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Multi-Model Assessing and

Visualizing Consistency and

Compatibility of Experts in Group

Decision-Making. Mathematics 2024,

12, 1699. https://doi.org/10.3390/

math12111699

Academic Editor: Fuyuan Xiao

Received: 16 April 2024

Revised: 11 May 2024

Accepted: 27 May 2024

Published: 30 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Multi-Model Assessing and Visualizing Consistency and
Compatibility of Experts in Group Decision-Making
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Abstract: In this paper, an approach is proposed for assessing the performance of experts in the
group from two perspectives: (1) individual consistencies and (2) deviations from the group decision.
The quality of performance of the experts is based on combining the standard and rough analytic
hierarchy process (AHP) with the technique for order of preference by similarity to the ideal solution
(TOPSIS). The statistical method CRITIC is used to derive weights for the TOPSIS method before the
experts are assessed based on demonstrated consistency and deviations from the group. Common
performance indicators, such as consistency ratio, Euclidean distance, compatibility, and Spearman’s
correlation coefficient, are proposed for re-grouping experts before making the final decisions. A
genetic algorithm enables the efficient solving of this complex clustering problem. Implementing
the described approach and method can be useful in comparable assessment frameworks. A critical
aspect is conducting a thorough pre-assessment of the competence of potential decision makers,
often referred to as experts who may not consistently exhibit apparent expertise. The competence
of decision makers (which does not have to be associated with compatibility) is evidenced by
selected consistency parameters, and in a way, a pre-assessment of their competence follows Plato’s
‘government of the wise’ principle. In the presented study, the compatibility of individuals in
the group with the collective position (group decision) is measured by parameters related to their
compatibility with the group solution and statistical deviation while ranking decision elements.
The proposed multi-model-based approach stands out for its resilience in conducting thorough
pre-assessment of the quality (competence) of potential decision makers, often regarded as experts
who might not consistently display evident expertise. The wetland study area in Serbia is used as
an example application, where seven measures for reducing the risk of drought were evaluated by
twelve experts coming from different sectors and with different backgrounds and expertise.

Keywords: decision-making; experts; measures; standard and rough AHP; TOPSIS; CRITIC

MSC: 90B50

1. Introduction

Group decision making (GDM) is a widely researched topic with a plethora of items
in the literature on decision-making processes in groups of various sizes. The analytic
hierarchy process (AHP) [1] is a commonly used multi-criteria method to support GDM
processes in practice. On a contextual side, the group decision can be questionable if it
does not include all relevant items and/or if the methodology for deriving the decision is
inadequate. If the procedure did not include all relevant participants, the decision can be
criticized by another group(s).

This paper focuses on developing a method for assessing the quality of experts who
act as decision makers. One of the major challenges is determining how many experts
should be involved in making group decisions and which instruments to use to evaluate
their consistency while judging decision elements. The other important issue is to measure
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the deviations of individual decisions from the group decision, once the latter is derived by
some method of aggregation, consensual or non-consensual. Consistency and compatibility
measures may help to determine the optimal size of the group of experts and make the
process of decision making efficient. Worth mentioning is that conducting a thorough
analysis of consistency and compatibility measures represented by specific indicators is
partly contingent on the specific problem and contributes to efficiently clustering decision
makers. The clustering process, based on selected distance measures as parts of the fitness
function in the genetic algorithm, can only indicate the optimal number and size of clusters,
subsequently guiding further research in group decision-making processes. The literature
review did not uncover research findings regarding the identification of the ideal group size.
Any methodological approach to grouping may face skepticism and criticism. For instance,
assigning weights to decision makers within aggregation schemes could pose challenges
for several reasons, rendering it an inadvisable element of grouping methodology.

The proposed method to rank experts based on their consistency and compatibility
with the group decision is based on the combined use of the analytic hierarchy process
(AHP) [1] and the technique for order of preference by similarity to the ideal solution
(TOPSIS) [2]. To derive the group decision, first, the AHP has to be used in its standard, crisp,
version to obtain individual priority vectors by experts and then to geometrically aggregate
these vectors into the group vector. Computations of consistency and deviation parameters
based on crisp AHP results enable the assessment and ranking of the experts by their
quality of decision-making performance using the TOPSIS method. The approach involves
creating a decision matrix that contains specific performance indicators used as the criteria
for evaluating experts. The CRITIC method [3] is proposed to determine objective weights
for these performance indicators resulting from the crisp AHP application. Subsequently,
the TOPSIS method enables the identification of possible subgroups of experts, determining
outliers, and deriving optimal solutions. Finally, the use of a genetic algorithm may allow
for mapping experts in clusters according to demonstrated performance.

It is important to note that, after the group members have established their priority
vectors using the AHP, the organizer of the decision-making process has several options for
determining the outcome—the group priority vector. One approach is to use the priority
vectors derived by each individual and aggregate them to create a group priority vector.
Another approach is to perform an adjacency assessment of the individual vectors, grouping
members based on the distances among their vectors, and deriving sub-group priority
vectors. This approach may result in a different group vector than if all individuals belong
to a single group. Additionally, this assessment can identify members who significantly
deviate from the group decision, leading to their exclusion from the process or assigning
low weight to their individual decisions. Managing the process with outliers in the group is
a complex issue that requires careful consideration of both subjective and objective factors.

Moreover, group decision making poses significant challenges due to the diverse back-
grounds, attitudes, communication skills, and adaptability of its members. The behavior of
decision makers throughout the process is crucial, as it can be prolonged and repetitive, re-
quiring constant adjustments to judgments based on new information. During this process,
decision makers must demonstrate their ability to assess causality, importance, preferences,
and goals while considering the available data and any limitations or constraints.

Measuring the quality of decision-making performance within a group is a delicate
task, involving subjective characteristics such as cognition, reasoning, inference, and deduc-
tion. Aggregating these aspects into a reliable judgment outcome can be difficult, leading
to errors and complications in an already complex decision-making process.

Given the aforementioned challenges, the use of the rough numbers theory [4,5]
and the application of a rough version of the AHP are proposed to address individual
judgments directly. This involves creating and manipulating a sequence of judgments for
each instance of comparing two decision elements by importance, using rough rules instead
of the traditional aggregation methods like geometric or additive averages.
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By utilizing both crisp and rough AHP vectors, valuable insights are gained into the
objective evaluation of the experts’ performance. This combined approach proves to be
a useful tool for assessing their decision-making capabilities. It allows them to consider
not only the precise well-defined aspects of their judgments (standard AHP) but also the
inherent uncertainty and imprecision in their assessments (rough AHP).

By incorporating rough numbers theory, accounting for the vagueness and ambiguity
that often exist in decision-making scenarios is acknowledged. This empowers handling
individual judgments more realistically and flexibly, considering the nuances and complex-
ities that can arise during the decision-making process.

The use of rough AHP in handling individual judgments directly, rather than relying
solely on traditional aggregation techniques, enables a more nuanced and adaptive analy-
sis. This approach ensures that each decision element’s importance is properly assessed
with consideration of the available data, leading to a comprehensive evaluation of the
experts’ performance.

In summary, the integration of crisp and rough AHP offers a comprehensive frame-
work for evaluating decision-making performance. By acknowledging uncertainty and
employing a more flexible analysis, this complementary approach provides a richer under-
standing of experts’ abilities, making it a valuable tool in the assessment process.

