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Abstract: In this article, we introduce a new model with positive support. This model is an
extension of the truncated Gumbel distribution, where a shape parameter is incorporated that
provides greater flexibility to the new model. The model is parameterized in terms of the p-th
quantile of the distribution to perform quantile regression in this model. An extensive simulation
study demonstrates the good performance of the maximum likelihood estimators in finite samples.
Finally, two applications to real datasets related to the level of beta-carotene and body mass index
are presented.
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1. Introduction

The Gumbel distribution, also known as the type-I generalized extreme value distribu-
tion, is commonly used to model data with extreme observations. This distribution and
its extensions have a wide range of applications in several disciplines such as hydrology,
economics, finance, climatology and seismology. The probability density function (pdf),
the cumulative distribution function (cdf) and the quantile function of a random variable X
that follows the Gumbel distribution are given by

g(x; µ, σ) =
1
σ

exp
(
−
(

x − µ

σ

)
− exp

(
−
(

x − µ

σ

)))
, x ∈ R,

G(x; µ, σ) = exp
(
− exp

(
−
(

x − µ

σ

)))
, x ∈ R,

Q(p) = µ − σ log(− log(p)), p ∈ (0, 1),

where µ ∈ R and σ > 0. Applications of this model in different scenarios can be found in
Bhaskaran et al. [1], Gurung et al. [2], Purohit et al. [3], Li et al. [4] and Kang et al. [5].
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Several extensions of the Gumbel distribution have been recently proposed in the
literature. Hossam et al. [6] presented a statistical model that combines the new alpha power
transformation method and Gumbel distribution. Watthanawisut and Bodhisuwan [7]
proposed a new extension of the so called Topp-Leone Gumbel distribution that is used to
model minimum flow data. Fayomi et al. [8] presented the exponentiated Gumbel-G family
of distributions and explored a special case called EGuNH. Nagode et al. [9] introduced a
three-parameter Gumbel distribution, which was applied to rope failure data. Oseni and
Okasha [10] derived the Gumbel-geometric distribution, which was applied to precipitation
and maximum annual wind speed data. Note that all these extensions do not consider a
regression framework, and their main objectives rely on the fit of univariate data.

It is evident that regression models have become relevant tools in the era of Data
Science. Among them, the so-called quantile regression models (introduced by Koenker and
Bassett [11]) are an alternative to the usual regression techniques where the mean response
conditional to values of covariates (or explanatory variables) is estimated. The quantile
regression models allow us to measure the effects of covariates at different quantiles of the
response variable distribution. Thus, they provide an analysis across the entire conditional
distribution, as can be seen in Cade et al. [12], Koenker [13] and Wei et al. [14]. The mean,
as the only summary measure, is generally quite poor for assessing risk, as it is greatly
affected by the presence of outlier observations. Outlier data can be quite strange, but at the
same time, these can be enough to cause serious problems when analyzing the information
obtained; see, for example, Gómez-Déniz et al. [15], who analyzed extreme values in
insurance companies. To our knowledge, there are no studies on quantile regression models
based on the Gumbel distribution. Thus, the objectives of this work were to introduce
a new generalization of the truncated Gumbel distribution and then establish a quantile
regression model based on this novel generalization. To do this, a reparametrization was
obtained of the new truncated Gumbel generalization by incorporating a parameter that
represents the quantile. We should note that the proposed generalization was achieved
by considering the work of Neamah and Qasim [16] and the transformation provided by
Cooray and Ananda [17]. The latter authors developed an extension of the half-normal
(HN) distribution through the relation Y = βX1/α, where X ∼ HN(1).

The rest of the paper is organized as follows. In Section 2, we introduce our proposal,
the generalized truncated Gumbel (GTG) distribution, and several important properties of
this new model are presented. In Section 3, inference is performed, including some initial
points to obtain maximum likelihood (ML) estimators and present the observed Fisher
information matrix for the proposed model. In Section 4, the reparametrized model in
terms of a quantile is presented. In Section 5, the simulation study carried out to analyze
the performances of the ML estimators in finite samples for the proposed model without
and with covariates is discussed. In Section 6, two real-data applications are presented to
illustrate the proposed models, without and with covariates. Finally, in Section 7, some
concluding comments are presented.

