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Abstract: Testing multivariate normality in high-dimensional data analysis has been a long-lasting
topic in the area of goodness of fit. Numerous methods for this purpose can be found in the literature.
Reviews on different methods given by influential researchers show that new methods keep emerging
in the literature from different perspectives. The theory of statistical representative points provides
a new perspective to construct tests for multivariate normality. To avoid the difficulty and huge
computational load in finding the statistical representative points from a high-dimensional probability
distribution, we develop an approach to constructing a test for high-dimensional normal distribution
based on the representative points of the simple univariate beta distribution. The representative-
points-based approach is extended to the the case that the sample size may be smaller than the
dimension. A Monte Carlo study shows that the new test is able to control type I error rates fairly
well for both large and small sample sizes when faced with a high dimension. The power of the new
test against some non-normal distributions is generally or substantially improved for a set of selected
alternative distributions. A real-data example is given for a simple application illustration.

Keywords: affine invariance; beta distribution; chi-square test; multivariate normality; representative
points

MSC: 62H15; 62E10

1. Introduction

Methodologies for testing multivariate normality (MVN for short) have been stud-
ied for more than half a century. Ebner and Henze (2020) [1] gave the most up-to-date
review on tests for MVN with the emphasis on L2 distance. There are rich resources on
methodologies for testing MVN. These methodologies were reviewed and commented
on in different periods with different emphases; for example, Mardia (1980) focused on
MVN tests constructed from the sample Mahalanobis distances (M distance for short, [2]);
Horswell and Looney (1992) [3] focused on power comparison among the MVN tests based
on measures of multivariate skewness and kurtosis; Remeu and Ozturk (1993) [4] carried
out a comprehensive power comparison among various types of tests for MVN and gave a
general recommendation; Henze (2002) [2] focused on a critical review on invariant MVN
tests; and Mecklin and Mundfrom (2004) [5] gave a review on general MVN tests. These
review articles show the fact that tests for MVN can be constructed from various angles,
and each angle may provide a unique way to identify a possible source of departure from
MVN. Therefore, new methods for testing MVN keep emerging, and statisticians never stop
making efforts to develop new MVN tests. The theory on statistical representative points
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(simply called RP) or principal points ([6,7]) provides a new angle to develop goodness-of-
fit tests that includes MVN tests as a special case. Based on our effort to bridge the RP theory
and MVN tests ([8,9]), we want to develop another RP-based MVN test using the simple
univariate beta distribution. The new RP-based MVN test is easy to carry out by using the
publicly accessible website https://www.acsu.buffalo.edu/cxma/UIC/Representative.htm
(accessed on 26 May 2024) to obtain the RPs from any beta distribution. It is applicable for
both large and small sample sizes after some dimension reduction.

A test for MVN is usually expected to have the property of affine invariance because
the multivariate normal distribution family is affine invariant. It is generally known that
an affine-invariant test for MVN keeps its null distribution unchanged under the affine
transformation of an observed sample ([2]). As a result, the null distribution of an affine
invariant test for MVN does not depend on the unknown mean µ and covariance matrix Σ

in the multivariate normal distribution Nd(µ, Σ). A good example of an affine invariant
statistic is the sample Mahalanobis distance. We will focus on the sample M-distance
approach to constructing MVN tests in this paper.

Let {x1, . . . , xn} be a set of i.i.d. (independently identically distributed) samples from
a d-dimensional continuous distribution. We want to test the hypothesis

H0 : {x1, . . . , xn} comes from some d-dimensional normal distribution Nd(µ, Σ) (1)

against the general alternative H1 that implies that the null hypothesis is not true.
A statistic Tn(x1, . . . , xn) is said to be affine invariant if it satisfies

Tn(Ax1 + b, . . . , Axn + b) = Tn(x1, . . . , xn) (2)

for any b ∈ Rd (the d-dimensional Euclidean space) and non-singular matrix A ∈ Rd×d.
Denote the sample mean and the sample covariance matrix by

x =
1
n

n

∑
j=1

xi and Sn =
1
n

n

∑
j=1

(
xj − x

)(
xj − x

)′, (3)

respectively. The sample M distance between an observation xi and the sample mean x is
defined by

r2
i = (xi − x)′S−1

n (xi − x), i = 1, . . . , n > d. (4)

