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Abstract: The complexity of deep neural network models (DNNs) severely limits their application on
devices with limited computing and storage resources. Knowledge distillation (KD) is an attractive
model compression technology that can effectively alleviate this problem. Multi-teacher knowledge
distillation (MKD) aims to leverage the valuable and diverse knowledge distilled by multiple teacher
networks to improve the performance of the student network. Existing approaches typically rely on
simple methods such as averaging the prediction logits or using sub-optimal weighting strategies to
fuse distilled knowledge from multiple teachers. However, employing these techniques cannot fully
reflect the importance of teachers and may even mislead student’s learning. To address this issue,
we propose a novel Decoupled Multi-Teacher Knowledge Distillation based on Entropy (DE-MKD).
DE-MKD decouples the vanilla knowledge distillation loss and assigns adaptive weights to each
teacher to reflect its importance based on the entropy of their predictions. Furthermore, we extend
the proposed approach to distill the intermediate features from multiple powerful but cumbersome
teachers to improve the performance of the lightweight student network. Extensive experiments
on the publicly available CIFAR-100 image classification benchmark dataset with various teacher-
student network pairs demonstrated the effectiveness and flexibility of our approach. For instance,
the VGG8|ShuffleNetV2 model trained by DE-MKD reached 75.25%|78.86% top-one accuracy when
choosing VGG13|WRN40-2 as the teacher, setting new performance records. In addition, surprisingly,
the distilled student model outperformed the teacher in both teacher-student network pairs.

Keywords: multi-teacher knowledge distillation; image classification; entropy; deep learning

MSC: 68T07

1. Introduction

Over the past decade, deep neural networks (DNNs) [1] have achieved remarkable
success in various vision tasks, including image classification [2–4], object detection [5,6],
and semantic segmentation [7,8]. However, high-performing models usually necessitate
substantial computational resources and storage. This requirement often precludes their
deployment on edge devices with limited computational and storage resources. One
promising approach to tackle this issue is knowledge distillation (KD) [9], which leverages
“dark knowledge” from a powerful yet cumbersome teacher network to guide a lightweight
student network. KD aims to force the student network to mimic the teacher’s prediction
while utilizing only a small number of parameters.

According to the type of knowledge [10], KD can be categorized into three categories:
response-based KD, feature-based KD, and relationship-based KD. Vanilla KD [9] guides
the student network’s training by encouraging it to mimic the teacher’s prediction. To
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enhance student performance further, researchers have begun scrutinizing the middle
layer features of the teacher network as knowledge to guide student network training.
FitNets [11] align the student’s middle layer features with those of the teacher. Attention-
transfer-based knowledge distillation (AT) [12] employs the attention map of features for
knowledge transfer.

However, vanilla KD methods rely on a single pre-trained teacher network. More
recently, considering human cognitive learning processes, investigators have explored
the idea that students can benefit from multiple teachers. This trigger has led to the
conception of multi-teacher distillation (MKD), which aims to leverage the valuable and
diverse knowledge presented by multiple teacher networks to improve the performance
of the student network. Many MKD approaches have demonstrated that students can
benefit from multiple teachers [13–18]. However, many MKD methods usually fail to
reflect the importance of each teacher using the same or fixed weight [13–15]. This leads
to unreasonable integration among knowledge from multiple teachers, and the student
cannot fully utilize the integrated knowledge. Some methods [16–18] use various strategies
to try to improve the problem of unreasonable knowledge integration. However, these
methods suffer from certain deficiencies that prevent them from fully leveraging knowledge
integration, which consequently leads to limited performance enhancements.

DKD [19] reveals that the vanilla KD loss is coupled, leading to insufficient exploitation
of knowledge transferred by the teacher. Inspired by this, we propose a novel multi-
teacher KD method called DE-MKD , which leverages the abundant distilled knowledge
from multiple teachers to enhance students’ performance. Specifically, we assign sample-
aware teacher importance weights based on the entropy of teachers’ predictions. The
importance weight assigned to the teacher decreases as the information entropy increases.
Recognizing the significance of features in representation learning, we further extend our
method to incorporate intermediate features of teacher models for knowledge distillation.
We demonstrated the effectiveness of our approach on the CIFAR-100 dataset, a widely
recognized benchmark. Obviously, our work goals mainly focus on two points: (1) how to
integrate knowledge from multiple sources reasonably and (2) how to use the integrated
knowledge fully. Our main contributions are summarized as follows:

• We propose a novel method for multi-teacher knowledge distillation, namely, DE-
MKD, which decouples the original KD loss function and assigns sample-aware
weights to the teachers based on entropy;

• In order to further improve the performance of the student network, we also use the
teacher’s intermediate layer features as transmitted knowledge;

• Extensive experiments on the image classification dataset CIFAR-100 validated the
effectiveness and flexibility of our approach.