This study presents a novel approach for restructuring decision-making groups by
clustering experts using a combination of genetic algorithm and minimum distance rule
based on their consistency and agreement with the group. The proposed method utilizes
performance indicators that assess individual consistency and agreement with the group
decision, enabling the identification of sub-groups of experts and potential outliers that
may be excluded from future decision-making processes. For an illustration of how GDM
challenges can be addressed in practice, an example method application is presented for
a group of twelve decision makers from diverse sectors, educational backgrounds, and
professional expertise who participated in evaluating measures on how to reduce drought
risks in managing wetland in floodplains along the Danube River in Serbia.

2. Related Work on Group Decision-Making
2.1. Approaches and Methods

According to [6,7], multi-factor decision-making frameworks can be classified as group
decision making, negotiated decision making, and systemic decision making. In recent
decades other multi-factor settings also received the attention of researchers and profession-
als in business, industry, academia, etc. For instance, consensual decision making enables
the integration of opinions from involved experts, enabling, thus, a better understanding of
decision-related problems and a more efficient collection of individual viewpoints in the
search for agreed solutions by consensus.

The literature sources offer a comprehensive understanding of existing approaches,
methods, and methodologies across all the aforementioned group decision-making settings.
It is noteworthy to mention several published research results in this context. Du and
Shan [8] discuss the issue of possible large differences in the knowledge and educational
background of participants in large groups when an accurate evaluation of the criteria
set is unlikely to be expected. An evaluating system is proposed to assess input criteria
and detect the critical set of so-called output criteria based on a probability assignment
function as an information extraction method aimed at capturing and accurately reflecting
the authenticity of experts’ judgments. The authors claim that the method can effectively
help in the real-time updating of ideas and the screening of best ideas in an intelligence
recommendation framework. Aggregation or consensus models for combining individual
ideas into group ideas and measures on how to validate such models’ quality are discussed
to only a limited extent.

Interesting research is presented in [9] related to assessing the team roles of participants
in the group. An AI approach is developed to enable the creation of efficient and consistent
teammates by considering their roles in the group. Exploratory and confirmatory factor
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analysis is involved to assess the effects of changes in team composition when deriving
joint decisions. Based on expert interviews and pre-defined four team roles, it was shown
that the consistent team roles are identified as coordinator, creator, perfectionist, and doer.
This study is interesting because it relates to our research in part on grouping experts based
on their consistency and deviation (from the group) performance indicators.

Dayeh and Morrison [10] claim the importance of properly using the hidden-profile
paradigm, which is commonly understood as a research design in which team members
have information that should be shared to arrive at an accurate final (group) decision.
Namely, the authors rely on various research and conclusions that group members usually
fail to exploit their information in group settings. Their study explored different situations
in an attempt to determine how each team member’s perception of competence, relative
to other team members, influences information sharing and decision accuracy in hidden
profiles. In conclusion, it is indicated that individuals (within a group) who perceive
themselves as less competent are willing to share more information than others. Also,
regarding decision accuracy, the conclusion is that it is better in a cooperative environment.

Escobar and Moreno-Jimenez [6] presented a novel approach for the aggregation of
individual decisions in the group, named aggregation of individual preference structures
(AIPS). An approach is strictly oriented to the AHP method, incorporates ideas from
the social choice theory method and the Borda count and, in a way, is a continuation of
well-known aggregations in AHP-group decision making known as AIP and AIJ. The
AIPS method captures the uncertainties inherent in human beings; the interdependencies
between the alternatives and the preferences are associated by each decision maker to
these interdependencies. The approach is proposed to be situated in the initial phases of
the decision-making process and as a tool to support the negotiation process within the
decision-making group.

Zorluoğlu and Kabak [11] structured a specific project portfolio-selection problem as a
hierarchical group decision-making problem and applied it to the automotive sector. An
idea behind the proposed information-technology-business-oriented approach is to involve,
as much as possible, information from a large number of employees in the organization
and, in a way, suppress the influence or dominance of one decision maker, whoever he
or she is. Also, the aim is to reduce biases and the irrelevant evaluation of decision
elements, including ‘noise’ information while judging decision elements (in this case,
criteria). A weighted cumulative belief degree approach is proposed for aggregating the
evaluations and the final criteria weights determined by participants in the group decision-
making process. This concept is, in a way, similar to the one known in consensus-reaching
methodologies (e.g., [12–14]).

2.2. Analytic Hierarchy Process

In the standard version of AHP, at a given level of the hierarchy, each individual creates
square matrix A by comparing decision elements. The pair-wise comparison principle is
applied by using Saaty’s scale with nine levels of preferences or 17 levels of comparison (when
both parts of the scale are taken into account, linear 1–9 and nonlinear 1/9–1/2), Table 1.

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

...
an1 an12 . . . ann

 (1)

When a group consists of M individuals, each member of the group creates a pairwise
comparison matrix of type (1). From each matrix, a weight vector w needs to be extracted
using one of the existing methods. Weights provide cardinal information about the signifi-
cance of compared elements, and based on them, the ranks of elements are determined as
ordinal information. There are matrix-based and optimization-based methods commonly
used to calculate the weight vector w from the matrix (1), collectively referred to as AHP
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prioritization methods. The most used are the eigenvector method, additive normalization
method, weighted least squares method, logarithmic least squares method, logarithmic
goal programming, fuzzy preference programming method, and cosine maximization
method [15]. Ongoing scientific discussions exist regarding which method is superior, and
various studies have compared the methods mentioned to determine their effectiveness.

Table 1. Saaty’s scale.

Definition Scale Value

Absolute dominance 9
Very strong dominance 7
Strong dominance 5
Weak dominance 3
Equal importance 1
Intermediate values 2, 4, 6, 8

The consensus is that no method can be given a priori preference. In this particu-
lar paper, the eigenvector method was employed as a key component of the standard
AHP method. The prioritization of elements employed in a matrix (1) by the eigenvector
method produces the weight vector w = (w1, w2, . . ., wn) after the linear system (2) is
solved. In relation (2), λ represents the principal eigenvalue of the matrix, and e is the unit
vector eT = (1, 1, . . ., 1) of dimension n.

Aw = λw, eTw = 1. (2)

If an individual is completely consistent, meaning the transitive rule aij = aik × akj
holds for every i, j, and k from the set of values (1, 2, . . ., n), then λ = n. Otherwise, λ > n.
The maximum eigenvalue (λmax) for an inconsistent matrix can be estimated by successive
squaring matrix A. When squaring is performed, the elements are summed by rows, and
the sums are normalized to be equal in sum. Thus, approximations of the desired vector
are obtained, and the procedure is terminated when the difference between two successive
vectors is less than a defined value.

In group applications of crisp AHP, the most commonly used aggregation procedure is
the AIP, the aggregation of individual priorities. Another option for aggregation is to apply
procedure AIJ, the aggregation of individual judgments at each entry of matrix A, and then,
continue with prioritization, for instance, by the eigenvector method. More details on AIP
and AIJ can be found in [16].

To check the consistency of pairwise comparisons and the quality of the results ob-
tained by the standard, crisp, version of AHP, the consistency ratio (CR) and Euclidean
distance (ED) are commonly used as measures of judgment quality demonstrated by
an individual.

The consistency ratio (CR) is calculated during the standard AHP procedure. First, the
consistency index (CI) is calculated by relation (3)

CI =
λmax − n

n − 1
(3)

where λmax is the maximum eigenvalue of the matrix A. Then, using this index and the
random index (RI), which depends on the order of the matrix, the consistency ratio is
obtained by relation (4).

