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Abstract: Predicting breakthrough papers holds great significance; however, prior studies encoun-
tered challenges in this task, indicating a need for substantial improvement. We propose that the
failure to capture the dynamic structural-evolutionary features of citation networks is one of the
major reasons. To overcome this limitation, this paper introduces a new method for constructing
citation cascades of focus papers, allowing the creation of a time-series-like set of citation cascades.
Then, through a thorough review, three types of structural indicators in these citation networks that
could reflect breakthroughs are identified, including certain basic topological metrics, PageRank
values, and the von Neumann graph entropy. Based on the time-series-like set of citation cascades,
the dynamic trajectories of these indicators are calculated and employed as predictors. Using the
Nobel Prize-winning papers as a landmark dataset, our prediction method yields approximately a
7% improvement in the ROC-AUC score compared to static-based prior methods. Additionally, our
method advances in achieving earlier predictions than other previous methods. The main contribu-
tion of this paper is proposing a novel method for creating citation cascades in chronological order
and confirming the significance of predicting breakthroughs from a dynamic structural perspective.
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1. Introduction

Scientific breakthroughs often imply the new emergence and growth of science or
society [1]. Many recent studies have focused on capturing the characteristics of break-
throughs and trying to predict them. One of the characteristics drawn from classical and
widely acknowledged theories exhibits potential power in predictions: breakthrough dis-
coveries often lead to dramatic changes in knowledge evolution [2]. Certain theories, like
the theory of disruptive innovation [3], Kuhn’s concept of paradigm shift [4], and other
classical theories, all share this perspective.

In this perspective, the variation in the knowledge structure represents one important
dimension of the so-called “dramatic changes”, which is accessible and easy to quantify
compared to other dimensions. In recent years, this idea has attracted great interest,
and several works of literature have been designed based on it. They benefit from the
advancement of complex network technology, which allows them to model the knowledge
evolution structure. Among them, there is one kind of complex network, the citation
cascades [5], showing power in breakthrough predictions. Citation cascades refer to a
type of citation structure that involves the constitution of a series of subsequent citing
events initiated by a focus paper (more details are in the reference [6]). Using the citing
cascades, Min et al. [2] predicted the Nobel Prize-winning papers based on their topological
metrics and achieved a performance that exceeded prior methods. Theoretically, they also
confirmed that the variation in knowledge structure indicated scientific breakthroughs.
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However, despite numerous methods proposed to predict scientific breakthroughs,
accurately predicting them remains very hard, as confirmed consistently [2,7,8]. They
claim that it is challenging to identify scientific breakthroughs, with predicting them being
even more difficult. The aforementioned prediction, based on the basic topological metrics
of citation cascades by Min et al. [2], only achieved less than 70% of the highest AUC
score, indicating great room for improvement and a long distance to go before practical
application. Through a literature review, we conclude that the static nature of prior methods,
which are based mostly on a particular snapshot of the structure of knowledge evolution,
impedes the prediction performance, while intuitively, the “dramatic change in knowledge
structure” exhibits a strong dynamic nature.

We argue that the dynamic structure of knowledge evolution can reveal further in-
formation beyond static topological metrics, enhancing the prediction of breakthrough
papers. One possibility, for example, is that different structural features may exhibit
distinct characteristics at earlier and later stages of knowledge evolution. Nevertheless,
capturing information about the dynamic evolution of citation cascades poses a challenge.
This is closely related to the construction methods of citation cascades (more details in
Sections 2.2 and 3.3). Due to the explosive growth potential of citation cascade networks,
certain restrictions are necessary. Previous studies limit the time span of citation cas-
cades (for example, restricting the cascades within 2, 3, or 4 years after the focus paper’s
publication year), and though it is effective to some extent, this also poses difficulties
in capturing the dynamic properties of citation cascades. Hence, we aim to adjust the
construction method of cascade citations to capture their dynamic nature for predicting
scientific breakthroughs.

In this paper, we modify the construction of citation cascades. Under this construction
method, the citation cascades grow the edges in a chronological order and have a limited
number of edges. By considering the citation cascades at various growth stages, a series of
snapshots is generated. Then, specific structure metrics of these snapshots are calculated,
thereby leading to time-series-like data, and they serve as the raw predictors. In the experi-
ment of this study, the structure metrics involve the basic topological metrics, PageRank
values, and the von Neumann graph entropy. Finally, we extract certain features as predic-
tors from this time-series-like data and utilize them to predict scientific breakthroughs.

In summary, we aim to quantify the dynamic evolution of knowledge structure to
predict scientific breakthroughs, with citation cascades as the agents. Using the Nobel Prize-
winning papers as a landmark dataset of scientific breakthroughs, prediction experiments
are performed; it is anticipated that our method surpasses the static approach and achieves
a higher prediction performance.