The rest of this paper is organized as follows. Section 2 introduces the related work on
knowledge distillation and multi-teacher knowledge distillation. Section 3 demonstrates
the formulation and detail of the proposed DE-MKD. Section 4 shows the experimental
results on the publicly available image classification benchmark dataset CIFAR-100 across
various teacher-student network pairs. Finally, a conclusion is brought forth in Section 5.

2. Related Work

Knowledge Distillation. Knowledge distillation (KD) [20,21] has attracted substantial
attention as a prospective method for model compression, leveraging supervisory signals
from complex teacher networks to assist in training lightweight student models. Vanilla
KD [9] only transfers the soft label of a teacher to a student. FitNet [11] pioneers the
concept of letting the student network imitate the intermediary layer features of the teacher.
Attention-transfer-based knowledge distillation (AT) proposes to align the attention maps
of teacher and student features, resulting in improved student performance. Contrastive
representation distillation (CRD) [22] utilizes contrastive learning strategies to enhance the
distillation effectiveness. Simple knowledge distillation (SimKD) [23] directly employs the
discriminative classifier from the pre-trained teacher model for student inference, training
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a student encoder via feature alignment with a single L2 loss. Decoupled knowledge
distillation (DKD) [19] decouples the original KD loss function into target class loss and the
non-target class one. Ref. [24] proposed an approach for adaptively selecting the distillation
layer to enhance the distillation process. They emphasized the importance of selecting
layers that adapt to the training samples and placed greater emphasis on the position of
distillation. Ref. [25] proposed a self-supervised knowledge distillation (KD) method for
complementary label learning. This method utilizes self-supervised learning as an auxiliary
tool to enhance the quality of knowledge. However, previous distillation methods relied
on a single pre-trained network, while our approach differentiates by attempting to extract
knowledge from multiple teachers.

Multi-Teacher Knowledge Distillation. Multi-teacher knowledge distillation (MKD)
comes from the idea that the wisdom of the crowd is greater than the wisdom of the
smartest individual. MKD aims to leverage the valuable and diverse knowledge presented
by multiple teacher networks to improve the performance of the student network. Various
MKD methods have been proposed. These approaches [13–15] treat each teacher equally
and assign equal weight to each teacher. Ref. [26] introduced a progressive training ap-
proach for knowledge fusion. Initially, it enables the student model to mimic the feature
representations of multiple teachers. Subsequently, it hierarchically learns the weight
parameter information from these teachers and ultimately trains a compact model capable
of multitasking. RLKD [27] uses reinforcement learning to filter out unsuitable teachers
and then averages the predicted logits of the remaining teachers. However, these ap-
proaches fail to capture the importance of diverse teachers. To fully integrate multi-teacher
knowledge, AMTML-KD [16] is a proposed adaptive multi-level knowledge distillation
technique. This method is distinguishable by assigning weights to individual teachers.
Nonetheless, it does not alleviate the student’s challenge in learning from the teachers; it
merely enhances the integration of knowledge provided by multiple teachers. EBKD [28]
assigns weights to teachers based on their predicted logits’ information entropy. AEKD [17]
explores the diversity of multiple teachers from the gradient space. Ref. [29] suggested
a collaborative teaching KD (CTKD) method. One teacher imparts high-accuracy knowl-
edge, while another furnishes intermediate spatial attention knowledge. CA-MKD [18]
distinguishes the teacher’s importance based on the teacher prediction confidence, which
is calculated by the cross-entropy of the prediction logits with the ground-truth labels.
Due to the coupled knowledge distillation loss, these methods are insufficient in utilizing
integrated knowledge.

3. Method

In this section, we introduce our proposed Decoupled Multi-Teacher Knowledge
Distillation based on Entropy (DE-MKD). We describe the method in detail, mainly by
presenting the components of its loss function, which consists of decoupled logit distillation
loss, intermediate feature distillation loss, and classification loss with the ground-truth
label. Figure 1 is the illustration of our proposed method.