CR =
CI
RI

(4)

The value of RI for various matrix orders is determined statistically using samples
of 500 and 1000 randomly generated comparison matrices [1]. Researchers have shown
that, for small deviations from consistency ratios wi/wj, the eigenvector method provides a
satisfactory approximation of the priority vector w. The tolerance value for the consistency
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degree is 0.10. If CR is less than 0.10, the decision-making process presents acceptable
inconsistency. In some cases, this statement holds even if CR is greater than 0.10. However,
adjustments may need to be made to the evaluations until a small enough value of CR
is achieved.

The Euclidean distance (ED), also referred to as the total deviation, represents the
distance measured between all elements in a comparison matrix (1) and the related ratios
of the weights of the derived priority vector, as given in relation (5).

ED =

[
n

∑
i=1

n

∑
j=1

(
aij − wi/wj

)2
]1/2

(5)

This consistency measure is a universal error measure and is, therefore, invariant to
the prioritization method (including the eigenvector method) used for deriving vector w.

2.3. Rough Analytic Hierarchy Process

Rough AHP is the result of applying the theory of rough sets to the original AHP,
similar to how it was done with the application of fuzzy theory to AHP. The theory of rough
sets was presented in the early 1980s [4], and numerous authors have contributed to its
further development and elaboration through applications (e.g., [17,18]). Like fuzzy theory,
the rough set theory deals with uncertainties that exist in a real environment. The idea is to
establish approximate boundaries for given sets of numbers. There are no parameters that
indirectly treat vagueness, and the given data structure speaks for itself [18].

In the rough version of AHP, the formation of the group comparison matrix is done by
first creating a sequence of ratings on each position of matrix A obtained from M members
of the group: aij

g = {aij
1, aij

2, . . ., aij
M}. Then, all elements of the sequence are translated into

rough numbers RN(aij
m) = [aij

mL, aij
mU] (m = 1,. . ., M) using the method defined in [19,20].

The superscript notations L and U indicate the lower and upper bounds of the rough
number RN.

The rough sequence at the given position (i,j) in the matrix is given as:

RN(aij
g) ={[aij

1L, aij
1U], [aij

2L, aij
2U], . . ., [aij

ML, aij
MU]}. (6)

By conversion, the sequence is transformed into its average rough number:

RN(aij
g(ave)) = [aij

g(ave)L, aij
g(ave)U] (7)

where:
RN(aij

g(ave)L) = (1/M) · (aij
1L+ aij

2L . . . + aij
ML) (8)

RN(aij
g(ave)U) = (1/M) · (aij

1U+ aij
2U . . . + aij

MU). (9)

The rough group weights are calculated using rough numbers (8) and (9) according to
relation (10).

RN
(

wg
i

)
= [ wgL

i , wgU
i ] =

[
M

√
∏M

j RN
(

ag(ave)L
ij

)
, M

√
∏M

j RN
(

ag(ave)U
ij

)
], i = 1, 2, . . . , M. (10)

Averaging the values for the lower (L) and upper (U) bounds of the rough group
weights gives:

wg
i =

(
1
2

)(
wgL

i + wgU
i

)
, i = 1, 2, . . . , M. (11)

The final normalization of values calculated using relation (11) yields the weights (12)
that can be compared with the weights from the crisp version of the AHP method.

wgFIN
i = wg

i ·
[
∑M

j=1 wg
j

]−1
, i = 1, . . . , M. (12)
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The basic mathematical operators on two rough numbers RN(a) =
[

aL, aU]
and

RN(b) =
[

bL, bU
]

are as follows:

Addition (+): RN(a) + RN(b) =
[

aL+bL, aU
+ bU

]
Subtraction (−): RN(a) − RN(b) =

[
aL − bU , aU − bL]

Multiplication (·): RN(a) · RN(b) =
[
aL·bL, aU ·bU]

Division (/): RN(a)/RN(b) =
[

aL/bU , aU/bL](assuming bL and bU are non-zero).
Scalar multiplication is also used, m·RN(a) =

[
m·aL, m·aU]

, where m is a scalar and
a is a rough number. More complex operators are performed using the above-mentioned
rules based on the theory and principles of rough numbers.

Notice that rough weights (12), obtained by the rough version of AHP, assume that
individual judgments at each position of the joint matrix (1) created the sequences from
which the corresponding lower and upper limits are computed. This way, the data (judg-
ments) ‘spoke by themselves’ instead of any aggregation, such as, for instance, by the
AIJ procedure [16]. It is worth mentioning that rough AHP does not handle issues of
consistency or deviations of individuals’ judgments.

2.4. TOPSIS—Technique for Order Preference by Similarity to Ideal Solution

The TOPSIS method was originally developed by Hwang and Yoon [2] and further
improved by Yoon [21] and Hwang et al. [22]. The method is based on the concept that the
chosen alternative should have the shortest geometric distance from the ideal solution and
the longest geometric distance from the anti-ideal solution. In other words, the method
treats the distances between alternatives and non-existent, so-called ‘ideal’ alternatives.
It first determines the ‘ideal’ and ‘anti-ideal’ alternatives and calculates the Euclidean
distances of actual alternatives from these ‘ideal points’. The best alternative is the one
with the smallest distance from the ideal point, and the method guarantees that its distance
from the anti-ideal point is the maximum.

The multi-criteria analysis with TOPSIS is characterized by a decision matrix, com-
monly called a rating matrix R. The rows of the matrix correspond to the alternatives, while
the columns represent the criteria. Each element of the matrix represents the rating of a
particular alternative concerning a particular criterion. For m criteria (C1, C2,. . ., Cm) and
n alternatives (A1, A2,. . ., An), the matrix R has the form (13). The values (w1, w2,. . ., wm)
written above the columns represent the weights of the criteria defined by the decision
maker or determined in some other way; the sum of these weights is one.

C1 C2 . . Cm
w1 w2 . . wm

R =

A1
A2
.
.

An


r11 r12 . . r1m
r21 r22 . . r2m
. .
. .

rn1 rn2 . . rnm


(13)

TOPSIS calculates a score for each alternative by comparing it to both the ideal and
anti-ideal solutions, represented by the best and worst values (rij

b, rij
w) for each criterion in

the matrix (13). The method evaluates the distance between each alternative and these two
solutions using a chosen distance metric, often the Euclidean distance (rarely the Manhattan
distance). The relative closeness of each alternative to the ideal and anti-ideal solution is
determined by the ratio of the distance to the anti-ideal solution to the sum of distances
to both the ideal and anti-ideal solutions. A higher relative closeness indicates a better
performance relative to the other alternatives.

The method provides a systematic and effective way to handle complex decision-
making scenarios with multiple criteria, allowing decision makers and/or stakeholders to
make informed choices and enhance their decision-making processes [23].
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According to the review [24], the TOPSIS method is a simple process to implement,
use, and program. The algorithm has six basic steps, and the number of steps remains the
same regardless of the number of decision elements, such as attributes. A disadvantage
of the method is that it uses Euclidean distance, which does not consider the correlation
of attributes; moreover, it is difficult to weigh and maintain the consistency of judgment.
Many applications of this method are recorded in the literature related to environmental
modeling and management, water resources management, engineering, business, and
marketing (e.g., [25,26]).