It is easy to verify that {r2
i : i = 1, . . . , n} are affine invariant under the linear transforma-

tion (2).
Many existing tests for MVN are related to the idea of the sample M distance. An

early comprehensive Monte Carlo comparison among different tests for MVN was given
by Romeu and Ozturk [4]. Their results show that the Mardia’s [10,11] multivariate
skewness and kurtosis, which are also based on the sample M distance, are generally
recommended because of their competitive power performance against a wide range of
alternative distributions. The sample M distance can be considered a dimension reduction
approach to characterizing high-dimensional data. The relationship between any two
high-dimensional observations is measured by their M distance. For example, Small [12]
applied the sample M distance between any high-dimensional observation and the sample
mean, which has approximately chi-square distribution under MVN, to the construction of
a chi-square plotting method for detecting non-MVN; and Ahn [13] applied the so-called
Jack-Knife sample M distance, which has approximately F-distribution under MVN, to
the construction of an F-plotting method for detecting non-MVN. In this paper, we will
develop a beta-distributed sample M-distance approach to testing MVN. We will employ
the statistical representative points of the beta distribution to construct a chi-square-type
test for MVN. Section 2 will introduce the beta sample M distance and its distribution under
MVN. The test for MVN is transformed into a necessary test for a beta distribution by the
traditional chi-square approach. A simple Monte study is given in Section 3 to illustrate the
performance of the RP chi-square statistics for both relatively large and small sample sizes.

https://www.acsu.buffalo.edu/cxma/UIC/Representative.htm
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Section 3 also presents a simple application of the RP chi-square approach to a real-data
example. Some concluding remarks are given in the last section.

2. The MVN Test Based on Beta-Representative Points
2.1. The Beta M Distance

Suppose that we want to test hypothesis (1) based on an i.i.d. d-dimensional sample
{x1, . . . , xn}. The following theorem provides the basis for constructing the RP chi-square
test for the hypothesis (1) with a large sample size (n > d, d = data dimension).

Theorem 1. Under hypothesis (1), we have the following two conclusions:

1. The adjusted M distance has an exact beta distribution up to a constant:

d2
i =

n
(n − 1)2 r2

i ∼ β

(
d
2

,
n − 1 − d

2

)
; (5)

2.
{

d2
i : i = 1, . . . , n

}
are asymptotically independent.

Proof of Theorem 1. The exact beta distribution β
(

d
2 , n−1−d

2

)
for each d2

i in Equation (5)

can be derived from Wilks [14] (p. 562). The asymptotic independence of
{

d2
i : i = 1, . . . , n

}
holds as a result of the fact that x → µ and Sn → Σ(n → ∞) almost surely. Therefore, for
a large sample size n, d2

i is approximately a function of xi, µ and Σ. The independence of
the sample {x1, . . . , xn} results in the independence of

{
d2

i : i = 1, . . . , n
}

. This completes
the proof.

2.2. The RP Chi-Square Test with a Large Sample Size

Instead of testing hypothesis (1) directly, we can turn to test hypothesis

H0 :
{

d2
i : i = 1, . . . , n

}
in Equation (5) is a sample from β

(
d
2

,
n − 1 − d

2

)
(6)

against the alternative that H0 is not true. Equation (6) is a general non-normal goodness-
of-fit problem. It is generally carried out by the classical Pearson chi-square test by using
the so-called equiprobable classification intervals for computing the Pearson statistic. The
idea of equiprobable classification may not be the best option for non-uniform distributions.
To improve the performance of the classical chi-square test, the idea of representative
points (Fang and He [6]) (or principal points, Flurry [7]) can be employed to determine the
classification cells for computing the chi-square statistic.