Notations. We define D = {xi, yi}N
i as the labeled training set, where N denotes the

number of samples, and K denotes the number of teachers. Let F be the feature output of
the second network block, where F is a tensor with dimensions h × w × c. We represent the
logits’ output as z = [z1, ..., zC], where C is the number of categories. The final prediction
of the model is obtained using a softmax function σ(zc) = exp(zc/τ)

∑j exp(zj/τ)
with a temperature

parameter τ.
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Figure 1. An illustration of the proposed multi-teacher KD method. The loss function consists of
three parts: the loss of intermediate layer features, the loss of decoupled prediction, and the label loss.
The red dotted box represents feature knowledge distillation. In our proposed method, we mainly
use the features of the teacher’s second network block as transferred knowledge. The blue dotted box
denotes multi-teacher decoupled knowledge distillation.

3.1. The Loss of Decoupled Logit

To further investigate the workings of knowledge distillation (KD), decoupled knowl-
edge distillation (DKD) [19] introduces a modified distillation loss function, which com-
prises a weighted sum of two components. The first component transfers knowledge
concerning the “difficulty” of training samples and reflects the similarity of the target
class prediction distribution of the student and teacher models, which is named target
class knowledge distillation (TCKD). The second component, non-target class knowledge
distillation (NCKD), is associated with the non-target classes and captures the similarity
between the teacher and student predictions for these classes.

In vanilla KD, the loss function typically utilizes KL divergence. However, with the
redefinition, the distillation loss function is transformed into the following form. Due to
limited pages, you can refer to (DKD) [19] for specific derivation details.

LKD = TCKD + (1 − pT
t )NCKD. (1)

Here, pT
t represents the prediction probability of the target class t of the teacher model.

Notably, the weight of NCKD is coupled with pT
t in this formulation.

To mitigate the suppressive impact on NCKD and enhance its significance in the loss
function, DKD [19] reformulates the vanilla KD loss function as follows:

LKD = aTCKD + bNCKD. (2)

The importance of TCKD and NCKD can be balanced by adjusting the weights a and b.
In multi-teacher knowledge distillation (MKD), distilled knowledge comes from mul-

tiple teachers. Intuitively, all knowledge should have a different weight corresponding to
a different teacher. To be able to integrate all knowledge and make full use of it perfectly,
we assign different weights to each teacher prediction logit based on the entropy of the
teacher prediction. The greater the entropy, the lower the teacher’s prediction confidence,
the smaller the weight assigned, and vice versa. The weight is calculated as follows:

wi = 1 − H(pTt)

∑K
i=1 H(pTi )

, (3)
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where wi denotes the teacher, i denotes the importance weight, and H(·) represents the
entropy of the teacher prediction.

In our proposed method, the calculation of the loss of decoupled multi-teacher KD is
as follows:

LKD =
K

∑
i=1

wi(aTCKD + bNCKD). (4)

3.2. The Loss of Intermediate Features

Features are widely recognized to have a significant impact on representation learning.
FitNets [11] have also been experimentally verified to improve the performance of the
student model in knowledge distillation by using the features from the teacher’s hidden
layer as transferred knowledge. After the introduction of FitNets, a plethora of derivative
methods has emerged. Feature distillation allows students to imitate the intermediate
features of teachers. Almost all existing feature distillation methods use L2 distance or its
subtle variants as the distance metric between teacher and student features. For simplicity,
in our method, we directly use the L2 loss function.

Linter =
K

∑
i=1

wi||FTk − r(Fs)||22, (5)

K represents the number of teachers, and wi denotes the teacher importance weight,
which is the same size as before in the prediction loss. The function r(·) is employed to align
the dimensions of student and teacher features. In addition, in order to reduce the amount
of calculation, we only use the features of the second hidden layer as distilled knowledge.

3.3. The Overall Loss

We describe the distillation process of our method in Algorithm 1 to make it easier
to understand. In addition to the aforementioned two losses, a regular cross-entropy loss
between the ground-truth labels and student prediction is calculated,

LCE = −
C

∑
c=1

yclog(σ(zc
s)). (6)

The overall loss function of the proposed DE-MKD is given as

Loverall = γLCE + αLKD + βLinter, (7)

Here, α, β, and γ are hyperparameters that balance the effects of each loss.

Algorithm 1 Our proposed DE-MKD on CIFAR-100

1: Input: Training dataset D, teacher models {T1, T2, T3}, student model S
2: Output: Distilled student model S′

3: Initialize student model S
4: Initialize optimizer optimizer
5: for each training epoch do
6: for each mini-batch (X, Y) ∈ D do
7: Compute teacher predictions: Zi = Ti(X), i ∈ {1, 2, 3}
8: Compute student predictions: Ŷ = S(X)
9: Compute distillation loss: LKD

10: Compute feature loss: Linter
11: Compute classification loss: LCE = CrossEntropy(Y, Ŷ)
12: Compute total loss: Loverall = γLCE + αLKD + βLinter
13: Update student model parameters: θS = θS − optimizer(∇θSLtotal)
14: end for
15: end for
16: return Distilled student model S′
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4. Experiments
4.1. Dataset and Details

Dataset. We conducted the experiments on CIFAR-100 [30], which is a popular publicly
available image classification dataset containing 32 × 32 images in 100 categories. Training
and validation sets are composed of 50k and 10k images, respectively.