2. Generalized Truncated Gumbel Distribution

Neamah and Qasim [16] derived a new model with positive support for the Gumbel
distribution by truncating its pdf from the left. We will refer to the resulting model of these
authors as the truncated Gumbel (TG) distribution, which is defined in the interval (0, ∞).
In considering the reparametrization λ = µ/σ, the pdf of the TG distribution can be written
as follows:

f (y; β, λ, α) =
1

β(1 − G(−λ))
g
(

y
β
− λ

)
, y > 0, (1)

where β > 0 is a scale parameter, λ ∈ R is a shape parameter, and g(u) = exp(−u −
exp(−u)) and G(u) = exp(− exp(−u)) are the pdf and cdf for the standard Gumbel
distribution, respectively.
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In this work, we considered the transformation developed by Cooray and Ananda [17]
to extend the TG distribution. That is, we considered the transformation Z = βY1/α, where
Y ∼ TG(1, λ). We will refer to this extension as the generalized truncated Gumbel (GTG)
distribution. Important functions, such as the pdf, cdf, hazard and quantile functions of the
GTG distribution are provided below.

2.1. Pdf, cdf and Hazard Function

Proposition 1. Let Z ∼ GTG(β, λ, α). Then, the pdf of Z is given by

f (z; β, λ, α) =
αzα−1

βα(1 − G(−λ))
g
((

z
β

)α

− λ

)
, z > 0, (2)

where β > 0, λ ∈ R and α > 0.

Proof. Considering the stochastic representation of Z, we have that z = h(y) = βy1/α.
Then,

fZ(z) = fY

(
h−1(z)

)∣∣∣∣dh−1(z)
dz

∣∣∣∣ = 1
1 − G(−λ)

g(h−1(z)− λ)
αzα−1

βα
.

Therefore, the result is obtained by replacing h−1(z) =
(

z
β

)α
in g(·).

Remark 1. We previously mentioned that Z ∼ GTG(β, λ, α) if Z = βY1/α, where Y ∼ TG(1, λ).
Thus, when α = 1, we obtain the TG distribution; that is, GTG(β, λ, 1) ≡ TG(β, λ).

Proposition 2. Let Z ∼ GTG(β, λ, α). Then, the cdf and hazard function of Z are given by

F(z; β, λ, α) =
G
((

z
β

)α
− λ

)
− G(−λ)

1 − G(−λ)
(3)

and

h(z; β, λ, α) =
αzα−1g

((
z
β

)α
− λ

)
βα
[
1 − G

((
z
β

)α
− λ

)] , (4)

respectively, for all z > 0.

Proof. Both functions are obtained immediately from their definitions.

Figure 1 shows the pdf, cdf and hazard function for the GTG(1, λ, α) model, consider-
ing some combinations for λ and α. We observe that the GTG model can have decreasing or
unimodal shapes for the pdf, whereas for the hazard function, we can have decreasing or
increasing shapes. Also, we observe that for some combinations of λ and α, the cdf rapidly
increases, although all of them tend to 1 when z increases.

2.2. Mode

The shape of the pdf of Z ∼ GTG(β, λ, α) can be examined based on its inflection
points. By computing the first derivative of log( f (z)) with respect to z, where f (z) is the
pdf for the GTG model, we obtain that

∂ log( f (z))
∂z

=
α − 1

z
− αzα−1

βα
[1 − exp(−v)],
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where v =
(

z
β

)α
− λ. By equating the previous expression to 0, we obtain that

βα(α − 1)
α

= zα(1 − exp(−v)), (5)

from which the mode of Z can be numerically obtained. The nature of the points are
determined by ∂2 log( f (z))/∂z2 = u(z), where u(z) is given by

u(z) = −α − 1
z2 − (1 − exp(−v))α(α − 1)zα−2

βα
− exp(−v)α2z2(α−1)

β2α
.
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Figure 1. Pdf, cdf and hazard function for the GTG(β = 1, λ, α) model with different value combina-
tions for λ and α.

Depending on whether u(z0) < 0 or u(z0) > 0, where z = z0 is a solution of
Equation (5), the inflection points can be local maxima or minima. Figure 2 shows the
shape of u(z) for β = 1 and selected values of λ and α. From here, we observe that the
pdf of the GTG distribution is zero when z → ∞, both for when λ takes a positive or
negative value.
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(b) λ = 1.5

Figure 2. Shape of u(z) for β = 1 and some value selections of α and λ.

2.3. Quantiles

Proposition 3. If Z ∼ GTG(β, λ, α), then the quantile function of Z is given by

Q(p) = β
(

λ + G−1[p + (1 − p)G(−λ) + G(−λ)]
) 1

α , 0 < p < 1. (6)

Proof. It follows from a direct computation, by applying the definition of the quantile
function.