The beta-representative points are a set of points {0 < B1 < . . . < Bm < 1} (for a
selected number of points m) that minimize the quadratic loss function:

ϕ(x1, . . . , xm) =
∫ 1

0
min

1≤i≤m

{
(xi − x)2

}
fb

(
x;

d
2

,
n − 1 − d

2

)
dx (7)

where fb

(
x; d

2 , n−1−d
2

)
stands for the density function of the beta distribution with parame-

ters
(

d
2 , n−1−d

2

)
,

ϕ(B1, . . . , Bm) = min
1≤i≤m

{ϕ(x1, . . . , xm) : 0 < x1 < . . . < xm < 1}.

The RPs {B1, . . . , Bm} for the general beta distribution can be obtained from running the beta
distribution in the website: https://www.acsu.buffalo.edu/cxma/UIC/Representative.
htm (accessed on 26 May 2024).

https://www.acsu.buffalo.edu/cxma/UIC/Representative.htm
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Define the following intervals

I1 =

(
0,

B1 + B2

2

)
, I2 =

[
B1 + B2

2
,

B2 + B3

2

)
, . . . ,

Im−1 =

[
Bm−2 + Bm−1

2
,

Bm−1 + Bm

2

)
, Im =

[
Bm−1 + Bm

2
, 1
) (8)

and the probabilities

pi =
∫

Ii

fb

(
x;

d
2

,
n − 1 − d

2

)
dx, i = 1, . . . , m. (9)

According to Fang and He [6], {p1, . . . , pm} can be considered a set of “representative
probabilities” for the beta distribution β

(
d
2 , n−1−d

2

)
.

Based on Theorem 1, a test for hypothesis (1) can be approximately (under large
sample size n) transferred to a test for hypothesis (6). The χ2-statistic for testing hypothesis
(6) is computed by:

χ2
R =

m

∑
i=1

(ni − npi)
2

npi
, (10)

where ni is the frequency of the transformed approximately i.i.d. sample points{
d2

i : i = 1, . . . , n
}

computed by Equation (5) that are located in the interval Ii in
Equation (8). It is known that χ2

R → χ2(m − 1) (n → ∞) in distribution. The p value
for testing hypothesis (6) is computed by

P
(

χ2
R, v

)
= K

∫ ∞

χ2
R

z
v
2 −1 exp

(
− z

2

)
dz, with v = m − 1, K =

[
2

v
2 Γ

(v
2

)]−1
.

2.3. The RP Chi-Square Test with High Dimension and a Small Sample Size

The RP chi-square test for hypothesis Equation (6) in Section 2.2 requires the sample
size n to be greater than the dimension d (n > d). When facing high dimension with a
small sample size (n ≤ d), the RP chi-square test for hypothesis Equation (6) is no longer
applicable. The dimension reduction is based on the idea of principal component analysis
(PCA) by Liang et al. [15]. Suppose that we have an i.i.d. sample {x1, . . . , xn} and want
to test hypothesis (1). Assuming hypothesis (1) is true, we carry out the transformation
in [15]:

yi =
x1 + · · ·+ xi − ixi+1√

i(i + 1)
, i = 1, . . . , n − 1, (11)

{y1, . . . , yn−1} is an i.i.d. sample from Nd(0, Σ). Testing hypothesis (1) can be transferred
to testing hypothesis

H0 : {y1, . . . , yn−1}is a sample from Nd(0, Σ) (12)

against general non-normal alternatives. Let

X = (x1, . . . , xn)
′ : n × d, Y = (y1, . . . , yn−1)

′ : (n − 1)× d. (13)

Define the eigenvalue-eigenvector problem

1
n − 1

Y ′YV = VΛ, (14)

where V = (v1, . . . , vd) (d × d) consists of the eigenvectors, and Λ = diag(λ1, . . . , λp) is a
diagonal matrix consisting of the eigenvalues. Let
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Zq = YV q, (n − 1)× q, Vq = (v1, . . . , vq), (p × q) (15)

where q = 1, . . . , min(n − 1, d)− 1 is called the projection dimension. Zq consists of the
projected data on a lower-dimensional sample space with dimension q < min(n − 1, d).
Define

γ2
j = (zj − z̄)′S−1

z (zj − z̄), e2
j =

n − 1
(n − 2)2 γ2

j ,

z̄ =
1

n − 1

n−1

∑
j=1

zj, Sz =
1

n − 1

n−1

∑
j=1

(zj − z̄)(zj − z̄)′.
(16)

Following Theorem 1, we have the following.