Implementation Details. We adopted a stochastic gradient descent (SGD) optimizer
with 0.9 Nesterov momentum for all teacher-student pairs. The total training epoch was set
to 240, and the learning rate was divided by 10 at the 150th, 180th, and 210th epochs. The
initial learning rate was set to 0.01 for MobileNet/ShuffleNet [4,31,32] series architectures
and 0.05 for other architectures [2,33,34]. The mini-batch size was set to 64, and the weight
decay was set to 5 × 10−4. The temperature τ in the KD loss was set to 4, and the α, β, γ, a,
and b were set to 1, 100, 1, 1, and 8, respectively.

We compared the proposed DE-MKD with five methods. They were AVER-KD [9],
AVER-FitNet [11], EBKD [28], AEKD [17], and CA-MKD [18]. In this paper, we used top-1
accuracy to evaluate all methods and employed 3 teacher models by default in all experi-
ments except for special declarations. All results are reported as the mean and standard
deviation of 3 runs using different random seeds. AVER-KD [9] represents multi-teacher
KD based on logit distillation, and teachers are assigned the same weight. AVER-FitNet [11]
is a multi-teacher version of feature-based knowledge distillation, where the same teachers
are treated equally. EBKD [28] refers to entropy-based multi-teacher knowledge distil-
lation, which only considers logit distillation and does not consider feature distillation.
AEKD [17] is also based on logit knowledge distillation. CA-MKD [18] considers logit and
feature distillation and adaptively assigns different weights to each teacher with the help
of ground-truth labels.

4.2. Main Results

Results on teacher–student pairs have similar architectures. Table 1 presents a
comparison of top-one accuracy among various methods using the CIFAR-100 dataset.
The teacher and student models share similar architectures, such as VGG13-VGG8 and
ResNet32x4-ResNet8x4 pairs. Significantly, our proposed method, DE-MKD, outperformed
all the compared methods in these two teacher–student pairs. Particularly, when compared
to the second-best method (CA-MKD), DE-MKD demonstrated a remarkable improvement
in accuracy of 1.09% absolute accuracy in the best-case scenario.

Table 1. The top-1 test accuracy (%) of diverse multi-teacher knowledge distillation methods on the
CIFAR-100 dataset utilizing teacher-student pairs with similar architectures. The teachers possess
identical architectures but exhibit distinct initializations. Note that the bold indicates the best performance,
and the underline represents the second best.

Teacher VGG13 ResNet32x4
74.89 ± 0.18 79.45 ± 0.19

Student VGG8 ResNet8x4
70.70 ± 0.26 72.97 ± 0.22

AVER-KD [9] 74.08 ± 0.09 75.01 ± 0.41
AVER-FitNet [11] 73.99 ± 0.18 74.78 ± 0.04

AEKD [17] 73.90 ± 0.19 74.82 ± 0.10
EBKD [28] 73.89 ± 0.34 74.44 ± 0.33

CA-MKD [18] 74.30 ± 0.24 75.66 ± 0.13

DE-MKD 75.25 ± 0.17 76.75 ± 0.13

Results on teacher–student pairs have different architecture. We validated our
method not only on teacher-student pairs with similar architectures but also on pairs with
different architectures. The experimental results are shown in Table 2, where our method
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is shown to have consistently outperformed the comparison methods. Notably, for the
ResNet32x4-ShuffleNetV2 pair, our method achieved an absolute improvement of 1.06%
over the second-best method.

Table 2. The top-1 test accuracy (%) of different multi-teacher knowledge distillation methodologies
on CIFAR-100 with teacher–student pairs featuring varied architectures. Here, the teachers share
identical architectures but undergo diverse initialization. Note that the bold indicates the best performance,
and the underline represents the second best.