Mathematics 2024, 12, 1762 5 of 20

Corollary 1. The quartiles of the GTG distribution are as follows:

1. (First quartile) Q(0.25) = β
(

λ + G−1[0.25 + 0.75G(−λ)]
) 1

α .

2. (Median) Q(0.5) = β
(

λ + G−1[0.5(1 + G(−λ))]
) 1

α .

3. (Third quartile) Q(0.75) = β
(

λ + G−1[0.75 + 0.25G(−λ)]
) 1

α .

Proof. It is immediate from Proposition 3.

2.4. Moments

Proposition 4. Let Z ∼ GTG(β, λ, α) and n be a positive integer. Then, the n-th moment of Z is
given by

µn = E[Zn] =
βn

1 − G(−λ)
bn(λ, α), (7)

where bn(λ, α) = ∑∞
k=0(−1)k(n/α

k )λn/α−kγk,γk =
∫ eλ

0 (ln(t))ke−tdt, and (n/α
k ) = 1

k! Π
k−1
i=0 (n/α − i)

is the generalized binomial coefficient. When n/α ∈ N, the sum in bn(α, λ) stops at n/α.

Proof. Given the stochastic representation of Z, it is immediate that E[Zn] = βnE[Yn/α],
where Y ∼ TG(1, λ). Then, the (n/α) moment of Y can be computed by following the
properties presented in Neamah and Qasim [16].

Corollary 2. If Z ∼ GTG(β, λ, α), then the first four moments and the variance of Z are obtained
as follows:

1. µ1 = E(Z) = β
1−G(−λ)

b1(λ, α);

2. µ2 = E(Z2) = β2

1−G(−λ)
b2(λ, α);

3. µ3 = E(Z3) = β3

1−G(−λ)
b3(λ, α);

4. µ4 = E(Z4) = β4

1−G(−λ)
b4(λ, α);

5. Var(Z) = β2

(1−G(−λ))2

[
(1 − G(−λ))b2(λ, α)− b2

1(λ, α)
]
.

Proof. It is immediate from Proposition 4.

Corollary 3. Let Z ∼ GTG(β, λ, α). Then, the skewness coefficient (
√

β1) and the kurtosis
coefficient (β2) are given by

√
β1 =

G2b3 − 3Gb1b2 + 2b3
1

(Gb2 − b2
1)

3/2
and β2 =

G3b4 − 4G2b1b3 + 6Gb2
1b2 − 3b4

1

(Gb2 − b2
1)

2
,

where Gk
= (1 − G(−λ))k, and bi = bi(λ, α), for i = 1, 2, 3, 4.

Proof. The expressions above are obtained using the definitions of the skewness and
kurtosis coefficients; that is,

√
β1 =

µ3 − 3µ1µ2 + 2µ3
1

(µ2 − µ2
1)

3/2
and β2 =

µ4 − 4µ1µ3 + 6µ2
1µ2 − 3µ4

1
(µ2 − µ2

1)
2

.

where µn = E[Xn], for n = 1, 2, 3, 4, are given in Corollary 2.

Remark 2. Proposition 4 shows that the moments of the GTG distribution basically depend on
the moments of the TG(1, λ) model. Plots for the expected value, variance, skewness and kurtosis
coefficients of the GTG(1, λ, α) model are given in Figure 3 for different values of the λ and α
parameters. The bottom plots in Figure 3 reflect the effect of the α parameter: a lower value of α
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produces higher values of the skewness and kurtosis coefficients. This fact can also be appreciated in
Tables 1 and 2.
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Figure 3. Plots of the (a) mean, (b) variance, (c) skewness and (d) kurtosis coefficients for GTG (β = 1,
λ, α) for α ∈ {1, 1.5, 2} as a function of λ ∈ R.

Table 1. Skewness coefficient of the GTG(β = 1, λ, α) model for different values of λ and α.

α
λ 0.5 1 1.5 2 2.5

−2 6.4487 1.9502 1.0377 0.1428 −0.3964
−1.5 6.3433 1.9190 1.0161 0.1265 −0.4114

0 5.5570 1.6782 0.8441 −0.0092 −0.5421
1.5 3.9215 1.2019 0.5286 −0.2238 −0.7331
2 3.4630 1.1457 0.5728 −0.0296 −0.3987

2.5 3.1208 1.1396 0.6610 0.2027 −0.0336

Table 2. Kurtosis coefficient of the GTG(β = 1, λ, α) model for different values of λ and α.