Theorem 2. Under hypothesis (1) and the Equations (11)–(16), the following two assertions
are true:

1. The adjusted M distance has an exact beta distribution up to a constant:

e2
j =

n − 1
(n − 2)2 γ2

j ∼ β

(
q
2

,
n − 2 − q

2

)
, q = 1, . . . , r = min(n − 1, d)− 1; (17)

2.
{

e2
j : j = 1, . . . , n − 1

}
are asymptotically independent.

Proof of Theorem 2. According to Corollaries 2.1–2.2 in [15] and the affine invariance of
the γ2

j (j = 1, . . . , n − 1) in (16), the null distribution of γ2
j remains unchanged when

transforming the original observation matrix X into the observation matrix Y through
Equations (11)–(13) and then projecting Y onto Zq through Equation (15) for any
q = 1, . . . , min(n − 1, d)− 1. The proof can be completed by applying Theorem 1 with
sample size n to the case here with sample size n − 1.

Similar to the case of n > d in Section 2.2, instead of testing hypothesis (1) directly, we
can turn to test hypothesis

H0 :
{

e2
j : i = 1, . . . , n − 1

}
in Equation (16) is a sample from β

(
q
2

,
n − 2 − q

2

)
(18)

against the alternative that H0 is not true, where q is any given value from
q = 1, . . . , min(n − 1, d) − 1. The χ2

R statistic defined by Equation (10) (where n is re-
placed with n − 1 in Equations (9) and (10)) can be applied to testing this hypothesis, and
its asymptotic null distribution maintains unchanged. Theoretically, each of the projection
dimensions q = 1, . . . , r = min(n − 1, d)− 1 can be used to construct the χ2-test for (18).
Based on the Monte Carlo study in [15], the choice of q in the range of [r/3] ≤ q ≤ [r/2] has
better empirical power performance, where [·] stands for the integer part of a real number
(e.g., [2.5] = 2, [3.2] = 2). We will choose q = [r/3] and q = [r/2] in the following Monte
Carlo study for the case of n ≤ d.

3. A Monte Carlo Study and an Illustrative Example

In order to compare the χ2
R-test (10) under the “representative probabilities” {p1, . . . , pm}

in Equation (9) with the traditional chi-squared test, we choose the equiprobable cells for
computing the traditional chi-squared test. The chi-square statistic with equiprobable cells
was recommended by Voinov et al. [16]. For a selected number of representative points m,
define the interval endpoints:
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a1 satisfies P
(

χ2(m − 1) < a1

)
=

1
m

;

a2 satisfies P
(

a1 < χ2(m − 1) < a2

)
=

1
m

;

...

am−1 satisfies P
(

am−2 < χ2(m − 1) < am−1

)
=

1
m

;

am satisfies P
(

χ2(m − 1) > am

)
=

1
m

.

(19)

Denote the traditional chi-squared test based on the interval endpoints given by
Equation (11) by χ2

T , which is also an approximate χ2(m − 1).

3.1. Comparison between the Empirical Type I Error Rates

Because the chi-square test based on the transformed sample points
{

d2
i : i = 1, . . . , n

}
given by Equation (5) are affine invariant under any non-singular linear transformation
of the original i.i.d. sample {x1, . . . , xn}, we only need to generate samples from a d-
dimensional standard normal Nd(0, Id)(Id stands for the d × d identity matrix). The
simulation results under 10,000 replications for each case are summarized in Table 1 for the
significance level α = 0.05. Simulation results for α = 0.01 and α = 0.10 are also available
upon request. The results in Table 1 (n > d) and Table 2 (n ≤ d) demonstrate that the
empirical type I error rates are feasibly well controlled near the given significance level
α = 0.05.

Table 1. Empirical type I error rates (α = 0.05, n > d).