2.5. CRITIC—Method for Objective Weighting Criteria

In decision-making problems, evaluating criteria before evaluating alternatives can
be difficult due to subjective, incompetent, or inconsistent human judgment. Additionally,
criteria can be quantitative (price and profit), qualitative (appearance and impression), or
‘gray’ (average value and availability) in nature, which further complicates the decision-
making process. As proposed for the first time in the work of Doyle [27], the decision-maker
can be eliminated to a certain extent, allowing the “alternatives to decide for themselves”
on the importance of criteria. The idea is to directly analyze the decision matrix and, by
exploiting information on the performance of all alternatives relative to all criteria, to derive
the weights of criteria.

To address these issues, the CRITIC (criteria importance through inter-criteria corre-
lation) method was proposed in [3]. This method uses inter-criteria correlation analysis
to determine the importance of criteria and involves calculating the correlation between
each pair of criteria to derive weights for each criterion. Once the criteria weights are
determined, alternatives can be ranked based on their performance concerning the criteria.

The method is particularly useful in decision-making problems where there are multi-
ple criteria, and their relative importance is unclear or subjective. The method’s objective
nature is based on the statistical processing of information contained in the decision matrix.
The method tends to “smooth” the overall statistics of the ratings, even when they differ
significantly from each other.

The paper by Androulakis and Chatzidimitriou [28] provides a detailed description of
the CRITIC method and includes examples of its application in various decision-making
problems. Examples of the application of the method are also given in [29,30].

2.6. Clustering Individuals within a Group by Using Genetic Algorithm

The values of performance indicators related to consistency and deviations of individ-
uals in the group are easy to imagine as coordinates of individuals in a multi-dimensional
space. If the problem is to create a given number of clusters of individuals, certain criteria
for doing that are required. Such criterion can be the shortest distance of points (individ-
uals) from the central point of the given cluster, and an appropriately structured genetic
algorithm can perform clustering for a given number of points.

Figure 1 illustrates the basic computations required to determine the ‘fitness’ of a
given cluster with five points in 2D (x-y) space. With known coordinates of points B, C,
D, E, and F in a cluster, the sum of distances of these points from central point A is the
fitness of this cluster. Once the coordinates of central point A in each generated cluster are
determined, all distances of points in all clusters are easy to calculate, and their sums are
cluster-related (local) fitness. The genetic algorithm through an iterative generation process
searches for the best positioning of points (individuals) in a given number of clusters. The
best solution is the one with the lowest value of the sum of local distances of the points
positioned in all clusters.

There are other possible ways for clustering points in two-dimensional space, such as
the use of the L2 (Euclidean) metric, L1 (Manhattan) metric, or Tchebysheff distances. The
L2 metrics work well for evenly distributed points, while L1 metrics might be better suited
for points clustered near axes. The Tchebycheff distance might be used within the fitness
function in genetic algorithms if solutions should be evaluated in a more spatially oriented
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way, especially in multi-dimensional spaces. This distance calculation is also known as the
‘maximum metric’ because it measures the distance between two points as the maximum
difference over any of their axis values.
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Figure 1. Elements for computing local fitness of a cluster with 5 points in two-dimensional space
(required in the genetic algorithm).

The triangles used in our genetic algorithm are suitable for problems where the fitness
is assessed based on geometric relationship or similarity. When proportional triangles are
used as illustrated in Figure 1, the coordinates of the central points in the triangles are
multiplied by the corresponding areas of triangles (P1, P2, and P3), and by dividing their
sum by the total area P, the coordinates of cluster center A are obtained. When there are
more points in the cluster, the number of triangles increases, but the concept of proportional
triangles created for a given set of points is the same.

In the presented study, two common consistency indicators are used, CR for the
eigenvector prioritization method in AHP and ED for total Euclidean distance—universal
L2 metrics. The other two indicators (CO and SC) are related to the compatibility of
individuals with the group. Normally, the number and type of indicators can be different
and problem related.

To illustrate the concept, these four indicators are selected as sufficient to facilitate
analysis of experts’ behavior and cluster them in a predetermined number of clusters
based on, separately, their consistency and their compatibility. Corresponding two-
dimensional diagrams, (CR-ED) and (CO-SC), enable positioning each member of the
group as a point in a related scatter diagram. For the 12-member group in our study,
considering two or three clusters in either diagram appeared to be a reasonable approach.
However, drawing a definitive general conclusion from this methodological step is
inherently contentious, as its appropriateness depends significantly on the nuances of
the particular decision-making scenario.

3. Related Work on Metrics and Distances in GDM
3.1. Metrics

Srdjevic et al. [31] defined a framework based on the group AHP for identifying
the most desirable technologies for constructed wetland segmentation. A method is de-
fined for aggregating the evaluations provided by the members of the group into the
new metrics by calculating different consistency and statistical compatibility measures.
The three two-dimensional metrics and the one three-dimensional metric are created to
determine the distances of the members from the reference points corresponding to full
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consistency and statistical compatibility. The mapping of members is performed into the
consistency/compatibility scatter plots to enable visualizing the outlier(s); that is, the
members who have different opinions about which technologies to apply in wetland seg-
mentation than all the members on average. The scatter plots are intended to guide the
decision-making process towards grouping participants into subgroups, thus heading
towards consensus in both the subgroups and global groups.

An interesting discussion on various aspects of consistency and its matching in group
decision-making environments is given in [32]. Authors analyze probabilities of correcting
individual opinions within a group and levels of adaptation which enables combining
opinions optimally and establishing their confidence according to a common metric. It
is shown that matching individuals’ communicated confidence can be more effective
when group members have similar levels of expertise. It is also shown that matching
is more robust when group members do not have insight into mutual relative levels of
expertise. One of the conclusions of this research is that confidence matching can cause
miscommunication among group members about recognition of who is more likely to be
correct and that herding behavior can be a reason why groups sometimes fail to make
good decisions.

Generating solutions to multiple criteria group decision-making problems that are
satisfactory to the decision-makers can be achieved in many different ways. Globally
speaking, this can be done by consensus or by aggregation methods, in some cases by
voting. Fu et al. [33] proposed a new method to examine how much the group is satisfied
after alternatives are assessed and ranked based on differences between the decision-
makers and the group. The problem of selecting engineering project-management software
is used to demonstrate how to analyze group satisfaction and group consensus based on
differences in alternatives’ grades versus group (alternatives) grades using Spearman’s
rank correlation coefficient.

3.2. Distances

In GDM applications of the AHP method, of particular importance are distances of
individual priority vectors from the group vector and possible violations of the rules (such
as transition) and consistencies of judgments while deriving such vectors. For further
reference, note that the result of individual AHP applications is the priority vector of
alternatives versus goal, derived after the synthesis of local priority vectors computed for
criteria versus goal and then alternatives versus criteria. The number of elements in each
priority vector is equal to the number of alternatives n. In a group context, there are m
priority vectors wi (i = 1, 2, . . ., m) for m individuals, which can be aggregated in one—the
group vector wG. There are different schemes for the aggregation of individual vectors in
group contexts, including those where weights are associated with vectors depending on
the ‘importance’ of involved individuals. More on this can be found in [16].

Distances of individual priority vectors from the group vector can be measured in
many different ways, for instance by using distance functions such as Manhattan, Euclidean,
Cosine, Jaccard, Dice, RMD (root-mean-square deviation), etc. More on distances can be
found in [1,34–37].