In Section 2, we provide a brief overview of scientific breakthroughs, predicting
breakthroughs, and citation cascades. Section 3 illustrates our forecasting method and
modeling process. Section 4 shows the prediction performance and compares our method
with previous approaches. The final Section 5 addresses our contributions, implications,
and future directions.

2. Background
2.1. Definition and Prediction of Breakthroughs
2.1.1. Scientific Breakthroughs

Scientific breakthroughs do not have a widely accepted definition. Some studies in re-
cent years have defined them as scientific advancements that can override and significantly
expand existing knowledge and even create new fields [9]. Many studies that predict or
identify breakthroughs often root in this idea.

A breakthrough drives new growth [10]. And scientific breakthroughs are more
transformative, triggering new growth in wide ranges and involving academic, social,
and economic aspects. Therefore, forecasting and nurturing scientific breakthroughs are
crucial. Especially in the post-epidemic era, the COVID-19 pandemic not only threatens
human health but also profoundly changes the socioeconomic structure [11]. Scientific
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breakthroughs hold more significance. They are the key to offering novel solutions to some
global challenges, drawing new growth points to stimulate economics, and providing the
potential to address development disparities.

Some scholars categorize scientific breakthroughs into different types. For instance, the
well-known cha-cha-cha theory [12]. It argues that scientific breakthroughs can be divided
into three types: “solving obvious but previously unsolvable problems”, “addressing some
accidental but crucial problems”, and “some discoveries challenge or cannot be explained
by existing knowledge”. While the types of scientific breakthroughs are well explored,
where and when they occur remains unclear. Some studies have identified correlations with
scientific breakthroughs, such as diverse knowledge [13] and scientists’ characteristics [14],
but none of these can predict them. For example, in datasets with artificially constructed
control groups, atypical combination index is not able to differentiate Nobel Prize-winning
papers [15]. It is challenging to pinpoint when and where a scientific breakthrough happens
in a vast dataset instead of with artificially constructed control groups. In short, predicting
scientific breakthroughs is a challenging task. In the following section, we will also highlight
this point.

2.1.2. Predicting Breakthroughs

In this section, the primary methods for identifying or predicting scientific break-
throughs are outlined.

From the perspective of knowledge structure variation to predict scientific break-
throughs, there are various methods. The most famous one is the Disruption Index [16,17],
which has been featured in papers published in some reputed journals like Nature or
Science several times [18,19]. Figure 1 illustrates its basic idea and computation method.
This method evaluates the breakthrough of a focus paper by checking if the citing papers
(of the focus paper) cite the focus paper’s references. There are numerous variations of
this method, including adjustments to the detailed calculation process and integrated
knowledge entities in it [7,20]. However, all these methods have significant difficulty pre-
dicting scientific breakthroughs effectively. The Disruptive Index fails to differentiate Nobel
Prize-winning papers, and its enhanced methodology also struggles with this task [7,21].
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Another approach based on knowledge structure variation utilizes the citation cas-
cades as an agent for scientific evolution. The topological indicators of them are employed
to predict breakthroughs, and they achieve promising outcomes [2,8]. However, only
certain topological indicators are effective in predicting, including the average clustering
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coefficient, average degree, maximum closeness centrality, and number of components.
They discover that papers with distinct characteristics of the above indicators indicate
breakthroughs, which may suggest that breakthrough findings lead to greater knowledge
structure variation. These effective indicators also hold theoretical significance. In the
citation structure, the node’s degree indicates its influence on knowledge diffusion [22],
and the closeness centrality reflects the effectiveness of knowledge dissemination [23],
among other factors. However, the highest AUC scores in their papers on breakthrough
predictions are only 69% in economics science and 67.5% in natural science, indicating the
great challenge of predicting them. One of the reasons may be that they rely solely on static
characteristics; they only use some topological metrics of citation cascades within a specific
fixed time (a snapshot).

Other algorithms based on knowledge structure perspectives have also been pro-
posed, in addition to the Disruption Index and the topological metrics of citation cascades.
PageRank is a classical algorithm that measures the importance of a node and is commonly
utilized in the information retrieval field [24]. Some literature has also used it to iden-
tify breakthrough patents, suggesting that an important node in a citation network may
indicate a breakthrough [25].

However, these above indicators may remain limited. Other indicators may still
be worth considering, especially those from complex network techniques. Entropy, for
instance. Entropy is a crucial concept for complex networks, representing a wealth of
information. The structure entropy of a graph can serve as an indicator of the complexity
of a network. We believe that it is related to the “dramatic change” brought about by
scientific breakthroughs. Therefore, we incorporate the von Neumann graph entropy [26]
into our experiment.

