 =
−2g4

51 we have g4
51 = 0, and then, from 0 = L4

53 = −4(1 + (g5
34)

2), we get a contradiction.
Hence, g5

34 = −α.
Now, suppose that g5

12 ̸= −α. From

0 = L5
41 = −(3 + g5

23)(g5
12 + α), 0 = L1

25 = −(g5
21 − g2

51)(g5
12 + α),

we have g5
23 = −3 and g2

51 = g5
21. Then, from 0 = L1

45 = −(−1 − g4
51)(g5

12 + α), we obtain
g4

51 = −1 and now, from 0 = L2
51 = −4 − (g5

12 + g5
21)

2, we obtain a contradiction, which
completes the proof of this lemma.

Now, (7) becomes g5
21 − (2 + g5

23)α = 0, so g5
21 = (2 + g5

23)α, and we obtain the
following:

0 = L5
12 = −(1 + g5

23)(3 + g5
23)(1 + α2).

If we assume that g5
23 = −3, then from 0 = L5

32 = 2g5
43 − 6α, we obtain g5

43 = 3α, and
from 0 = L5

34 = −8(1 + α2), we obtain a contradiction. Therefore, it must be g5
23 = −1.

From (8), we now see that the shape operator A of the hypersurface M has a quadruple
eigenvalue α and a single g5

43. Since M is a Hopf surface, it is possible that M is a totally
geodesic hypersphere, i.e., g5

34 = α = 0.
Straightforward computation shows that all Lk

ij, 1 ≤ i, j, k ≤ 5 are equal to zero, which
completes the proof.
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5. Proof of the Theorem 2

Let us denote aij = g(A∇Ei ξ −∇AEi ξ, Ej). The condition Lξ A = ∇ξ A is equivalent
to aij = 0, 1 ≤ i, j ≤ 5.

Lemma 6. Let M be a hypersurface in S6(1). If the shape operator A on M satisfies Lξ A = ∇ξ A,
then M is a Hopf hypersurface.

Proof. Suppose that M is a non-Hopf hypersurface, i.e., β ̸= 0. From ai5 = 0, 1 ≤ i ≤ 4, we
obtain, respectively,

−g5
11β = 0, −g5

21β = 0, g5
24β = 0, −(2 + g5

23)β = 0,

so g5
11 = g5

21 = g5
24 = 0 and g5

23 = −2. Now, from 0 = a54 = (−1 + g5
14)β, we obtain

g5
14 = 1, and then, a21 = −4 ̸= 0, which is a contradiction.

Suppose now that M is a Hopf hypersurface, i.e., β = 0.
To determine the moving frame, we can choose E1 to be an eigenvector field for the

shape operator A. As

AE1 = −g5
12E1 + g5

11E2 − (1 + g5
14)E3 + g5

13E4,

we obtain g5
11 = 0, g5

14 = −1, g5
13 = 0.

Now, from 0 = a22 = −2g5
24, we obtain g5

24 = 0; then, we obtain 0 = a12 = g5
33. From

a14 = 0 and a32 = 0, we obtain, respectively,

−g5
12g5

23 + g5
43 = 0, −g5

21 − (2 + g5
23)g5

34 = 0,

so g5
43 = g5

12g5
23 and g5

21 = −(2 + g5
23)g5

34. The only non-zero aij are now the following:

a12 = 1 − (g5
12)

2 + g5
23 + g5

12(2 + g5
23)g5

34,

a21 = [2 + g5
23][1 + g5

23 − g5
12g5

34 + (2 + g5
23)(g5

34)
2],

a23 = g5
23(1 + g5

23)(g5
12 − g5

34),

a34 = −1 − g5
23 − g5

34(g5
12g5

23 + g5
34),

a41 = (1 + g5
23)(2 + g5

23)(g5
12 − g5

34),

a43 = g5
23(1 + g5

23 + (g125)2g5
23 + g5

12g5
34).

We begin further discussion from a23 = g5
23(1 + g5

23)(g5
12 − g5

34) = 0.
If we assume that g5

23 = 0, then a34 = 0 becomes −1 − (g5
34)

2 = 0, which is a
contradiction. If we assume that g5

12 = g5
34, from 0 = a12 = (1 + (g5

12)
2)(1 + g5

23), we obtain
1 + g5

23 = 0, so it is enough to consider only the case g5
23 = −1.

Now, 0 = a12 = g5
12(g5

34 − g5
12) gives us g5

12 = 0 or g5
34 = g5

12.
Assuming g5

12 = 0, a21 = 0 becomes (g5
34)

2 = 0, so g5
34 = 0 and now all aij are zero. In

this case, the shape operator A has a quadruple eigenvalue 0 and one is α. As M is a Hopf
hypersurface, this is possible if and only if α = 0, i.e., M is a totally geodesic hypersphere.

Assuming g5
34 = g5

12, we assume that all aij are zero. In this case, the shape operator
A has a quadruple eigenvalue −g5

12 and one is α. As M is a Hopf hypersurface, this is
possible if and only if −g5

12 = α = 0, i.e., M is a totally geodesic hypersphere.
Hence, if the shape operator A on M satisfies Lξ A = ∇ξ A, then M is a totally geodesic

hypersphere.
If M is a totally geodesic hypersphere then the shape operator A on M obviously

satisfies Lξ A = ∇ξ A, and that completes the proof.
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