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Abstract: This paper aims to discuss the implementation of data analysis and information manage-
ment for elderly nursing care from a data-driven perspective. It addresses the current challenges of
in-home caregivers, providing a basis for decision making in analyzing nursing service content and
evaluating job performance. The characteristics of caregivers’ activities were analyzed during the
design of a wearable device-wearing scheme and a sensor data collection system. XGBoost, SVM, and
Random Forest models were used in the experiments, with the Cuckoo search algorithm employed to
optimize the XGBoost model parameters. Based on the control group experiment, it was confirmed
that the XGBoost model, after adjusting the parameters using the Cuckoo search algorithm, exhibited
better recognition performance than the SVM and RandomForest models, and the accuracy reached
0.9438. Wearable devices present high recognition accuracy in caregiver activity recognition research,
which greatly improves the inspection of caregivers’ work and further promotes the completion
of services. This study actively explores the applications of information technology and artificial
intelligence theory to address practical problems and effectively promote the digitalization and
intelligent development of the elderly nursing care industry.

Keywords: elderly nursing care; behavior recognition; XGBoost; sensor data; wearable device
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1. Introduction
1.1. Background

Human life expectancy has increased at an unprecedented rate, while the human
fertility rate has declined rapidly in many countries around the world [1]. With the change
in population structure, many countries are entering or will enter an aging society, such as
China and Japan [2,3]. According to the data of the Ministry of Civil Affairs of the PRC, in
the past decade, the size of the aging population in China has presented a continuously
growing trend, exceeding 280 million, as shown in Figure 1. How to provide professional
elderly nursing care services for elderly people has become an urgent and important issue.
The first concern is where elderly people enjoy elderly nursing care services; do they stay
at home or live in a professional elderly nursing care institution? In China, people become
increasingly reluctant to leave their homes as they age. Therefore, home-based care has
become an increasingly popular choice due to its advantages of humanization, flexibility,
and lower private and social costs. Additionally, home-based care-taking is supported by
the government and elderly nursing care agencies in certain places [4].

One of the significant challenges in home-based caregiving involves managing and
assessing the performance of nursing staff. Their work is evaluated primarily from two per-
spectives: adherence to the scheduled care plan and the quality of care provided. The
foremost concern is verifying the implementation of prescribed nursing services.
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opment of the internet [6], various types of sensors are widely used in wearable devices. 
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the standard-setting and information management of the elderly nursing care market. 

1.2. Difficulties with the Recognition of Caregivers’ Activities 
The current research on Caregiver Activity Recognition (CAR) for the elderly at home 

lacks a standardized wearable device-wearing scheme and public dataset. As a result, this 
research encounters several challenges: 
(1) The primary challenge is designing a suitable wearable device-wearing scheme for 

studying CAR. Additionally, extracting effective features and accurately distinguish-
ing between different behavioral activities are ongoing difficulties and areas of focus 
in current research. 

(2) Traditional static models struggle to recognize behavioral activities due to variations 
among individuals, which leads to lower accuracy in recognition outcomes. 

(3) Real-world nursing care activities pose another challenge as they often involve com-
plex actions. These actions can easily be confused with one another, making accurate 
recognition a difficult task. 

2. Literature Review 
The concept of activity recognition originated in the late 1990s [7,8], particularly uti-

lizing wearable sensor data for sports and motion behavior analysis [9–11]. This field has 

5

10

15

20

25

50

100

150

200

250

300

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

The population aged 60 and above (Million).
The proportion of the total population at the national level (%).(Million) (%)

Figure 1. The population aged 60 and above and its proportion of the total population of China.

Nursing activity recognition via image and video recognition is a possible solution.
However, this is often not feasible in many cases because of privacy issues as videos
violate the privacy of elderly people and staff [5]. In addition, the high cost of purchasing,
deploying, and maintaining an image- and video-capturing device and the expensive
and time-consuming video analysis are also weaknesses. On the other hand, with the
development of the internet [6], various types of sensors are widely used in wearable
devices. Compared with video and image-based behavior recognition methods, sensor-
based behavior recognition methods are characterized by low cost, strong flexibility, and
good portability. Therefore, human behavior recognition based on wearable sensors has
become a research hotspot in human activity recognition (HAR), which greatly promotes
the standard-setting and information management of the elderly nursing care market.