Besides the method based on structure information, there are also many other di-
mensional methods. These approaches include expert-manual selection, content-based
identification, and citation-count-based methods. (1) Manual selection is an effective but
relatively inefficient method, yet it remains important [27]. Some examples are the selection
of breakthroughs by the Science journal, the MIT press, and others. (2) At the content-based
identification level, studies often analyze the topic distribution of focus papers using a
topic model and assess their breakthroughs by examining the extent to which they cover
previous and subsequent topics [28,29]. In the field of business, breakthrough patents
are those that significantly differ from previous patents but are similar to subsequent
patents [30]. Alternatively, keyword networks can be created, and their entropy is used to
detect the surge in topic evolution [27]. Those that led to sudden topic evolution may be
breakthroughs. (3) Citation count is often used as a proxy for breakthroughs [31], particu-
larly in defining patent breakthroughs [32]. However, it exhibits obvious shortcomings. For
example, review papers have higher citation counts but lack breakthroughs. Some studies
point out its limitations: it may lead to bias [1], and it is proven to be challenging to identify
scientific breakthroughs [2].

2.2. Citation Cascades

From the perspective of forecasting breakthroughs through the structure variation
features, proxying knowledge structure is a challenging task. Citation behavior, or citation
structure, is a crucial tool for analyzing the evolution of knowledge. Citation behavior
is often viewed as a form of knowledge diffusion [33]. Then, these citations interact,
forming a network-like citation structure. These network structures provide a strong foun-
dation for modeling knowledge structures and creating advanced models to predict and
improve organizational outcomes [34]. Since the whole citation network, being a huge
complex graph, is challenging to use directly. The variational methods based on it are
more practical. Among them, citation cascades have become a prominent one in recent
years [5,6,35]. It is utilized for various tasks such as technology forecasting [2], agent
knowledge structure [36] or intelligence structure [37], impact evaluation [38], scientific
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evaluation [39], topic detection or hot spot prediction [6], and cascade information explo-
ration in social media [40]. A typical example of citation cascades is illustrated in Figure 2B.
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Figure 2. Notation and construction methods of citation cascades. Note: In (A), each focal document
in our approach has a corresponding citation cascade. (B) illustrates an example of citation cascade
networks. (C,D) show two previous methods of creating cascading citations.

We specifically explain the citation cascades, as they are a feasible and promising tool
for forecasting scientific breakthroughs [5]. Citation cascades are created from a focus paper
to represent the knowledge flow it initiates. Initially, the generation of citations is defined as
“the collection of papers that cite a focus paper either directly (first generation) or indirectly
(through a path in the citation graph originating from a citing paper and ending at the
focus paper)” [41]. Min et al. develop this idea and use it to predict breakthroughs [2]. It is
notable that each focus paper spans its citation cascade networks, which occur individually,
as depicted in Figure 2A. They utilize the basic topological metrics of these citation cascades
to predict which focus paper is a scientific breakthrough.

However, as mentioned in Section 1, the growth of citation cascade networks is
inherently explosive. For a simple example, if each generation has 20 citations, there will be
millions of citations with only five generations. Therefore, certain restrictions are typically
necessary when using them. Create citation cascades with a limited number of generations,
and in Figure 2C, three generations are selected. However, this approach remains limited by
the highly uneven distribution of the number of papers in the citation cascades. Min et al.
address this issue by restricting their growth time, such as limiting them to 2–4 years
after the publication of the focus paper. An example can be seen in Figure 2D. While this
approach is effective in some cases, it is static and struggles to capture the dynamic nature
of knowledge structures. Additionally, this approach may lead to an uneven distribution of
citation sizes among papers: some papers may experience rapid growth in the cascades,
while others, known as “sleeping beauty literature” [42], may remain dormant for a long
time. Hence, we adjust the structure of cascading citations to reflect their dynamic nature,
as detailed in Section 3.3.

The citation structure not only involves the citation cascades but also includes var-
ious forms like main path analysis [43], the max-min method to identify core nodes in
the network [44,45], and others. These technologies, especially their combination with
intelligence algorithms like deep learning and machine learning, are potential methods for
future studies.
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3. Methodology
3.1. Overviews of the Research Processs

The following paragraphs describe the methodology used in this study. The basic
process is illustrated in Figure 3, and further details are presented in the following Sections
(Sections 3.2–3.6).

(1) The dataset of Nobel Prize-winning papers is chosen as a landmark of scientific
breakthroughs. (More details are shown in Section 3.2).

(2) Find a control group for the breakthrough dataset, representing the non-breakthrough
papers. (More details are shown in Section 3.2).

(3) Construct citation cascade networks for each paper using our method. After that, a
series of snapshots of the cascade networks is generated. (More details are shown
in Section 3.3).

(4) Calculate specific structural indicators for these series of citation cascade network
snapshots. The indicators include the number of nodes, average clustering coefficient,
average degree, maximum closeness centrality, number of components, PageRank
value of the focus paper, mean value and variance of PageRank, and the von Neumann
graph entropy. In this step, the series data for these metrics is then generated. (More
details are shown in Sections 3.4 and 3.5).