Teacher WRN40-2 ResNet56 VGG13 ResNet32x4 ResNet32x4
76.62 ± 0.17 73.19 ± 0.30 74.89 ± 0.18 79.45 ± 0.19 79.45 ± 0.19

Student ShuffleNetV2 MobileNetV2 MobileNetV2 ShuffleNetV1 VGG8
73.07 ± 0.06 65.46 ± 0.10 65.46 ± 0.10 71.58 ± 0.30 70.70 ± 0.26

AVER-KD [9] 76.98 ± 0.19 70.68 ± 0.11 68.89 ± 0.10 75.02 ± 0.25 73.51 ± 0.22
AVER-FitNet [11] 77.29 ± 0.14 70.63 ± 0.23 68.87 ± 0.06 74.75 ± 0.27 73.00 ± 0.16

AEKD [17] 77.02 ± 0.17 70.36 ± 0.19 69.07 ± 0.22 75.11 ± 0.19 73.21 ± 0.04
EBKD [28] 76.75 ± 0.13 69.89 ± 0.14 68.09 ± 0.26 74.95 ± 0.14 73.01 ± 0.01

CA-MKD [18] 77.64 ± 0.19 71.19 ± 0.28 69.29 ± 0.09 76.37 ± 0.51 75.02 ± 0.12

DE-MKD 78.86 ± 0.15 71.48 ± 0.23 70.05 ± 0.16 77.43 ± 0.16 75.39 ± 0.20

Results on teachers with different architectures. The experiment conducted above-
involved teacher networks in each teacher-student pair with identical architecture. In order
to assess the flexibility of our approach, we employed disparate teacher networks across the
teacher-student pairs. Specifically, we opted for ResNet8x4, ResNet20x4, and ResNet32x4
as the teacher combination networks, while VGG8 served as the student network. The
comparative results of top-one accuracy are presented in Table 3, which further highlights
the superiority of our method in relation to other compared methods.

Table 3. The top-1 test accuracy (%) of various multi-teacher knowledge distillation methodologies on
CIFAR-100 where teachers possess diverse architectures. Note that the bold indicates the best performance
and the underline represents the second best.

Teacher ResNet8x4 ResNet20x4 ResNet32x4
72.69 78.28 79.31

Student VGG8
70.70 ± 0.26

AVER-KD [9] 74.53 ± 0.17
AVER-FitNet [11] 74.38 ± 0.23

AEKD [17] 74.75 ± 0.21
EBKD [28] 74.27 ± 0.14

CA-MKD [18] 75.21 ± 0.16

DE-MKD 75.56 ± 0.17

4.3. Ablation Study

The loss function of the proposed DE-MKD method mainly consists of three parts: the
loss with the ground-truth label, the decoupling loss with the teacher’s prediction, and
the matching loss with the teacher’s intermediate features. In order to explore the impact
of each part on the performance of DE-MKD, we performed ablation experiments on the
following four variants: (1) Variant A, which just uses Lce and which refers to normal
training from scratch; (2) Variant B, which represents the original multi-teacher knowledge
distillation while treating teachers equally. Lokd refers to the KD loss function that is not
decoupled; (3) Variant C, which represents decoupled multi-teacher knowledge distillation
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but does not consider feature distillation; (4) Variant D, which represents our proposed
method DE-MKD.

Table 4 presents the results of the ablation experiments, clearly showing the superior
performance of our proposed new method compared to all other variants. Additionally, the
improvement in accuracy for each variant demonstrates the effectiveness of each component
in our method. Particularly, a comparison of Variant A with other variants demonstrates the
effectiveness of knowledge distillation. The comparison between Variant B and Variant C
shows the effectiveness of our proposed entropy-based decoupled multi-teacher distillation
strategy. The comparison between Variant C and Variant D proves that the intermediate
layer features have a positive effect on performance.

Table 4. Ablation study with ResNet32-VGG8 pair on CIFAR-100. Note that the bold indicates the best
performance.

Variants Lce Lokd Ldkd Linter Top-1

A ✔ ✘ ✘ ✘ 70.70 ± 0.26
B ✔ ✔ ✘ ✘ 73.51 ± 0.22
C ✔ ✘ ✔ ✘ 75.10 ± 0.18
D ✔ ✘ ✔ ✔ 75.39 ± 0.20

5. Conclusions

In this paper, we proposed a novel multi-teacher knowledge distillation method
called DE-MKD. Our method integrates teacher-distilled knowledge by decoupling the loss
function of traditional knowledge distillation and adaptively assigns teacher importance
weights based on the entropy of teacher predictions. To further enhance the performance
of student networks, we extended our method to intermediate features. We conducted
extensive experiments using various teacher–student pairs to validate the effectiveness and
flexibility of our method.

However, this method has some limitations. For instance, in our experiments, we
only utilized the second layer features to simplify the calculations. In our future work, we
plan to embrace more comprehensive feature knowledge. Additionally, self-distillation [35]
would have a notable contribution. We believe that the integration of students’ reflections
into multi-teacher knowledge distillation could further enhance students’ performance.
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