Sample
Size n RP m χ2 d = 3 d = 5 d = 10 d = 15 d = 20

n = 50 m = 10 χ2
P 0.0357 0.0319 0.0323 0.0322 0.0318

χ2
T 0.0298 0.0319 0.0309 0.0310 0.0307

m = 20 χ2
P 0.0734 0.0521 0.0469 0.0470 0.0420

χ2
T 0.0371 0.0335 0.0351 0.0324 0.0339

m = 30 χ2
R 0.0612 0.0633 0.0694 0.0608 0.0546

χ2
T 0.0322 0.0344 0.0338 0.0375 0.0336

n = 100 m = 10 χ2
R 0.0330 0.0329 0.0325 0.0336 0.0366

χ2
T 0.0291 0.0296 0.0346 0.0312 0.0323

m = 20 χ2
R 0.0506 0.0448 0.0426 0.0416 0.0404

χ2
T 0.0343 0.0337 0.0326 0.0340 0.0351

m = 30 χ2
R 0.0623 0.0690 0.0542 0.0515 0.0525

χ2
T 0.0400 0.0400 0.0395 0.0389 0.0350

n = 200 m = 10 χ2
R 0.0314 0.0342 0.0327 0.0317 0.0293

χ2
T 0.0312 0.0296 0.0305 0.0323 0.0320

m = 20 χ2
R 0.0414 0.0444 0.0401 0.0384 0.0407

χ2
T 0.0349 0.0345 0.0337 0.0359 0.0332

m = 30 χ2
R 0.0695 0.0548 0.0504 0.0470 0.0492

χ2
T 0.0390 0.0394 0.0362 0.0382 0.0394

n = 400 m = 10 χ2
R 0.0329 0.0277 0.0316 0.0321 0.0343

χ2
T 0.0325 0.0314 0.0333 0.0314 0.0302

m = 20 χ2
R 0.0418 0.0416 0.0367 0.0355 0.0371

χ2
T 0.0360 0.0355 0.0357 0.0352 0.0364

m = 30 χ2
R 0.0529 0.0465 0.0455 0.0452 0.0459

χ2
T 0.0372 0.0354 0.0389 0.0375 0.0381
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Table 2. Empirical type I error rates (α = 0.05, n ≤ d, r = min(n − 1, d)− 1).

(n, d) = (30, 30) (n, d) = (30, 50) (n, d) = (50, 50)

RP χ2 q = [r/3] q = [r/2] q = [r/3] q = [r/2] q = [r/3] q = [r/2]

m = 10 χ2
R 0.0544 0.0538 0.0472 0.0594 0.0412 0.0438

χ2
T 0.0294 0.0346 0.0250 0.0310 0.0350 0.0326

m = 15 χ2
R 0.0550 0.0706 0.0508 0.0702 0.0536 0.0566

χ2
T 0.0328 0.0370 0.0326 0.0380 0.0364 0.0372

m = 20 χ2
R 0.0742 0.0784 0.0706 0.0886 0.0610 0.0666

χ2
T 0.0362 0.0398 0.0370 0.0380 0.0388 0.0430

3.2. A Simple Power Comparison

In order for the power comparison to be representative, we select three symmetric
distributions and three skewed distributions as follows, where the definitions for the
multivariate t-distribution and the multivariate Cauchy distribution can be found in the
work of Fang, Kotz, and Ng [17].

1. The multivariate t-distribution has a density function of the form

ft(∥x∥) = C1

(
1 +

∥x∥2

m

)− d+m
2

, m > 0,

which is symmetric about the origin ft(∥x∥) ≡ ft(∥ − x∥), where “ ∥ · ∥ ” stands for
the Euclidean norm of a vector. Let m = 5.

2. The multivariate Cauchy distribution has a density function of the form:

fc(∥x∥) = C1

(
1 +

∥x∥2

m

)− d+1
2

,

which is symmetric about the origin, where C1 is a normalizing constant depending
on the dimension d.

3. The β-generalized normal distribution Nd(0, Id, 1/2) with β = 1/2 has a density
function of the form (by Goodman and Kotz [18]):

f (x1, . . . , xd) =
βdrd/β

2dΓd(1/β)
· exp

{
−r

d

∑
i=1

|xi|β
}

, (x1, . . . , xd)
′ ∈ Rd,

which is symmetric about the origin, where r > 0 is a parameter. Let r = 1/2 and
β = 1 in the simulation and denote it by β-g-normal.