1.2. Difficulties with the Recognition of Caregivers’ Activities

The current research on Caregiver Activity Recognition (CAR) for the elderly at home
lacks a standardized wearable device-wearing scheme and public dataset. As a result, this
research encounters several challenges:

(1) The primary challenge is designing a suitable wearable device-wearing scheme for
studying CAR. Additionally, extracting effective features and accurately distinguish-
ing between different behavioral activities are ongoing difficulties and areas of focus
in current research.

(2) Traditional static models struggle to recognize behavioral activities due to variations
among individuals, which leads to lower accuracy in recognition outcomes.

(3) Real-world nursing care activities pose another challenge as they often involve com-
plex actions. These actions can easily be confused with one another, making accurate
recognition a difficult task.

2. Literature Review

The concept of activity recognition originated in the late 1990s [7,8], particularly
utilizing wearable sensor data for sports and motion behavior analysis [9–11]. This field has
gained significant importance, especially in the domains of medicine, military, and security
applications. For instance, exercise therapy can reduce symptom burden in advanced
cancer patients [12]. Additionally, robots have been employed in certain studies to directly
facilitate activity recognition, such as utilizing them for gait training and other rehabilitation
exercises aimed at patients with ambulatory impairments [13]. Furthermore, bionic robots
are also utilized in various research endeavors [14,15]. Therefore, the ability to recognize
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activities such as walking, running, or cycling has been proven to be very valuable in
providing caregivers with information on patient behavior. However, there is a lack of
research on using wearable sensor data analysis to identify caregiver behavior, which is the
main focus of this paper.

In general, different sets of activities can result in entirely distinct HAR problems.
Consequently, the design of any HAR system should be tailored to the specific activities
that need to be recognized. A literature survey has identified seven distinct classes of
activities, with detailed summaries of both group and individual activities falling under
each class [16].

Human Activity Recognition (HAR) has employed a variety of machine learning (ML)
algorithms. In ML, there are three types of learning: supervised learning, unsupervised
learning, and semi-supervised learning [17]. To determine the optimal method for different
case studies, it is necessary to compare the experimental results of each method. Generally,
ensemble learning algorithms outperform single learners (such as decision trees) in terms
of performance. For example, the Random Forest Classifier [18,19] is constructed by
combining multiple decision trees and classifies unknown samples by voting. It utilizes
coverage optimization to integrate the capabilities of multiple weak classifiers, resulting in
improved overall performance compared to a single algorithm [20].

Furthermore, deep learning models are employed for human activity recognition (HAR).
Research has indicated that in cases where HAR data are multidimensional, and activities
are more complex, a deep neural network (DNN) with additional hidden layers can facilitate
better training of the model [21–23]. Convolutional neural networks (CNNs) exhibit two
advantages over other models when applied to time series classification: local dependence
and scale invariance [24,25]. Due to factors such as learning speed and resource consumption,
recurrent neural networks (RNNs) are less commonly used for HAR tasks [26–28]. Moreover,
a combination of different deep models is utilized for HAR tasks [11,29,30].

Although XGBoost (version: 2.0.3) [31], introduced in 2014, offers efficiency and
time-saving advantages, but its utilization in behavior recognition is currently limited
compared to well-established algorithms. Furthermore, there is a lack of extensive research
specifically focused on behavior recognition using XGBoost, especially in the context of
elderly behavior recognition.

To address these gaps, this paper aims to conduct research on home-based elderly
nursing care behavior utilizing the XGBoost model. By investigating the capabilities of
XGBoost in accurately recognizing and understanding the behaviors of home-based staff,
this study aims to contribute to the existing research in this field. The objective is to explore
the untapped potential of XGBoost in behavior recognition, particularly within the domain
of home-based elderly nursing care.

Through this research, we seek to shed light on the benefits and practical applications
of the XGBoost model in improving behavior recognition outcomes in elderly nursing
care settings. The findings of this study can serve as inspiration for further research and
encourage the wider adoption of XGBoost as a valuable tool for promoting the completion
of care provided to elderly individuals in home-based settings. The evaluation of the
quality of nursing behavior has not yet been considered in this article, which is also a very
important issue and can serve as an unresolved study for the future.

The main contributions of our work include the following aspects:

(1) This study developed an experimental system utilizing wearable devices for data col-
lection to identify nursing behaviors, addressing the limitations of previous research
in this area.