Our research shows that the application of one of the mentioned distance functions in
group decision-making problems does not produce significant differences in the measure-
ment of individuals’ agreement with the group consensus. A similar hypothesis has been
proven in [35] for the five first-mentioned distance functions above. Notice that, in this
paper, the first two functions are used in a different context than in the referenced studies.
Manhattan distance is used as a group measure; that is, to measure the compatibility of
each individually derived priority vector from the group vector. The Euclidean distance is
used as an individual measure only; that is, for measuring total deviations of individual
judgments at all hierarchy levels with derived local priority vectors.

It is worth mentioning that, along with AHP, generalized L2 Euclidean distance (ED is
the most often used for assessing the quality of the estimates of priority vectors. The ED is



Mathematics 2024, 12, 1699 11 of 21

the total distance between all judgment elements in the comparison matrix at a given level
of the hierarchy and related ratios of the weights contained in the vector w derived from
this matrix by some prioritization method. The ED is a universal error measure, and it does
not depend on the prioritization method used to derive vector w. More on this measure
will be given in the next section.

4. The Proposed Method

The AHP-based approach serves as the fundamental method for solving individual
decision-making problems. As the context shifts towards group decision making, individu-
als are evaluated on the quality of their decision-making performance, and their consistency
is measured using multiple performance indicators. Compatibility indicators represent
how closely an individual’s decision aligns with the group’s decision. To determine the
group’s consensus, individual outcomes can be aggregated through methods such as ad-
ditive or geometric aggregation. The TOPSIS method can be used to evaluate and rank
each member’s consistency and compatibility within the newly established multi-criteria
framework. The CRITIC method can be applied as an objective instrument to determine
the weights of the performance indicators necessary for the TOPSIS method. Regarding
group settings, in addition to standard AHP, based on using crisp numbers as equivalents
to formal linguistic judgments, the rough version of AHP can be added to the analyses
to enable a comparison of the aggregation schemes used in the standard and rough AHP
versions. Choosing to include this addition, the rough version of AHP, is not mandatory;
indeed, the standard AHP can be substituted with its rough version. Additionally, consider-
ing alternative variants of AHP, such as hesitant AHP, fuzzy AHP, or employing stochastic
approaches and Bayesian analysis, is methodologically feasible. The original and rough
versions of AHP used in our study are not only applicable but also sufficiently simple and
beneficial for gaining deeper insights into the decision-making process. To summarize, for
group decision-making settings where diverse judgments commonly occur, the methodol-
ogy proposed below complements the evaluation of experts’ performance quality based on
only crisp values, with the rough theory that, instead of aggregating priorities of decision
elements derived by standard AHP, uses sequences of original judgments in a special way
to derive group priorities according to rough theory.An approach to the following problem
is proposed. At an early stage of the decision-making process, it is important to assess and
evaluate the quality of involved experts in making decisions by a formal evaluation of their
consistencies and agreement with the rest of the group. A methodology is proposed based
on a combination of crisp and rough AHP, TOPSIS, and CRITIC methods. All the methods
mentioned are thoroughly established and scientifically validated. In the context of group
decision-making scenarios, their implementation is straightforward. In the final stage of
the proposed methodology, clustering individuals based on demonstrated consistencies
and similarities with the group is suggested to be achieved through the utilization of a
genetic algorithm, known for its efficiency as a stochastic search engine. Alternatively,
other heuristics could be considered, such as simulated annealing or evolutionary strategy,
for instance.

The proposed method is organized in six steps, as shown in Figure 2, and represents
an extended procedure published in [38]).

Step #1: In this initial step, each member of the group solves the given decision-making
problem using the AHP method, creating a hierarchy with the goal on the top and at the
level below decision elements to be evaluated concerning a goal, such as sub-goals, criteria,
or alternatives. The AHP-based prioritization is used to obtain individual priority vectors of
decision elements concerning the goal. During this process, the consistency of the members
is measured, and individual indicators of their consistency are recorded.

If a one-level hierarchy is created with a goal at the top and selected decision elements
(sub-goals, criteria, or alternatives) at a level below, the term “AHP-based” refers to an
incomplete AHP, as there is no synthesis involved. In this case, only prioritization of
the decision elements versus the goal takes place, and for each member of the group,
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consistency can be measured based on the derived weights and original judgments in
his/her comparison matrix. The consistency ratio (CR) and total Euclidean distance (ED)
are commonly used for this purpose. CR is established exclusively for the AHP and
eigenvalue prioritization method, while the ED is the universal error measure calculated as
the total distance between all judgments aij in the comparison matrix A and the related ratios
of weights (wi/wj) contained in the vector of weights derived during prioritization. The ED
consistency measure can be used with any prioritization method to assess consistency, as
reported by many researchers, e.g., [39–42].
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Step #2: In this step, individual priority vectors are synthesized into the group priority
vector by the AIP method (an acronym for aggregation of individual priorities) [16]. Then,
deviation, correlation, and other indicators of individual agreement and/or disagreements
with the rest of the group are computed. These indicators are recorded as group-related
information on the performance quality of individuals. In addition, a rough version of
AHP manages sequences of judgments in each position in the joint comparison matrix, and
determines the priority vector for the group that can be directly compared with the AIP
vector obtained by Equation (14)

wG
i = ∏M

j=1

[
wj

i

]∝j
(i = 1, . . . , n). (14)

where M represents the number of members in the group, wj
i represents the priority of the

i-th alternative for the j-th member, αj represents the weight of the j-th member, and wi
G

represents the aggregated group weight. The weights αj should be additively normalized
before being used in Equation (14), and the final additive normalization of priorities wi

G

is required.
The group vector wG (wG

1 , . . . , wG
n ) can be used as the reference vector for the members

of the group to compute deviations of their vectors from the group vector. The term
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‘conformity’ or ‘compatibility’ (CO) is commonly used to express individual deviations and
is synonymous with the Manhattan distance. It is illustrated by Equation (15)

COj =
n

∑
i=1

∣∣∣wj
i − wG

i

∣∣∣, j = 1, . . . , M. (15)

where the superscript G represents the reference priority vector obtained by aggregation.
CO indicates the overall similarity between the individual priority vector and the reference
group vector. This performance indicator only applies after all computations in AHP are
concluded, which is different from using consistency indicators CR and ED.

Different statistical measures can also be used to measure individual agreements or
disagreements with the rest of the group. One of the more used measures is Spearman’s
rank correlation coefficient (SC) calculated by using Equation (16).

SCj = 1 −
6

n
∑

i=1
D2

i

n(n2 − 1)
. j = 1, . . . , M. (16)

This measure enables comparing the ranks of the corresponding elements of the
individual priority vectors and the reference vector for the group (Di stands for individual
vector). SC values range from −1 to 1, where a value of −1 indicates an ideal negative
correlation, +1 shows an ideal positive correlation, and a value of 0 indicates no correlation.

In practice, SC is a reliable statistical measure, even for small groups. It is a relative
measure and not absolute, indicating that two vectors can vary widely in rank preference
while remaining relatively close in absolute preference. With larger groups, potential mis-
guidance is typically minimized. In the proposed multi-model framework, SC is elaborated
as an ordinal information measure that can be combined with cardinal information (CO).
The combination of CO and SC facilitates efficient clustering, allowing the exploration of
both cardinal and ordinal information simultaneously.

After the completion of prioritization in AHP for all members in a group, it is possible
to calculate SC as analogous to the compatibility indicator CO.