4. The shifted i.i.d. χ2(1) has i.i.d. marginals, where each marginal has the same
distribution as that of the random variable Y = X − E(X), where X ∼ χ2(1), the
univariate chi-square distribution with 1 degree of freedom and E(X) = 1. This is a
skewed distribution.

5. The distribution N(0, 1) + χ2(2) consists of i.i.d. [d/2] normal N(0, 1) marginals and
d − [d/2] i.i.d. χ2(2) marginals. This is a skewed distribution.

6. The shifted i.i.d. exp(1) has i.i.d. marginals, where each marginal has the same
distribution as that of the random variable Y = X − E(X), where X ∼ exp(1), the
univariate exponential distribution. This is a skewed distribution.

For each of these alternative distributions, we choose the sample size n = 50, 70, . . . , 400.
We plot the power values versus the sample size n for both statistics χ2

R and χ2
T to obtain

a quick visual comparison. Figures 1–9 demonstrate the comparisons between the two
power curves for χ2

R (the blue one) and χ2
T (the red one) with dimensions ranging from

d = 5 to d = 20. The simulation is repeated 5000 times. It is observed that the RP chi-square
test outperforms the traditional chi-square significantly for all selected symmetric alterna-



Mathematics 2024, 12, 1711 8 of 16

tive non-normal distributions (like the multivariate t, the Cauchy, and the β-generalized
normal distribution) and asymmetric ones (like the chi-square and those with chi-square
and exponential as the marginal distributions). Figures 10 and 11 demonstrate the com-
parisons between the two projected chi-square tests χ2

R (the blue one) and χ2
T (the red

one) under the multivariate t distribution with df = 5 (Figure 10) and the shifted χ2(2)− 2
with i.i.d. marginals. Because both χ2

R and χ2
T for testing hypothesis (18) in Section 2

are affine invariant under the transformations (11)–(16) on the original x-sample in (11),
we only need to take the zero mean and identity covariance matrix for the simulated
samples. Figures 10 and 11 show that the projected RP-χ2

R substantially outperforms the
traditional χ2

T for both recommended projection dimensions q1 = [r/3] and q2 = [r/2] with
r = min(n − 1, d)− 1 under the significance level α = 0.05. The power improvement of the
projected RP-χ2

R over the projected traditional χ2
T is similar to the case demonstrated by

Figures 10 and 11 for other non-normal alternative distributions in Figures 1–9. We do not
present those similar cases to Figures 10 and 11 to save some space.

It is pointed out that the Pearson chi-square statistic has an asymptotic chi-square
distribution under any classification cell intervals. Its approximation speed to the chi-
square distribution is 1/

√
n under a given sample size n ([16]). We choose the sample size

n ranging from 50 to 400 in our Monte Carlo study to maintain fairly large sample sizes.
While one may choose a larger sample size than 400 or a smaller sample size than 50 in the
simulation, we just want to illustrate if our beta-RP-based MVN test is able to control the
type I error rate feasibly within some range of the sample size. The choice of equiprobable
classification cell intervals is motivated by the empirical study in [16] that shows some
good performance of this choice. It is feasible to believe that our beta-RP-based MVN test
will also show significant power improvement compared with the traditional chi-square
test under a set of arbitrarily chosen cell intervals based on the study in [16].
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Figure 1. Dimension d = 5.
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Figure 7. Dimension d = 20.
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Figure 10. Power comparison between two projected χ2 tests for multivariate normality (d = 30,
r = min(n − 1, d)− 1).