(2) Following feature importance analysis and feature reduction, three machine learning
algorithms (SVM, RandomForest, and XGBOOST) were employed in this study. The
XGBOOST model was further optimized using the cuckoo search algorithm to achieve
the highest recognition accuracy of 0.9438. Additional experiments were conducted
to verify the impact of behavioral constraints on recognition performance.
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(3) By accurately identifying elderly nursing care activities, this study enables effective
monitoring of the completion of tasks by nursing staff.

3. Research Framework

After consulting with elderly nursing care service providers and enterprises about
which caregivers’ activities are necessary to be recognized as management objects, and also
analyzing which nursing activities are feasible to recognize technically, this paper selects
nine nursing care activities as research objects of CAR as shown in Table 1.

Table 1. Caregivers’ activities to be identified in this study.

Tags Caregivers’ Activity Data Acquisition Duration

S1 Sweeping the floor 300 s
S2 Thumping one’s legs 180 s
S3 Feeding 300 s
S4 Slapping one’s back 180 s
S5 Moving objects 300 s
S6 Wiping a window 300 s
S7 Wiping a desk 300 s
S8 Washing one’s face 180 s
S9 Washing clothes 180 s

3.1. Experimental System

We have designed a wearable data collection system consisting of three devices:
a wearable vest and two wristwatches. The “Hitoe” wearable vest is equipped with
sensors that enable the collection of physiological data, including body movements and
postures. Additionally, we use wristwatches called “TicWatch” on both wrists to capture
the movements and postures of the arms (as shown in Figure 2).
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Via the utilization of sensor data collected from these three wearable devices, it
becomes feasible to reconstruct the vast majority of action patterns related to caregivers’
activities. To achieve this, the devices are connected to a smartphone via Bluetooth, which
subsequently establishes a connection to a mobile workstation or PC through Wi-Fi. In this
setup, a dedicated database is implemented to store and manage the collected data.

3.2. Data Collection

The data used in this article come from volunteers wearing wearable devices, and the
experiment was conducted with the permission of the volunteers. Thirty-six caregivers
from five public nursing homes in Beijing wore wearable devices to perform caregivers’
behaviors, a total of nine caregivers’ behaviors, each lasting either 180 or 300 s depending
on the characteristics of each behavior (e.g., wiping a desk takes less time than moving
objects), and the criteria for selecting the personnel included volunteering to join this
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experiment and working in a nursing home for more than one year, 4 men and 32 women,
with an average age of 46.5 years. The devices worn by the caregivers included a smart
undershirt (Hitoe, from Nippon Telegraph & Telephone, Tokyo, Japan) for recognizing
a person’s upper body posture and two smartwatches (TicWatch1 and TicWatch2, from
FUXIANG, Shanghai, China) for recognizing hand movements.

All the data were collected by volunteers in their daily work. Our dataset consists of
A, B, A’, and B’, and over 87,000 sensor data samples were collected using wearable devices
Hitoe, TicWatch1, and TicWatch2. Each data sample consists of 27 features (as indicated
in Table 2) along with a classification (S1, . . ., S9) composition. The interval between
consecutive data samples is 200 ms. A’ and B’ require volunteers to complete corresponding
nursing services according to certain norms, while A and B allow volunteers to complete
nursing services based on their personal habits. For example, in A’ and B’, when performing
“S1: Sweeping the floor,” the volunteers are instructed to hold the broom with both hands
and sweep the floor from right to left. In subsequent experiments, we demonstrated that
using A’ and B’ for nursing behavior recognition presents higher accuracy.

Table 2. Variable descriptions.

Device Name Variable Name

Hitoe acceleration(h_acc_x, h_acc_y, h_acc_z)

TicWatch_1

acceleration(t1_acc_x, t1_acc_y, t1_acc_z)

gravity(t1_grty_x, t1_grty_y, t1_grty_z)
gyroscope(t1_gyscp_x, t1_gyscp_y, t1_gyscp_z)
linear acceleration(t1_linr_acc_x, t1_linr_acc_y, t1_linr_acc_z)

TicWatch_2

acceleration(t2_acc_x, t2_acc_y, t2_acc_z)
gravity(t2_grty_x, t2_grty_y, t2_grty_z)
gyroscope(t2_gyscp_x, t2_gyscp_y, t2_gyscp_z)
linear acceleration(t2_linr_acc_x, t2_linr_acc_y, t2_linr_acc_z)

3.3. Recognition Solution

The CAR solution, as shown in Figure 3, is a comprehensive approach developed based
on extensive research into state-of-the-art Human Activity Recognition (HAR) methods.
It consists of five main components, each contributing to the effective recognition of
caregivers’ activities.