(5) Feature selections: extract certain features from the series data. (More details are
shown in Section 3.5).

(6) Finally, the extracted features are utilized to forecast scientific breakthroughs using
machine learning algorithms. (More details are shown in Section 3.5).
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Figure 3. Overview of the process. Note: The process of our study follows the sequence (A)→
(B)→ (C). (A) illustrates the process of constructing the dataset. (B) provides a basic description
of our dynamic approach. The red dot represents the focus paper, and the blue dots represent
papers that directly or indirectly cite the focus papers. As the number of edges expands, we
capture lots of snapshots of the citation cascade. For each one, we calculate specific structural
metrics (e.g., the average cluster coefficient). As a result, time-series-like data is generated.
Afterward, extract features from these sequences, which then serve as predictors. (C) illustrates
the final machine learning process.

3.2. Landmark Dataset

With increased attention to scientific breakthroughs, landmark datasets have been cre-
ated. Among them, the most widely used and acknowledged are the Nobel Prize-winning
papers. The Nobel Prize signifies broad recognition within the academic community, often



Mathematics 2024, 12, 1741 7 of 18

acknowledging the scientists who discover breakthrough findings. Though the Nobel Prize
is awarded to individual scientists, it is primarily based on one or a few specific paper(s) by
those winners. Hence, scholars have manually identified a dataset of Nobel Prize-winning
papers [46], which is published in Scientific Data. According to this work, we compile a
dataset of Nobel Prize-winning papers published after 1960, totaling 648 papers.

In the work of [46], the prize-winning papers are determined by the laureate’s speech.
In general, winning papers are cited as references in the lectures. The paper that meets all
the following criteria is considered a Nobel Prize-winning paper: (1) has at least one author
with the same name as a Nobel Prize winner; (2) is published in the same period as the
winning paper; (3) has consistent institution and co-author information with the award-
winning paper; and (4) has a subject consistent with the motivation of the Nobel Prize.

To enable a prediction, it is necessary to establish a suitable control group. Based
on previous research, certain variables need to be controlled [2,7]. According to previous
literature, the citation count, team size (the number of authors of a paper), publication year,
and academic discipline all influence breakthroughs and should be involved. Then, we
ensure that the breakthrough and non-breakthrough paper groups have similar citation
counts, which differ by 20% or less, are authored by the same number of individuals,
published in the same year, and belong to the same discipline. Only one paper is randomly
selected from the control papers that meet these criteria, thereby creating a one-to-one
paired dataset.

The Matthew effect is significant, as Nobel Prize-winning papers tend to receive a
high number of citations. Therefore, we ensure that the citation cascade networks for each
Nobel Prize-winning paper have a shorter span than the prize year. Those who do not meet
this criterion are excluded, and then 335 papers remain.

The metadata and citation data of papers in this study are sourced from the
SciSciNet [47] and OpenAlex databases [48]. These databases are built on the well-known
MAG (Microsoft academic graph) database, and their quality has also been checked by
several studies.

3.3. Construction of Citation Cascades

As discussed earlier, constructing a citation cascade network for modeling scientific
evolution is challenging due to its explosive nature. Previous studies have restricted
cascading citation networks to 2–4 years after the focus paper publication. However,
this approach leads to a static nature, making it hard to capture their dynamic structure
characteristics for prediction.

To tackle the aforementioned issues, we suggest a new approach to constructing
citation cascade networks. This method creates cascade citations by controlling the number
of edges and selecting a fixed number (threshold) of edges in a chronological sequence.
See Figure 4 for details. Firstly, we obtain the citation time for each citation, and all the
citations are then sorted chronologically. Then, a threshold is set, and a fixed number
of edges with the earliest citation time are chosen to build the citation cascade network.
These processes can be executed using a graph traversal algorithm. With this construction
method, it is possible to ensure an equal number of edges for each paper’s citation cascades.
Most importantly, this method is able to capture citation cascade networks at different
temporal snapshots. For instance, the snapshots of a cascade network have thresholds for
the number of edges at 100, 200, 500, and 1000.

In our study, we set the maximum number of edges threshold at 1000. Starting with
the 100 edges, every 10th edge increases, creating a snapshot until reaching 1000 edges. So,
in total, this process yields 90 snapshots of the citation cascade networks. In the following
sections, certain structure features of these snapshots are computed, then forming the
time-series-like predictors.

The construction of cascade networks for the entire dataset, including the Nobel
Prize-winning papers dataset and its control group, consists of 327,245 papers and
752,849 citations.
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citations. 

Formally, the pseudocode creating the citation cascades in chronological order is pro-
vided in Algorithm 1. 

Algorithm 1. Create citation cascade network. 