Step #3: In this step, a decision matrix is created with rows representing members
of the group and columns representing the performance indicators identified in steps #1
and #2. The matrix entries in each row correspond to given member scores regarding the
performance indicators of consistency and deviation. The decision matrix is flexible in size,
accommodating any number of columns for performance indicators (criteria) and rows for
members (alternatives). Employing cross-referencing and visualization techniques aids in
the matrix’s preparation, fostering insights and comprehension of its elements’ impacts.

The entries of the matrix are performance indicators of members as represented by
Expression (17). To complete the decision matrix, weights w1, w2, w3, and w4 must be
assigned to the ‘criteria’ (CR, ED, CO, and SC), with the sum of the weights totaling one.

CR ED CO SC
w1 w12 w3 w4

R =

 r11 r12 r13
. . . . . . . . .
rM1 . . . . . .

r14
. . .
rM4

 (17)

Step #4: In this step, the TOPSIS method is utilized to assess the decision matrix,
ranking group members based on their overall performance concerning consistency and
alignment with the group. Before employing the TOPSIS method, it is imperative to define
the weights related to the matrix (17) for all performance indicators. The CRITIC method is
recommended for this task, which is particularly beneficial for larger groups.

It is worth noting that before applying multi-criteria methods, the analyst may sub-
jectively assign weights to performance indicators or opt for an objective method. One
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alternative to the statistical method CRITIC is the application of the entropy principle
to determine objective weights for indicators. As per Shannon and Weaver [43], entropy
serves as a gauge of information uncertainty, indicating the “strength” of decision elements
(such as criteria) in communicating a message to the decision maker. The crux lies in
addressing uncertainty within the information framework of the decision matrix, known as
Shannon entropy. The concept of entropy has been used in various areas of multi-criteria
optimization with good results, e.g., [15,23,29,44]. In an example provided in the sub-
sequent section, the entropy method could not be applied due to a negative Spearman
correlation coefficient identified for one member within a group, rendering logarithmic
operations impossible within the entropy method. Given the potential recurrence of such
cases in other scenarios, the CRITIC method is employed to ascertain the objective weights
of performance indicators.

Step #5: During this stage, a sensitivity analysis can be conducted by assigning vary-
ing weights to performance indicators to cluster or regroup individuals based on their
consistency and deviation from the group solution. The iterative application of TOPSIS, de-
pending on the weighting scheme for performance indicators, facilitates the assessment of
group members’ performance quality, with a focus on demonstrated consistency in judging
the initial decision-making problem or compatibility and statistical agreement with the rest
of the group. In the provided example, different preference schemes are used to weight
groups of performance parameters (consistency, CR and ED; deviation, CO and SC) and to
explore opportunities for sub-grouping members. Sensitivity analysis aids in enhancing
the quality of the decision-making process by identifying and mitigating potential pitfalls,
such as avoiding subpar performances from influencing further decision-making. It serves
to validate the performance quality of each group member, thereby improving the overall
decision-making process.

Step #6: In this last step, the outcome of the process is analyzed, and the competency
of members of the group to further get involved in the decision-making process is decided.
If necessary, some previous steps may be repeated by sub-grouping members, eliminating
odd members, etc.

This step requires additional consideration of the results of steps #4 and #5 because
they may directly determine further steps in group assessments of decision elements. The
group can be restructured, with new members involved and/or odd members excluded.
If decided upon, new decision elements can be added and/or old elements excluded, for
instance, if the initial evaluation process indicated sharp differences between superior
and inferior decision elements. However, any change in the structuring decision process
must respect restrictions related to the duration of the entire process. Important issues to
consider include the number and eligibility of members in the (restructured) group and
the number of decision elements to be assessed. The described procedure outlined in steps
#1-#6 can be easily generalized by incorporating or replacing performance indicators before
the final assessment of the quality of the group members. Different combinations of multi-
criteria methods can be employed to obtain individual and group solutions and perform
the final evaluation based on demonstrated consistencies and deviations. The results can
be visualized using scatter diagrams, such as CR-ED and CO-SC, and a genetic algorithm
can be applied to identify decision-maker clusters and the consequences of sub-grouping
individuals rather than treating all members as part of a single group.

According to Srdjevic et al. [38], when using AHP for individual assessments, it
is important to note that the consistency parameter CR should only be utilized if the
prioritization of decision elements is carried out using the additive normalization (AN) or
eigenvector (EV) method, as noted by Saaty [1], Srd̄ević [42] and Kou and Lin [39].If the LLS
prioritization method is being used, parameter CR should be replaced by GCI, as suggested
in [45–48]. Similarly, the FPP method proposed in [37] requires the use of the parameter µ,
while the CMM method recommended in [27] uses the CCI cosine consistency index.
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5. An Example
5.1. The Problem

To ensure the proper protection, restoration, and management of a given wetland in
Serbia, seven measures (M1–M7) that can reduce and mitigate drought risks in a given area
are assessed and evaluated by 12 invited experts (E1–E12) from different socio-economic,
environmental, agricultural and forestry sectors.

5.2. Standard AHP Application (Step #1)

Following the procedure described in the previous section, as a part of step #1, the
experts individually evaluated by importance measures and created pairwise comparison
matrices by seeding only upper triangles with values from Saaty’s scale {1/9, 1/8, . . ., 1/2,
1, 2, . . ., 9} [1].

The application of AHP enabled computing the weights of measures for each expert
by the eigenvector method. Individual vectors of the weights are shown in Table 2. Then,
individual vectors are geometrically averaged, assuming equal importance for all the
experts; the AIP aggregation produced the group vector of weights in the row (Group-AIP)
in Table 2.

Table 2. Weights and ranks of measures obtained by standard and rough AHP from 12 experts.

Experts
Weights of Measures

M1 M2 M3 M4 M5 M6 M7

E1 0.292 (1) 0.163 (3) 0.176 (2) 0.061 (6) 0.159 (4) 0.104 (5) 0.046 (7)

E2 0.275 (1) 0.181 (2) 0.072 (6) 0.034 (7) 0.131 (5) 0.148 (4) 0.159 (3)

E3 0.371 (1) 0.152 (3) 0.064 (4) 0.057 (6) 0.020 (7) 0.064 (5) 0.273 (2)

E4 0.093 (4) 0.062 (5) 0.039 (7) 0.253 (3) 0.257 (1) 0.257 (2) 0.041 (6)

E5 0.368 (1) 0.215 (2) 0.027 (7) 0.064 (4) 0.060 (5) 0.060 (6) 0.205 (3)

E6 0.257 (1) 0.249 (2) 0.028 (7) 0.064 (5) 0.205 (3) 0.150 (4) 0.047 (6)

E7 0.146 (4) 0.115 (5) 0.190 (3) 0.267 (1) 0.024 (7) 0.033 (6) 0.225 (2)

E8 0.396 (1) 0.249 (2) 0.157 (3) 0.091 (4) 0.037 (6) 0.031 (7) 0.039 (5)

E9 0.324 (1) 0.173 (2) 0.128 (4) 0.100 (5) 0.139 (3) 0.075 (6) 0.060 (7)

E10 0.223 (1) 0.141 (5) 0.040 (7) 0.042 (6) 0.186 (3) 0.203 (2) 0.165 (4)

E11 0.273 (1) 0.107 (4) 0.050 (6) 0.030 (7) 0.273 (2) 0.099 (5) 0.168 (3)

E12 0.455 (1) 0.088 (5) 0.026 (7) 0.043 (6) 0.148 (2) 0.148 (3) 0.092 (4)

Group-AIP 0.316 (1) 0.173 (2) 0.075 (7) 0.084 (6) 0.120 (3) 0.112 (5) 0.119 (4)

Group-
ROUGH 0.250 (1) 0.154 (2) 0.094 (7) 0.120 (6) 0.134 (3) 0.123 (5) 0.124 (4)

5.3. Rough AHP Application (Step #2)

As a part of step #2, a rough version of AHP is applied to obtain the group vector
shown in the last row of Table 2 (Group-ROUGH). The comparison of group vectors derived
in crisp and rough context shows that measures are, in both cases, equally ranked. However,
the computed weights of the top-ranked measure (M1) are significantly different for two
AHP contexts (0.316 for crisp vs. 0.250 for rough AHP).