(1) Component I: Data Preprocessing

This component is responsible for converting unstructured raw data into structured
data. It involves a data preprocessing process that organizes and formats the data in a
manner suitable for subsequent analysis.

(2) Component II: Feature Processing

In this component, the features extracted from the preprocessed data are further
processed. This involves analyzing the importance of each feature and reducing the
dimensionality of the feature space. Through these tasks, the component ensures that only
relevant and significant features are considered for subsequent steps.

(3) Component III: Classification

The classifiers include XGBoost, Support Vector Machine (SVM), and Random Forest.
The collected data is then divided into two sets: training and testing datasets. The training
data is used to learn patterns related to caregivers’ activities and build classification models.
Conversely, the testing data is employed to assess the performance of the constructed models.

(4) Component IV: Parameter tuning

This component is of utmost importance in optimizing the performance of classifica-
tion models. It utilizes techniques to fine-tune the model’s parameters, thereby enhancing
its ability to accurately recognize and classify caregivers’ activities.



Mathematics 2024, 12, 1700 6 of 15

(5) Component V: Performance Evaluation

Various evaluation measures such as precision, recall, f1_score, and accuracy are
employed to assess the performance of three specific models used in this study: the
XGBoost model, the SVM model, and the Random Forest model. These measures provide
insights into the effectiveness and reliability of the CAR solution.
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3.4. Feature Importance Analysis

Sample data were collected, and each sample has a corresponding label (S1, S2, . . .,
S9) indicating the nursing activity performed by the caregiver during data collection.
Each sample includes data from three wearable devices, namely Hitoe, TicWatch_1, and
TicWatch_2, which capture x-y-z axis sensor data. As shown in Table 2, the preprocessed
dataset consists of 27 features.

Feature importance analysis is not used for feature reduction. The XGBoost model in
Python provides a method for feature importance analysis, which can help us analyze the
importance score of each feature and demonstrate which features contribute more to the
model prediction. This provides a reference for subsequent research on feature selection.
The method of feature dimensionality reduction in this article is Principal Component Anal-
ysis (PCA), and the basis for dimensionality reduction in PCA is interpretable variance [32].
The subsequent prediction research in this article will use the PCA dimensionality-reduced
dataset as the training and testing sets.

As depicted in Figure 4, it is evident that the importance of the six feature values
(t1_gyscp_x, t1_gyscp_y, t1_gyscp_z, t2_gyscp_x, t2_gyscp_y, t2_gyscp_z) in the feature
set is relatively low. This implies that this specific type of data may have limited utility for
nursing behavior recognition. Consequently, it could be considered to reduce the collection
of this type of data in future data-gathering processes.

Moreover, notable disparities in feature importance can be observed between “t1” and
“t2” for acceleration, linear acceleration, and gravity data types. This indicates that there
are distinctions in the same data types collected from the caregiver’s left and right hands.
Such differences could arise from variations in the division of labor or behavior between
the left and right hands during nursing activities. The dominance of right-handedness in
the majority of individuals in real-life situations results in enhanced performance during
the execution of nine nursing behaviors, such as sweeping the floor, feeding, wiping a
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window, wiping a desk, etc. This is attributed to increased effort exerted by the right
hand, expanded range of motion, and potential alterations in speed. Consequently, these
distinctive characteristics enable differentiation between this particular nursing behavior
and others. Thus, when collecting data from both hands, it is advisable to gather diverse
types of data to attain improved recognition outcomes.
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Similarly, there are substantial variations in the importance of features across the three
axes, even for the same data type and the same hand. For instance, among the acceleration
data (t1_acc_x, t1_acc_y, and t1_acc_z), on the same hand, the importance of the t1_acc_y
feature is significantly lower compared to the other two features.

4. Materials and Methods
4.1. Introduction to XGBoost

XGBoost stands for “Extreme Gradient Boosting”, which is a high-precision integrated
learning model based on Gradient Boosting Decision Tree (GBDT), whose essence lies in
integrating multiple weak classifiers into a single strong classifier to improve the accuracy.
In the context of regression prediction, each tree of XGBoost learns the residuals (negative
gradients) of the sum of all previous tree results. By iteratively accumulating residuals with
prior predictions, XGBoost continually approaches the actual values.