Input: 𝑃௙ (Focus paper). 
Output: Citation cascade in chronological order.  
1： 𝑃PotentialPapers ← ∅ 
2： 𝑃SelectedPapers ← ∅ 

3： 𝐼𝑛𝑑𝑒𝑥 ← 0 
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Figure 4. The new approach proposed in this study to constructing citation cascade networks for
capturing dynamic structural information. Note: (A) shows that the citation time of each citation is
recorded. A chronological order is added to each citation based on the citation time, with “2” indicating
the second citation in the chronological sequence, as shown in (B). Finally, a threshold (the maximum
number of edges) is selected. (C) shows the result of setting the threshold at 4, and (D) illustrates a
network with a maximum of 7 edges. In our experiments, the threshold is indeed set at 1000.

Formally, the pseudocode creating the citation cascades in chronological order is
provided in Algorithm 1.

Algorithm 1. Create citation cascade network.

Input: Pf (Focus paper).
Output: Citation cascade in chronological order.

1: PPotentialPapers ← ∅
2: PSelectedPapers ← ∅
3: Index ← 0
4: Threshould← 1000
5: Add all papers that cite to PPotentialPapers

6: while Index < 1000 and PPotentialPapers ̸= ∅do
7: Select paperPIndex with thee arliest citation date f rom PPotentialPaper

8: Add PIndex to PSelectedPapers

9: Remove PIndex f rom PPotentialPapers

10: Add all papers that cite PIndex to PPotentialPaper

11: Index ← Index + 1
12: end while
13: return PSelectedPapers

In Algorithm 1, start by initializing the input focus papers. Create empty sets for the
potential paper set and the selected paper set, and set the index to zero. Define a threshold
of 1000 and include all papers citing the focus paper in the potential paper set. If the index
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is below 1000 and there are papers in the potential paper set, choose the paper with the
earliest citation date, add it to the selected paper set, and remove it from the potential paper
set. Add all articles citing this paper to the potential paper set and increment the index
value by one. Finally, return the selected papers, which constitute the citation cascades.

3.4. Predictors

In this step, we calculate various metrics for each snapshot (cascade networks gener-
ated from every 10 edges increased), including the number of nodes, average clustering
coefficient, average degree, maximum closeness centrality, number of components, PageR-
ank value of the focus paper, average of PageRank values, variance of PageRank values,
and the von Neumann graph entropy. The calculation of von Neumann graph entropy is de-
tailed in a paper [49]. For each network structural metric abovementioned, time-series-like
data are generated.

There are numerous mature algorithms available for extracting features from time-
series data. Python’s tsfresh package [50] is one of them, and we extract features of
the metrics time series using it. For the time series of indicators mentioned, a total of
1602 features were extracted.

3.4.1. Topological Indicators

The formal calculations of certain topological indicators used above are explained in
this section.

Average degree:

AVD =
1
N ∑N

i=1 ki (1)

Average clustering coefficient:

ACC =
1
N ∑N

i=1 Ci (2)

Maximum closeness centrality:

MCC = CCmax
c = max

(
1

∑j ̸=i d(i, j)

)
(3)

where the Ci is defined as:

Ci =
2Ei

ki(ki − 1)
(4)

Number of components (NOC): the number of connected components in a network.
In the Formulas (1)–(4), Ei is the actual number of edges between the neighbors of

node (i), ki is the degree of node (i) like the number of neighbor nodes directly connected
to node (i), N is the number of nodes of the network, Ci is the clustering coefficient of node
(i), and d(i, j) denotes the shortest path between node (i) and node (j).

3.4.2. PageRank Indicator

The calculation of the PageRank value is defined by the Formula (5).

P(i) =
1− d

N
+ d∑j∈M(i)

P(j)
L(j)

(5)

In Formula (5), P(i) is the PageRank value of the node (i), d is the damping factor
(usually takes the value 0.85), N is the total number of pages in the network, M(i) is the
set of all pages pointing to page (i), P(j) is the PageRank value of page (j), and L(j) is the
number of outgoing links on page (j).
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3.4.3. Graph Entropy Indicator

This section introduces some detail on the calculation of the von-Neumann graph entropy.
Given a first unweighted graph G = (V, E, A), where A is the symmetric adjacency matrix.
The degree matrix is defined as D = diag(d1, . . . , dn), and its Laplacian matrix is L = D− A.
Its eigenvalues λi are called the Laplacian spectrum. Here, Hvn(G) is the von Neumann
graph entropy.

Hvn(G) = −∑n
i=1

(
λi

vol(G)
log

λi
vol(G)

)
(6)

The volume of the graph is:

vol(G) = ∑n
i=1 λi = trace(L) (7)

However, the time complexity of computing the von-Neumann graph entropy directly
is relatively high, which is O

(
n3). The approximation is necessary. It is worth noting that

Chen et al. have proposed an approximation method called FINGER [35], which reduces
the cubic complexity to a linear complexity concerning the number of nodes and edges.
The pseudocode is displayed in Algorithm 2.