Figure 11. Power comparison between two projected χ2 tests for multivariate normality (d = 50,
r = min(n − 1, d)− 1).
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3.3. An Illustrative Example

Example 1 (see Example 6.3 of Fang and Wang [19] (pp. 258–262)). The data arose from the
problem of standardizing the size for men’s clothes in China in 1976, which involves the data of
12 measurements of the body (cm):

X1 : height from the waist up X2 : arm length
X3 : bust X4 : neck
X5 : shoulder length X6 : width of the front part of chest
X7 : width of the back part of chest X8 : height
X9 : height without head and neck X10 : height from the waist down
X11 : waist circumference X12 : buttocks

A sample of size n = 100 can be found in the work of Fang, Yuan, and Bentler [20].
Fang and Wang [19] implemented the classical skewness and kurtosis statistics and number-
theoretic methods to test the multinormality of some subsets of the 12 variables. At
α = 0.05 level of significance, they concluded that (1) (X1, X3, X8, X10, X12) has a multivari-
ate normal distribution; (2) (X1, X3, X8, X10), (X1, X8, X10, X12 and (X3, X8, X10, X12) have
a multivariate normal distribution; and (3) (X4, X5, X6, X11) and (X2, X4, X6, X11) have a
non-normal distribution.

The p values under different m (the number of representation points) from the two
chi-square tests, RP chi-square χ2

R in Equation (10) and the traditional chi-square χ2
T using

equiprobable intervals defined by the endpoints given by Equation (19), are summarized
in Table 3. The results in Table 3 show that both the RP chi-square χ2

R and the traditional
chi-square χ2

T give results consistent with those given by [19] on the multivariate normality
of the four sets of variables: (X1, X3, X8, X10, X12), (X1, X3, X8, X10), (X1, X8, X10, X12), and
(X3, X8, X10, X12), but both χ2

R and χ2
T fail to reject the possible non-normality of the two

sets of variables (X4, X5, X6, X11) and (X2, X4, X6, X11), while Fang and Wang [19] reject
the multivariate normality. This needs to be double checked by some other statistics for
testing MVN.

Table 3. p values from the two chi-squared tests for the body data.

Subsets χ2 m = 10 m = 20 m = 30

(X1, X3, X8, X10, X12) χ2
R 0.8498 0.8853 0.8027

χ2
T 0.8677 0.8487 0.5286

(X1, X3, X8, X10) χ2
R 0.9158 0.9016 0.8184

χ2
T 0.9558 0.7352 0.8518

(X1, X8, X10, X12) χ2
R 0.8034 0.8133 0.7007

χ2
T 0.9241 0.5493 0.4342

(X3, X8, X10, X12) χ2
R 0.5003 0.6428 0.8635

χ2
T 0.4012 0.5493 0.8518

(X4, X5, X6, X11) χ2
R 0.4355 0.1499 0.3865

χ2
T 0.4944 0.8678 0.6886

(X2, X4, X6, X11) χ2
R 0.6714 0.9141 0.7850

χ2
T 0.6371 0.7352 0.8733

4. Concluding Remarks

The theory of statistical representative points is a natural extension to the mean value
of a probability distribution. A comprehensive study on the RP theory can be found in
the work of Graf and Luschgy [21]. Application of the RP theory to testing multivariate
normality was first proposed by Liang, He, and Yang [8] by using the univariate Student’s
t-representative points, and by Wang et al. [9] using the univariate F-representative points.
The study in this paper is parallel to those in [8] and of Wang et al. [9]. The results
in these papers bridge the gap between the RP theory and testing goodness of fit. The
Monte Carlo study in Section 3 shows some impressive power improvement from using
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the RP chi-square versus the traditional chi-square for both cases of relatively large and
small sample sizes. A noticeable point is that the new RP-based test is still applicable
in the case that the sample size may be smaller than the dimension, and it still performs
very well. This can be regarded as a special credit compared with some existing tests
for multivariate normality when faced with high dimension with a small sample size.
Although it is not an easy task to prove whether the RP chi-square always improves the
traditional chi-square in testing general goodness-of-fit problems, the results in this paper
shed some hopeful light on applying the RP theory to the goodness-of-fit area. It is certain
that the chi-square statistic is not the sole way to construct the RP-based test. Some other
classical tests like those compared by Quesenberry and Miller [22] for general goodness-of-
fit purposes can be also employed to test hypothesis (6). A complete comparison among
these statistics for testing hypothesis (6) is beyond the scope of this paper. It is also too heavy
to compare univariate tests and multivariate tests for high-dimensional normality. The
beta RP-based test in this paper provides an additional way to connect the RP theory with
goodness-of-fit techniques.
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