The XGBoost algorithm is an improved version of the GBDT algorithm and serves as
an implementation of the gradient-down algorithm. The XGBoost model contains K CART
trees, with its output being the sum of these K trees. The cumulative value serves as the
predicted value of the XGBoost model and can be expressed mathematically as follows:

ŷ =
K

∑
k=1

fk(xi) (1)

where K is the number of CART trees, fk denotes a specific CART tree, ŷ is the output of the
XGBoost model. For a given sample length of n and the number of features of m, we have

D = {(xi, yi)}(|D| = n, xi ∈ Rm, y ∈ R) (2)
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where xi denotes the i-th sample input; yi denotes the output corresponding to the i-th
sample input, F represents the space of CART trees, which can be expressed as

F =
{(

f (x) = wq(x)
)}(

q : Rm → T, w ∈ RT
)

(3)

where q represents the structure of the CART tree, T is the number of child nodes of the
CART tree, w is the weight of the child nodes, and f (x) is the structure of the CART tree.
The XGBoost model essentially constructs the CART tree through feature extraction to
determine the structure and weight of the tree. Bringing the regularisation term into the
objective function, we have

Obj = ∑
i

loss(ŷi, yi) + ∑
k

Ω( fk) (4)

Ω( f ) = γT +
1
2

λ∥w∥2 (5)

where ŷi and yi represent the predicted and actual labeled values of the i-th sample,
respectively. γ and λ are the weight coefficients. The Obj is the objective function, where
the first half represents the loss error, typically measured using mean square error and
logistic regression. The second half corresponds to the regularization term, commonly
employed to limit the depth of the CART tree and reduce its complexity. By constraining
the tree’s depth, it aims to prevent overfitting and improve generalization capabilities.

In summary, XGBoost offers the following advantages in performing regression prediction:
Improved Accuracy: By employing serial integration of decision tree models, XGBoost

enhances the accuracy of output predictions. It exhibits a strong learning ability.
Model Complexity Control: XGBoost effectively manages the complexity of the model

via regularization techniques. This helps to prevent overfitting and enhances the model’s
generalization ability.

Enhanced Optimization: XGBoost expands the model by utilizing a second-order
Taylor expansion of the loss function. This approach accelerates the optimization process,
leading to faster and more efficient computations.

4.2. XGBoost Model Tuning

To optimize the XGBoost model, several hyperparameters need to be tuned. Out
of all the options available, four hyperparameters stand out as the most important and
frequently utilized:

The learning rate, denoted by η, is a hyperparameter that scales the contribution of
each tree added to the model. It helps in maintaining the stability and adaptability of
the model. A lower value of η (0 < η < 1) makes the model more conservative towards
overfitting but also leads to slower computation.

The minimum loss threshold, denoted by θ, is a hyperparameter that determines
whether features should be split or not based on the Information Gain of the weak learner. If
the Information Gain exceeds θ, the features are divided; otherwise, they are not. Increasing
the value of θ makes the algorithm more conservative in its splitting decisions.

The maximum depth, denoted by m, represents the level of complexity in constructing
the tree structure model. A higher value of m allows the model to capture more intricate
patterns and relationships in the data, potentially leading to overfitting. On the other hand,
a lower value of m constrains the tree’s depth, making the model simpler and less prone
to overfitting.

The number of weak learners, denoted by n, influences the learning ability of the
model. Increasing the value of n enhances the model’s capacity to learn complex patterns
and relationships in the data. However, it also increases the risk of overfitting, where the
model becomes too specialized for the training data. Finding the right balance for the value
of n is crucial to ensure optimal prediction performance and accuracy of the model.
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To enhance the prediction accuracy of the model while taking into account computa-
tional costs, this study proposes adjusting the four crucial hyperparameters (η,θ,m,n) that
significantly impact the prediction performance of the XGBoost model using the Cuckoo
Search algorithm.

4.3. Cuckoo Search-XGBoost Model
4.3.1. Cuckoo Search Algorithm (CS)

Grid search is one of the effective methods for determining optimal hyperparameters.
However, as the number of hyperparameter dimensions increases, the computational cost
of grid search grows exponentially. To mitigate this high computational burden, simulation
algorithms like the Cuckoo Search have emerged for optimizing black-box functions.

In the Cuckoo Search algorithm, the process imitates the behavior of cuckoos searching
for nests, with nests and eggs symbolizing potential solutions. The algorithm adheres to
three fundamental rules:

(1) Each cuckoo can only lay one egg at a time and selects a nest randomly to place it in.
(2) A subset of nests is randomly chosen, and the best parasitic nests are retained for the

next generation.
(3) The number of nests remains constant, and the host cuckoo’s probability of finding a

cuckoo’s egg is determined by Pa. If a host finds an egg, it can either destroy the egg
or continue searching for a new nest.