The application of rough numbers shows also that the weights of the top-ranked
measures are reduced compared to the corresponding weights when crisp numbers are
used. An opposite effect occurs at the lower-ranked measures. Such distribution of rough
weights is especially notable for a larger number of elements in the sequences, as shown
by Srdjevic [49]. In this example, 12 judgments of experts in each entry of joint matrix (1)
are sufficiently large samples/sequences, which leads to a conclusion that rough numbers
theory is useful to additionally evaluate ‘crisp’ results as an outcome of commonly used
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procedures and evaluation scenarios. Because the ‘rough’ results sometimes correspond to
‘fuzzy’ results, and handle cardinal information rather than only ordinal, this may be very
important when decisions should be made about investments into activities related to the
measures under consideration.

5.4. Performance indicators, CRITIC and TOPSIS (Steps #3 and #4)

Table 3 presents the performance indicators of consistency (CR, ED) obtained with the
AHP and statistical agreement with the group decision (CO, SC) for the experts. Expert
11 is the most consistent, with a CR of 0.02, while expert 9 is the least consistent, with a
CR of 0.39. Five experts (3, 4, 5, 11, and 12) fall below the tolerant limit of CR = 0.10, and
another five are within the range of CR = 0.10–0.20. The remaining two experts (8 and 9)
are above CR = 0.20. Expert 9 can be considered an outlier regarding this performance
indicator. When considering the ED indicator, expert 11 performs the best, with an ED of
4.24, followed by experts 4 and 10. The worst performances regarding this indicator are
obtained for experts 8 and 9, similar to the case of the CR indicator.

Table 3. Consistency (CR, ED) and agreement with the group (CO, SC) performance indicators.

Experts
Performance Indicators

CR ED CO SC

E1 0.15 8.18 0.245 0.357
E2 0.18 7.19 0.178 0.857
E3 0.10 12.52 0.455 0.464
E4 0.05 6.09 0.846 0.214
E5 0.06 9.16 0.429 0.821
E6 0.11 8.57 0.390 0.893
E7 0.11 7.93 0.760 −0.429
E8 0.22 17.19 0.544 0.393
E9 0.39 14.01 0.211 0.643

E10 0.12 6.40 0.352 0.679
E11 0.02 4.24 0.354 0.857
E12 0.05 10.62 0.422 0.750

Average 0.13 9.34 0.432 0.542
Type min min min max

Based on the values of all the used performance indicators shown in Table 3, the CRITIC
method produced the following weights of indicators: w1 = 0.261; w2 = 0.231; w3 = 0.289; and
w4 = 0.219, corresponding to CR, ED, CO, and SC, respectively. The highest importance is
given to the compatibility indicator (0.289) and the lowest to ED (0.231). It is interesting to note
that there is an approximate equilibrium between the consistency and deviation parameters;
that is, w1 + w2 (for CR + ED) = 0.492 vs. w3 + w4 (for CO + SC) = 0.508.

With the computed weights of performance indicators, the TOPSIS method finally
ranked the experts, as shown in Table 4.

Table 4. Ranking experts by the TOPSIS multi-criteria method (weights of performance indicators by
the CRITIC method).

Experts Ranking Experts by the TOPSIS Method
with the CRITIC Weights

E1 7
E2 6
E3 8
E4 9
E5 2
E6 5
E7 10
E8 11
E9 12

E10 4
E11 1
E12 3
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According to the findings, expert 11 was ranked as the top expert, followed by experts
5, 12, 10, and 6 in the first five positions. Experts 7, 8, and 9 were ranked at the bottom of
the list. These results are consistent with the clustering results observed in Figures 3 and 4
in the next section.
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5.5. Sensitivity Analysis (Steps #5 and #6)

Step #5 and step #6 are undertaken by an assessment of the experts’ performance
indicators in Table 3 using the preferential Borda count method from the social choice theory
corpus of election models, and two generated scatter diagrams for visualizing subgroups
of experts according to their performance indicators.

• Borda count assessment of the experts;

As a part of the sensitivity analysis process, the use of the Borda count enabled us to
determine the overall ranking of the experts while taking all indicators into account but
without applying weights to indicators, Table 5. The results show that expert 11 has the
best performance across all indicators, displaying the highest consistency for indicators CR
and ED, and tying with expert 2 for similarity to group weights indicator SC. Expert 11 also
ranks fifth in the compatibility indicator CO. Overall, expert 11 is ranked first. Expert 2 is
ranked second overall, followed by expert 6 in third place. In contrast, expert 8 is ranked
last on the Borda list and is positioned no higher than ninth place.

Table 5. The overall Borda count ranking of group members based on the individual rankings for
each criterion. (Grey highlight is for the first ranked expert).

Experts

Ranking the Members of a Group
for Each Performance Indicator Borda

Sum
Borda
Ranks

CR ED CO SC

E1 9 6 3 10 28 8
E2 10 4 1 2.5 17.5 2
E3 5 10 9 8 32 9–10
E4 2.5 2 12 11 27.5 7
E5 4 8 8 4 24 6
E6 6.5 7 6 1 20.5 3
E7 6.5 5 11 12 34.5 11
E8 11 12 10 9 42 12
E9 12 11 2 7 32 9–10

E10 8 3 4 6 21 4
E11 1 1 5 2.5 9.5 1
E12 2.5 9 7 5 23.5 5

The ranking results presented in Tables 4 and 5 can be compared and may help in
making a certain decision about the competency of experts in this example application of a
multi-model procedure. Along with the clustering presented in the next two sub-sections,
conclusions about the experts’ competencies in future decision-making processes can be
even enhanced.

• Clustering experts based on consistency indicators;

A scatter diagram CR-ED, which is presented in Figure 3, was created to analyze the
demonstrated consistency performance of experts. The genetic algorithm clustered experts
into two, three, and four subgroups based on a central-point-minimum-distance approach.
This approach groups points in a manner that minimizes the distance between the points
within a given cluster, while also minimizing the sum of all distances across all clusters.
Notably, when clustering into three subgroups, two solutions were found to be very similar,
with the placement of expert 2 determining the outcome. The optimal solution was found
when expert 2 was not in the same cluster as experts 4, 10, and 11, while slightly less
optimal solutions were found when expert 2 was in the same cluster as them (as depicted
in Figure 3 with total distances of 12.992 and 13.007, respectively).