Algorithm 2. Approximate Von-Neumann Graph Entropy (VNGE).

Input: Adjacency matrixA.
Output: Approximate von Neumann graph entropy Hvn.

1: A← adjacency matrix o f a graph with node number and sparsity
2: d← sum o f elements in each row o f A
3: c← 1/∑ bd
4: W ← edge weights f rom non− zero elements o f A
5: approx ← 1− c2(∑ bd2 + ∑ bW2)
6: L← UnnormalizedLaplacian(A)
7: λmax ← largest eigen value o f L
8: Hvn ← −approx× log2(λmax)
9: return Hvn

In Algorithm 2, the input is the adjacency matrix of the graph representation. The
sum of elements in each row of the adjacency matrix is calculated and stored to create
a vector. The inverse of the sum of these values is calculated to derive a constant. The
edge weights of all non-zero elements in the adjacency matrix are then extracted. Use
the extracted weights and the previously calculated vector to determine an intermediate
approximation. Then, calculate the maximum eigenvalue of unnormalized Laplacian
matrix. Finally, utilize the prior approximation and the maximum eigenvalue to compute
the approximate von-Neumann graph entropy.

3.5. Forecasting Process

Due to the large number of features generated by our method, feature selection is
required. Then, we utilize grid search to choose the top N variables and sequentially place
variables to determine the optimal variable group and prediction impact. The N ranges
from 1 to 100 with the step of 1 (i.e., 1, 2, 3, . . ., 100) and from 100 to 1600 with the step of
100 (i.e., 100, 150, . . ., 1600).

Indeed, we attempt various methods for feature selection engineering. Various meth-
ods, including the single filter method, RFE (Recursive Feature Elimination) and RFECV
(Recursive Feature Elimination with Cross-Validation) [51], the shadow search method [52],
and the filter combined with sequential modeling, are included. Finally, the used method
(filter combined with sequential modeling) is found to be optimal.

The performance is assessed through two-repetitions and five-fold cross-validation
(outer resampling), with the average ROC-AUC serving as the evaluation metric. The pre-
diction performance using various representative classification models, including Random
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Forest, Logistic Regression, SVM (Support Vector Machine), LDA (Linear Discriminant
Analysis), and Naive Bayes, is all considered. The best classification model is selected, and
parameter tuning is conducted.

Here, we provide some brief introductions for each model. The random forest algo-
rithm is an ensemble learning method using multiple decision trees to enhance classification
and regression accuracy by averaging their results [53]. Logistic regression is a statistical
model used for binary classification that estimates the probability of an input belonging to
a specific category. SVM is a supervised learning model that finds the optimal hyperplane
for classifying data into different categories in higher-dimensional space [54]. LDA is a
dimensionality reduction technique used for classification by finding the linear combination
of features that best separates classes. Naive Bayes is a probabilistic classifier based on
Bayes’ theorem, assuming independence between predictors, suitable for large datasets
and text classification.

3.6. Benchmark Indicators

In order to compare with the prior approaches, the static methods are selected for
comparison. As mentioned in Section 2, certain static methods have been developed in
prior studies. Here, we use the following indicators as benchmarks: The prediction process
for these benchmark indicators follows the same procedure as described in Section 3.4, but
without the need for feature selection.

(1) The static topological indicators of citation cascade networks. We select the topolog-
ical metrics, including the number of nodes, average degree, maximum closeness centrality,
number of components, and average clustering coefficient of the cascade networks, with a
number of edges set at 1000 as a benchmark.

(2) The static PageRank indicators. The PageRank-based metrics (the PageRank value
of the focus paper, average of PageRank values, and variance of PageRank values) are
benchmarks, with the number of edges at 1000.

(3) The Disruptive Index. The Disruptive Index is a widely recognized metric for
measuring disruption. The specific principles and calculation details can be found in
Section 2 and the corresponding references.

(4) The (aggregated) static method, the union of static indicators in (1), (2), and (3).
The descriptions and calculation method of indicator (3), the Disruption Index, can be

seen in Section 2.1.2 and especially in Figure 1. For Indicators (2) and (3), their descriptions
and calculation methods are provided in Sections 3.4.1–3.4.3.

4. Results
4.1. Descriptive Analysis

Figure 5 presents the trajectories of various metrics of the network as the number of edges
expands. These trajectories in breakthrough and non-breakthrough papers show significant
differences. In terms of certain metrics, including the average clustering coefficient and the
variance of PageRank value, the gap between breakthrough and non-breakthrough papers is
evident in the early stage of citation network growth, while for others, it is more pronounced
in the later stages. This highlights the importance of tracking the dynamic trajectories of these
multiple structural metrics, which offers more predictive insights than static networks.