Cuckoo Search employs global random wandering through Levy flight to update the
global optimal solution. This combination of cuckoo searching and Levy flight facilitates
efficient exploration of the hyperparameter space, leading to the discovery of optimal
solutions while minimizing computational costs.

ψi
l+1 = ψi

l + α
⊗

s (6)

where α represents the scaling factor for the step length, and in this case, α is set to 1.
s = u

|v|1/ω ∼ le′vy(ω), u ∼ N
(
0, σ2

l
)
, v ∼ N(0, 1), ω = 1.5.

4.3.2. CS-XGBoost Model

The effectiveness of the XGBoost model is heavily influenced by the values of its
parameters. To construct the CS-XGBoost model and optimize the XGBoost parameters
using cuckoo search, the following steps are followed:

Step 1: Determine the corresponding parameters for the cuckoo search, including the
maximum number of iterations (L), the probability of nest discovery by a bird (Pa), and the
initial solution ψ0 = (η,θ,m,n).

Step 2: Initialize the parameters ψ1, ψ2, . . ., ψd and define the objective function φ(ψi)
as the loss function value of the test set, where i ranges from 1 to d. Here, d represents the
number of solutions.

Step 3: Randomly select a solution ψi from the available d solutions. Calculate the
objective function φ(ψi), and use Equation (6) to update it, resulting in the new position
of the cuckoo’s nest. Calculate the objective function φ

(
ψj
)

for this new solution ψj. If
φ(ψi)>φ

(
ψj
)
, then replace ψi with ψj.

Step 4: Iterate φ(.), i = 1,2, . . ., d to find the optimal parameter solution ψ
opt
l , keep ψ

opt
l

until the next iteration, and with probability Pa to discard other non-optimal parameter
solutions and find a new solution by Levy flights.

Step 5: The iteration process is terminated, and the final optimal parameter solution
ψ

opt
d is obtained. This optimal solution is then substituted into the XGBoost model.
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5. Results
5.1. Control Group Experiment of the SVM Model, RandomForest Model, and XGBoost Model

Support Vector Machine (SVM) is a supervised learning algorithm that was first
introduced in 1964 [33]. It is based on the principle of structural risk minimization and
is known for its strong generalization ability. SVM finds applications in various fields,
including image recognition, audio and video recognition, text recognition, and more.
Random Forest is a widely used machine learning model for classification problems. It
was introduced by Leo Breiman in 2001 and combines bagging ensemble learning with the
random subspace method [34].

The dataset (composed of mixed A, B, A’, and B’) was divided into ten parts using
ten-fold cross-validation. Nine parts were used as training data, while one part served
as test data for each experiment. Table 3 displays a comparison of evaluation metrics
among the three models. The SVM model and RandomForest model have also been
optimized using corresponding Python models to traverse some parameters. The CS-
XGBoost model demonstrates superior performance compared to the XGBoost model with
default parameters, followed by the SVM model and the RandomForest model. Among
the four models, the CS-XGBoost model attains the highest values for all four evaluation
metrics, indicating its effectiveness in classifying nursing behavior.

Table 3. Comparison of the performance of the SVM model, RandomForest model, and XG-
Boost model.

Accuracy Precision Recall F1 Score ψ = ( η,θ,m,n)

SVM 0.8978 0.8907 0.8796 0.8851 ——
RandomForest 0.9013 0.8991 0.9015 0.9002 ——

XGBoost 0.9179 0.9021 0.9196 0.9107 (0,0.3,6,2000)
CS-XGBoost 0.9438 0.9511 0.9502 0.9506 (0.05,0.1,4,2000)

5.2. Three Groups of Experiments Based on CS-XGBoost

The nursing care activity data in this paper come from two groups of volunteers,
which were collected when carrying out elderly nursing care services with (A’ and B’) and
without (A and B) constraints, respectively. The following three groups of experiments
are designed:

(1) Experiment 1: Data from a group of volunteers under constraints are used as
training samples for parameter learning of the recognition model, and data from the other
group of volunteers under constraints are used as training data, that is, to carry out the
experiments Train (A’) → Test (B’) and Train (B’) → Test (A’), and the confusion matrix is
shown in Table 4.