Several groupings of experts are obtained by application of the genetic algorithm
if the number of clusters is pre-specified. In the lower part of Figure 3 for two, three,
and four clusters there are associated ‘distances of experts’ from the central point in a
specific cluster. Depending on a more detailed analysis of consistencies demonstrated by
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involved decision-makers, the decision could be made to re-group individuals into several
sub-groups and perform further actions in selecting decision-makers for the final stage of
the decision-making process. How much this process can be sensitive can be shown if, for
example, one compares cases when there are three clusters, namely, there are two similar
solutions if expert 2 is moved from one to another cluster. Simply observe small distances
of 12.992 and 13.007 and move of expert 2 into different clusters.

• Clustering experts based on deviation indicators;

With the information contained in Table 3 for indicators CO and SC, a scatter diagram
is created and shown in Figure 4. In its lower part for a pre-specified number of clusters
(two in this case), in different generations, the genetic algorithm created several interesting
groupings of experts as sub-optimal solutions. The associated sums of distances of grouped
experts from their central points are presented for several interesting clusters. The best
solution found is the last listed clusters (4,7) and (others) found in the 86th generation of
the genetic algorithm run. This solution is easy to visualize from Figure 4.

6. Conclusions

In this paper, the combined use of two group methods is proposed for the preliminary
assessment of the quality of experts before being involved in the final stage of the decision-
making process. The developed methodology is applied to the analysis of the importance
of measures to reduce drought risks in a given wetland in Serbia, as these measures are
identified by stakeholders coming from different sectors. The methodology enables the
treatment of specific indicators of the quality of decision-making performance associated
with each expert and presents (visually) their clustering into possible sub-groups for further
improvements of the decision-making process.

The approach combines well-established multi-criteria methods, including the
(1) analytic hierarchy process (AHP) and (2) the technique for order preference by similarity
to the ideal solution (TOPSIS). For determining objective weights of proposed consistency
and group-agreement indicators, when evaluating and ranking the decision-makers by
TOPSIS, the CRITIC method is recommended as a trustworthy statistical method. In addi-
tion, a rough version of the AHP method is recommended to perform sensitivity analysis
and compare the aggregation of individual priorities of analyzed decision elements in
standard AHP (known as AIP aggregation), with aggregation of individual judgments
through so-called sequences at each entry of the joint pairwise comparison matrix. This
aspect of the presented approach represents a novelty in terms of robustness when it comes
to modeling and utilizing the outcomes of the group decision-making process.

The proposed methodology evaluates decision elements strictly by importance. Re-
garding the role of experts involved in decision-making processes, the classical agreement-
based (consensus) model applicable to small groups is not applied; rather, the experts are
managed as ‘independent units’ acting on distance and request by interviewers (here au-
thors of the paper). In the presented example application, the final (group) decision is made
after individually submitted comparison matrices are collected, the AHP prioritization of
decision elements (measures for drought risk reduction and mitigation) is performed, and
the individual vectors are aggregated. The AHP (standard and rough)-TOPSIS-CRITIC-
based model is recommended for similar assessment frameworks, especially when there is a
need for a detailed pre-assessment of quality (competence) of the potential decision makers,
commonly considered as experts who may not always demonstrate obvious expertise.

Overall, the study highlights the importance of using a multi-criteria approach to
assess and visualize the importance of consistency and agreement (with the group) of the
involved decision-makers and aims to achieve the final justified solutions in planning and
management in different sectors of human activities. The methodology could be efficient
in settings where diverse judgments commonly occur and rough theory with logic that
‘data govern decision process’ has a place. Decision-makers can benefit from a data-driven
and inclusive approach that takes into account their diverse perspectives, leading to more
robust and informed decisions. This way, the decision-making process is transparent,
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evidence-based, and capable of handling complex situations where diverse judgments are
likely to arise.
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18. Fazlollahtabar, H.; Vasiljević, M.; Stević, Ž.; Vesković, S. Evaluation of supplier criteria in the automotive industry using rough

AHP. In Proceedings of the 1st International Conference on Management, Engineering and Environment ICMNEE, Belgrade,
Serbia, 28–29 September 2017; pp. 186–197.

19. Zhai, L.Y.; Khoo, L.P.; Zhong, Z.W. A rough set-based QFD approach to the management of imprecise design information in
product development. Adv. Eng. Inf. 2009, 23, 222–228. [CrossRef]

20. Zhai, L.Y.; Khoo, L.P.; Zhong, Z.W. A rough set enhanced fuzzy approach to quality function deployment. Adv. Manuf. Technol.
2008, 37, 613–624. [CrossRef]

21. Yoon, K. A reconciliation among discrete compromise situations. J. Oper. Res. Soc. 1987, 38, 277–286. [CrossRef]
22. Hwang, C.L.; Lai, Y.J.; Liu, T.Y. A new approach for multiple objective decision making. Comput. Oper. Res. 1993, 20, 889–899.

[CrossRef]
23. Huang, I.B.; Keisler, J.; Linkov, I. Multi-criteria decision analysis in environmental science: Ten years of applications and trends.

Sci. Total Environ. 2011, 409, 3578–3594. [CrossRef] [PubMed]
24. Velasquez, M.; Hester, P.T. An analysis of multi-criteria decision-making methods. J. Oper. Res. 2013, 10, 56–66.

https://doi.org/10.1016/0305-0548(94)00059-H
https://doi.org/10.1007/BF01001956
https://doi.org/10.1007/s10726-006-9050-x
https://doi.org/10.1007/s10726-020-09687-x
https://doi.org/10.1007/s10726-022-09792-z
https://doi.org/10.1007/s10726-020-09701-2
https://doi.org/10.1007/s10726-020-09673-3
https://doi.org/10.1016/j.dss.2010.03.003
https://doi.org/10.1016/j.jenvman.2005.09.004
https://doi.org/10.1007/s10726-012-9310-x
https://doi.org/10.1016/j.eswa.2023.120015
https://doi.org/10.1016/S0377-2217(97)00244-0
https://doi.org/10.1016/j.aei.2008.10.010
https://doi.org/10.1007/s00170-007-0989-9
https://doi.org/10.1057/jors.1987.44
https://doi.org/10.1016/0305-0548(93)90109-V
https://doi.org/10.1016/j.scitotenv.2011.06.022
https://www.ncbi.nlm.nih.gov/pubmed/21764422


Mathematics 2024, 12, 1699 21 of 21

25. Shih, H.S.; Shyur, H.J.; Lee, E.S. An extension of TOPSIS for group decision making. Math Comput. Mod. 2007, 45, 801–813.
[CrossRef]

26. Yue, Z. A method for group decision-making based on determining weights of decision makers using TOPSIS. Appl. Math. Model.
2011, 35, 1926–1936. [CrossRef]

27. Doyle, J.R. Multiattribute choice for the lazy decision maker: Let the alternative decide. Organ. Behav. Hum. Decis. Process. 1995,
62, 87–100. [CrossRef]

28. Androulakis, I.P.; Chatzidimitriou, K.C. Multi-criteria decision analysis using the CRITIC method. Econ. Ann. 2010, LV, 115–142.
29. Deng, H.; Yeh, C.H.; Willis, R.J. Inter-company comparison using modified TOPSIS with objective weights. Comput. Oper. Res.

2000, 27, 963–973. [CrossRef]
30. Srdjevic, B.; Medeiros, Y.D.P.; Faria, A.S.; Schaer, M. Objective evaluation of performance criteria for a reservoir system.

Vodoprivreda 2003, 35, 163–176. (In Serbian)
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