The average time required to span a citation cascade network within 1000 edges
is depicted in Figure 6. Figure 6B illustrates the distribution of the time needed in our
empirical study, and the peak is typically less than 6 years. Figure 6A shows the relationship
between the time needed for spanning citation cascades and the papers’ publication year.
It is evident that, as time progresses, the speed of spanning cascade citations increases
significantly, with the span time dropping to about 2 years around 2010. The above analysis
shows that this network construction method allows for early prediction of breakthrough
papers. In the future, it will be earlier due to the faster growth of cascades.
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4.2. Prediction Results

We make the prediction based on the process outlined in Chapter 3. The optimal model
is random forests, and the ROC-AUC score for our method is 73.9%. And Tables 1 and 2
below display the additional prediction results using our method. Our study also demon-
strates the challenge of predicting breakthrough papers or Nobel Prize-winning papers.
For further analysis, the following section shows the performance of our method compared
to other metrics. Learning curves are also offered in Figure 7. It can be seen that, although
there is overfitting, as the sample size increases, the AUC value of the test set converges
with that of the training set.

Table 1. Confusion matrix and evaluation metrics.

Pred-Ture Pred-False

Truth-True 436 216
Truth-False 226 462

Note: The confusion matrix presented here is the sum of predictions made using the two-repeat, five-fold strategy
(10 times in total).

Table 2. Certain evaluation metrics.

Metrics ROC-AUC (%) ACCURACY (%) F1-SCORE (%) RECALL (%)

Score 73.9 67.01 66.38 66.32

Mathematics 2024, 12, x FOR PEER REVIEW 13 of 18 
 

 

 
Figure 6. The span of time across publication years and its distribution. 

4.2. Prediction Results 
We make the prediction based on the process outlined in Chapter 3. The optimal 

model is random forests, and the ROC-AUC score for our method is 73.9%. And Tables 1 
and 2 below display the additional prediction results using our method. Our study also 
demonstrates the challenge of predicting breakthrough papers or Nobel Prize-winning 
papers. For further analysis, the following section shows the performance of our method 
compared to other metrics. Learning curves are also offered in Figure 7. It can be seen that, 
although there is overfitting, as the sample size increases, the AUC value of the test set 
converges with that of the training set. 

 
Figure 7. The learning curves. 

  

Figure 7. The learning curves.

4.3. Comparisons

To emphasize the improvement of our proposed approach, we compare it with the
prior static method within the same prediction process (Section 3.5). The comparison
results (ROC curves) of the selected benchmark indicators (Section 3.6) are displayed
in Figure 8, and the detailed ROC scores are shown in Table 3. Our dynamic method
shows superior results, achieving an improvement of about 7%. This suggests that the
dynamic evolutionary-structure information from the citation cascade networks enhances
the prediction of scientific breakthroughs.
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Figure 8. The ROC curves of the benchmark indicators. Note: (A) shows the dynamic method against
the static method. The static method denotes the union of the three static methods in (B) and the
(4) benchmark in Section 3.6. (B) shows the dynamic method against each static method. “DI” denotes
the disruption index, the (3) benchmark in Section 3.6. “Topo” denotes the prediction using the basic
topological metrics of citation cascade networks, the (1) benchmark in Section 3.6. “PR” denotes
PageRank-based metrics, the (2) benchmark in Section 3.6. For presentation, the 95% confidence
interval (CI) is not displayed in the figure.

Table 3. ROC scores of benchmark indicators.

Benchmarks ROC-AUC Improvement (%)

Dynamic method 73.9% \
Static method 66.0% +7.9%

Static: DI (Disruption Index) 59.9% +14.0%
Static: TOPO (Topological indicator of cascades) 66.4% +7.5%

Static: PR (PageRank) 67.0% +6.9%
Note: The notation of the benchmark indicators can be seen in the legend of Figure 8. Improvement indicates the
degree to which our method can outperform previous indicators.

The ROC curve is located on a two-dimensional coordinate axis, where the x-axis
represents FPR (Fault Positive Rate) and the y-axis represents TPR (True Positive Rate). The
area under the ROC curve (AUC) is a common metric used to measure the performance of
classification algorithms in machine learning. The algorithm’s performance improves as
the value approaches 1.

The previous static methods achieved an overall ROC score of around 66–67%. Despite
combining indicators from various prior static methods, their effectiveness did not signifi-
cantly improve. The combining may have even slightly made the predictions less accurate,
possibly due to the covariance between these variables. Additionally, the prediction in our
study is made using the method of Min et al., yielding similar results (ROC scores between
65% and 70%).

5. Discussions and Conclusions
5.1. Main Contributions

Our main work has utilized the dynamic structural information of citation cascade
networks instead of the (prior) static methods to enhance the performance of predicting
scientific breakthroughs. Two main contributions are detailed below:
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(1) We have enhanced the static approach to the dynamic method by measuring
the dynamic structure evolution of citation cascade networks. The method has been
validated and yields an evident improvement using a landmark dataset (Nobel Prize-
winning papers).