Table 4. Confusion matrix for the classification results of the experimental Train (B’) → Test (A’)
classification results.

Service S1 S2 S3 S4 S5 S6 S7 S8 S9 Recall

S1 145 0 0 0 0 0 0 0 8 0.9477

S2 0 90 0 0 3 0 0 0 0 0.9677

S3 0 0 150 0 5 0 0 0 0 0.9677

S4 0 0 0 94 0 0 0 0 0 1

S5 0 5 0 0 147 0 0 0 0 0.9671

S6 0 0 0 0 2 151 0 0 0 0.9869

S7 0 0 0 0 2 0 151 0 0 0.9869

S8 0 0 0 5 1 0 0 87 0 0.9355
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Table 4. Cont.

Service S1 S2 S3 S4 S5 S6 S7 S8 S9 Recall

S9 0 1 0 0 0 0 0 0 93 0.9894

precision 1 0.9375 1 0.9495 0.9187 1 1 1 0.9208

f1_score 0.9731 0.9524 0.9836 0.9741 0.9423 0.9934 0.9934 0.9667 0.9538

It can be seen from the confusion matrix in Table 4 that the overall recognition perfor-
mance result is relatively good, the highest values of the three evaluation indicators reach
1. However, there are certain differences in the models for the different volunteer groups
completing nursing care activities under constraints as shown in Table 5, mainly due to
some relatively complex nursing care activities.

Table 5. Recognition accuracies of different experimental datasets in Experiment 1.

Train Test S1 S2 S3 S4 S5 S6 S7 S8 S9

B’ A’ 1 0.9375 1 0.9495 0.9187 1 1 1 0.9208

A’ B’ 0.9441 1 1 1 0.5200 0.9932 0.9869 0.9808 0.9737

Different volunteers have different understandings and executions of action points and
norms, which leads to a certain difference in the recognition results of the model. Therefore,
to better recognize nursing care activities based on wearable devices, it is necessary to give
further detailed and clear instructions on the action standards and behavior specifications
of these nursing care activities so that volunteers can regulate them more uniformly when
completing these nursing care activities.

(2) Experiment 2: Apart from the constrained or unconstrained data of one group used
as testing data, the rest of the data are all used as training data. The purpose is to verify the
recognition performance of the CAR model for unknown action patterns that are close to
the real situation.

From the confusion matrix given in Table 6, it can be seen that the recognition pre-
cisions, f1-scores, and recall values for the CAR model in Experiment 2 decrease greatly
compared to those in Experiment 1. The challenge is that the training model lacks relevant
information about the unconstrained nursing care activities in the testing data, and the
volunteers perform unconstrained nursing care activities that usually have large differences
in the amounts and complexities of actions.

Table 6. Confusion matrix of the experimental Train (A’, B’, A) → Test (B) classification results.

Service S1 S2 S3 S4 S5 S6 S7 S8 S9 Recall

S1 88 0 0 0 55 0 5 0 0 0.5946

S2 0 78 0 0 2 0 0 2 2 0.9286

S3 0 0 140 1 2 0 0 4 0 0.9524

S4 0 1 0 78 0 3 0 4 0 0.9070

S5 15 0 0 0 120 8 4 0 3 0.8000

S6 3 1 0 7 4 20 1 5 1 0.4762

S7 30 0 0 0 22 6 81 1 9 0.5436

S8 0 0 4 17 0 0 0 64 0 0.7529

S9 0 0 0 0 0 0 0 0 0 0

precision 0.6471 0.9750 0.9722 0.7573 0.5854 0.5405 0.8901 0.8000 0

f1_score 0.6197 0.9512 0.9622 0.8254 0.6761 0.5063 0.6750 0.7758 0
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The results in Table 7 show that although the constrained datasets A’ and B’ are
not used in the model training phase, the accuracies of their recognition are relatively
good at 0.9488 and 0.9166, respectively, because after explaining the key points and norms
of nursing action to the nursing staff, the differences in action patterns among different
volunteers are relatively small. However, during the model training phase, unconstrained
datasets A and B are not used. Then, the unconstrained data are recognized, and the
accuracies of A and B (0.8012 and 0.7821, respectively) are significantly lower than the
recognition accuracies of A’ and B’ because there are no instructions on the action standards
and behavior specifications of these nursing care activities given to the volunteers in the
latter datasets, and which leads to significant differences in movement patterns between
the different volunteers.