(2) This study proposes a new method for constructing citation cascade networks to
capture the network’s dynamic information. Although citation cascade networks play a
crucial role in predicting scientific breakthroughs, the practical construction of them poses
a challenging issue. Previous construction methods have impeded the measurement of
their dynamic nature.

(3) Additionally, our method of constructing a cascade citation network (Section 4.1)
allows for earlier prediction of breakthrough papers than before. Furthermore, the growth
rate of cascade citation networks is accelerating over time, thereby reaching earlier predic-
tions in the future. It is recognized that early prediction holds special importance [55].

5.2. Implications

This study differs from previous studies by basing our predictions on citation cascade
networks’ dynamic structure information instead of the static information used in previous
studies. Our ability to achieve this change relies on the proposed construction method of
citation cascade networks. We also highlight the benefits of citation cascades as a proxy for
scientific evolution. It offers a cost-effective modeling method to capture dynamic scientific
evolution information.

At the theoretical level, we further expand relevant theories. Scientific breakthroughs
lead to significant changes in the knowledge structure, which varies across different stages
of knowledge evolution. Or, the structure of intelligence and knowledge diffusion evolves
differently over time. Intuitively (Section 4.1), we reveal the distinct information provided
by different indicators during the early and late stages of knowledge evolution. In the
early stages, indicators like the average cluster coefficient and the variance of the PageRank
values are better at differentiating breakthrough from non-breakthrough papers, while
indicators such as the average degree, the PageRank value of the focus paper, the maximum
closeness centrality, and others are more predictive in later stages.

This paper highlights the importance of understanding and predicting breakthroughs
from a dynamic perspective. As mentioned in Section 1, though scientific breakthroughs
often lead to changes in the structure of knowledge, most previous approaches have mainly
viewed this concept statically. Our study indicates that the temporal-like characteristics
of knowledge structure evolution offer valuable insights into predicting scientific break-
throughs. Thus, considering scientific breakthroughs dynamically is promising.

Despite significant efforts to improve prediction performance, identifying scientific
breakthroughs remains challenging, and prediction performance is not yet at a level ready
for practical applications. However, our method has significant potential for enhancement
and solidifies the foundation for future practical applications of breakthrough predictions.
(1) The threshold for maximum edges can be increased beyond 1000. More edges and
a bigger cascade may provide more predictive power. (2) More indicators of cascade
networks, especially the technique in complex networks, are valuable to be developed,
measuring more information that reflects breakthroughs. (3) Additionally, our method for
constructing cascaded networks ensure low computational costs in practice by controlling
the number of edges, thus avoiding the need to compute excessively large networks.

Despite promising improvements and the potential for enhancement in our method,
predicting scientific breakthroughs remains a challenging task. Our predictions, including
those from previous literature, are mainly based on a dataset with an artificially created
control group. Hence, it is more challenging (of course, and more valuable) to pinpoint the
exact moment and place of a scientific breakthrough in the extensive literature.
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5.3. Limitations and Future Directions

(1) Although we have utilized the dynamic structure information from citation cascade
networks to predict scientific breakthroughs, relying solely on structural information may
have limitations. Other-dimensional information, particularly dynamic factors, also has
the potential to predict breakthroughs. In the future, measuring the dynamic evolution of
other information is a potential direction.

(2) Citation cascade networks, while effective for modeling, may introduce additional
noise. It is acknowledged that some citations may not accurately reflect scientific knowledge.
In the future, enhancing the cascade citation networks to accurately identify scientific flows
or developing a more efficient complex network are possible improvements. For instance,
in the background, we highlight modeling solutions like main path analysis and max-min
core document identification.

(3) The opaque nature of extracting features in time series impedes our under-
standing of scientific breakthrough generations and their characterization. Understand-
ing that is helpful for developing policies that facilitate the implementation of break-
through catalysts. In the future, it is essential to design specific algorithms to understand
scientific breakthroughs.

5.4. Conclusions

Previous methods for predicting scientific breakthroughs have encountered great
challenges. Most of them have utilized many static methods, while information regarding
dynamic evolution is overlooked. We propose a dynamic method that captures the struc-
tural information of the cascade citation and achieves an improvement compared to the
prior static methods. We revise the construction method of citation cascade networks to
enable the measurement of their dynamic structural characteristics. Certain topological
indicators, PageRank values, and the von-Neumann graph entropy of a series of cascade
network snapshots are computed, forming the time-series-like predictors. The prediction
results indicate that our dynamic method offers better prediction performance. This high-
lights the validity of the dynamic perspective on scientific breakthrough predictions; in the
future, enhanced modelling on dynamic knowledge structure evolution and more complex
network indicators are promising.
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