Table 7. Recognition accuracies of different experimental datasets in Experiment 2.

Data

Testing

Test (A’) Test (B’) Test (A) Test (B)
Precision

Training Data

train(B’ A B) 0.9488

train(A’ A B) 0.9166

train(A’ B’ B) 0.8012

train(A’ B’ A) 0.7821

(3) Experiment 3: As an extension of Experiment 2, this experiment uses mixed data
(constrained data and unconstrained data) of two groups for training and constrained data
or unconstrained data of one group for testing, and the results are shown in Tables 8 and 9.
Unlike Experiment 2, this experiment verifies whether there are other unconstrained data
which can help improve the classification accuracy.

Table 8. Confusion matrix of the experimental Train (A’, B’, ATr, B) → Test (ATs) classification results
(where ATr + ATs = A).

Service S1 S2 S3 S4 S5 S6 S7 S8 S9 Recall

S1 138 0 0 0 8 3 2 0 0 0.9139

S2 0 90 0 1 0 0 0 0 0 0.9890

S3 0 0 143 0 7 0 0 1 0 0.9470

S4 0 0 0 89 0 0 1 1 0 0.9780

S5 2 0 0 0 145 1 5 0 0 0.9477

S6 1 0 2 0 9 122 9 4 5 0.8026

S7 1 0 0 0 10 3 128 0 1 0.8951

S8 0 0 0 0 1 2 0 87 0 0.9667

S9 1 0 0 0 4 0 11 0 83 0.8384

precision 1 0.9802 1 0.9901 0.9752 0.9576 0.9728 1 0.9691

f1_score 1 0.9851 0.9969 0.9950 0.9782 0.9723 0.9630 0.9944 0.9543
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Table 9. Recognition accuracies of different experimental datasets in Experiment 3.

Data

Testing

Test (ATs) Test (BTs) Test (A’Ts) Test (B’Ts)
Precision

Training Data

train(ATr B A’ B’) 0.9898

train(A BTr A’ B’) 0.9973

train(A B A’Tr B’) 0.9202

train(A B A’ B’Tr) 0.9419

The experimental results show that using both constrained data and unconstrained
data from nursing care activities for model training results in a general model with a better
recognition performance. Both the constrained nursing care activity data and unconstrained
nursing care activity data for identifying the nursing staff’s future nursing care activities
yield high recognition precision.

6. Conclusions and Discussion

Taking into account the application requirements of elderly nursing care service
management, this paper first proposes the research of elderly CAR based on sensor data on
wearable devices. Currently, the nine selected nursing care activities are distinct from one
another and easy to recognize. However, in real-world elderly nursing care scenarios, some
actions may not be feasible to recognize technically. On the one hand, there are relatively
small and rapid actions, such as reminding, encouraging, or admonishing the elderly in
specific scenarios, and on the other hand, some are easily confused by nursing behaviors,
such as checking the physical condition of the elderly. There is no unified pattern for such
behaviors. These issues may be solved by increasing the variety and number of wearable
devices, which can result in greater differentiation and more accurate classification of
behaviors. From the perspective of home care, these behaviors are equally important.

In addition, the nine behaviors classified in this study all require actual execution,
which means that they do not include the behaviors of nursing staff resting and staying still.
If we consider these relatively static behaviors of nursing staff, it may lead to misclassifying
some behaviors that need to be actually executed as static behaviors, and vice versa.
Therefore, considering relatively static rest behaviors for identifying and monitoring home-
based elderly nursing care behaviors will also be an important aspect of future research.

The characteristics of the XGBoost model in machine learning algorithms, with more
accurate recognition and faster computing time, have also been fully demonstrated in the
field of behavior recognition. The experiments show that the CS-XGBoost model has better
recognition performance than the XGBoost model with the default parameters, SVM, and
RandomForest models.

Based on the experimental results based on the CS-XGBoost model, we obtained our
observations of the applicability of the algorithms to actual elderly nursing care service
management and summarized our suggestions on how to further validate management
feasibility by collecting more data from home staff. To improve the accuracy of nursing care
activities recognition in practical applications, adjustments can be made from the following
three aspects: (1) try to use actual nursing care data from real-world nursing care activities
as training data to model the classifiers; (2) standardize nursing care activities to make them
uniform since uniform action patterns can be easily recognized; (3) try to collect elderly
nursing care data from several different nursing staff and use the data for modeling, which
helps to create more general classifiers and avoids overfitting.
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