α
λ 0.5 1 1.5 2 2.5

−2 83.4229 8.7063 4.2903 2.7226 3.0664
−1.5 80.8181 8.5270 4.2297 2.7201 3.0884

0 62.8258 7.2726 3.8231 2.7589 3.3450
1.5 33.3157 5.5217 3.5897 3.4425 4.6563
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Table 2. Cont.

α
λ 0.5 1 1.5 2 2.5

2 26.8341 5.4081 3.7574 3.4504 4.1342
2.5 22.4625 5.4001 3.8929 3.2871 3.3145

2.5. Bonferroni Curves

In different disciplines, such as socio-economics and public health sciences, there is a
necessity to compare and analyze the inequality of non-negative distributions. Generally,
Bonferroni curves are used as graphical methods to achieve the required comparison/anal-
ysis (see Bonferroni [18], and Arcagni and Porro [19] for a further discussion about these
curves). The following result shows the expressions of these curves for the GTG model.

Proposition 5. If Z ∼ GTG(β, λ, α), then the Bonferroni curves, say B(p), are given by

B(p) =
β

µ1 p[1 − G(−λ)]

∞

∑
k=0

(−1)k
(

1/α

k

)
λ1/α−kγk, 0 < p < 1,

where µ1 = E(Z), γk =
∫ eλ

v (ln(t))ke−tdt, and v = exp(−(q/β)α + λ).

Proof. The expression above is obtained using the definition of the Bonferroni curves;
that is,

B(p) =
1

µp

∫ p

0
F−1(t)dt =

1
µp

∫ q

0
z f (z)dz, 0 < p < 1,

where µ is the expected value of the corresponding non-negative random variable, and
q = F−1(p).

Figure 4 shows the Bonferroni curves for the GTG(1, λ, α) model, considering different
values for λ and α.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

p

B
(p

)

GTG(1, 1, 2)
GTG(1, 2, 0.75)
GTG(1, 2.5, 1.5)
GTG(1, − 0.5, 2)
GTG(1, − 2, 1.3)

Figure 4. Bonferroni curves for the GTG(β, λ, α) model, with β = 1 and for selected values of λ

and α.

3. Inference for the GTG Distribution

In this section, we discuss the maximum likelihood (ML) approach for parameter
estimation in the GTG model.
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3.1. Maximum Likelihood Estimators

Let z1, z2, . . . , zn be a random sample of size n from the GTG(β, λ, α) model. Then,
the log-likelihood function for θ = (β, λ, α) is given by

ℓ(θ) = n log(α) + (α − 1)
n

∑
i=1

log(zi)− nα log(β)− n log(1 − G(−λ))−
n

∑
i=1

(
zi
β

)α

+ nλ −
n

∑
i=1

exp(−vi), (8)

where vi =
(

zi
β

)α
− λ. Therefore, the score assumes the form S(θ) = (Sβ(θ), Sλ(θ), Sα(θ)),

where

Sβ(θ) = −nα

β
+

n

∑
i=1

αzα
i

βα+1 (1 − exp(−vi)), (9)

Sλ(θ) =
ng(−λ)

1 − G(−λ)
+ n −

n

∑
i=1

exp(−vi), (10)

and

Sα(θ) =
n
α
+

n

∑
i=1

log(zi)− n log(β) +
n

∑
i=1

(
zi
β

)α

log
(

zi
β

)
(exp(−vi)− 1). (11)

The ML estimators are then obtained by numerically solving the equation S(θ) = 03,
where 0p denotes a vector of zeros with length p. Solutions for Equations (9)–(11) can
be obtained using numerical procedures in R [20], such as the Newton–Raphson method.
To initialize the numerical algorithm that solves S(θ) = 03, in the next subsection, we
propose an initial point for the vector θ.

3.2. Initial Points

In this subsection, we propose estimators based on the quantiles for the GTG distribu-
tion, and these estimators are an alternative to the moment estimators, which meets the
objective of using them as initial values to calculate the maximum likelihood estimators of
the GTG distribution.

Let q1, q2 and q3 be the sample quartiles that are based on z1, z2, . . . , zn. Initial values
for θ can be obtained by equating the sample quartiles with the theoretical quartiles.
The resulting equations are given by

q1 = β

[
G−1

(
1
4
+

3
4

G(−λ)

)
+ λ

] 1
α

,

q2 = β

[
G−1

(
1
2
+

1
2

G(−λ)

)
+ λ

] 1
α

,

and

q3 = β

[
G−1

(
3
4
+

1
4

G(−λ)

)
+ λ

] 1
α

.

The solutions for β and α, say β̃ and α̃, can be expressed in terms of λ̃ (the solution for
λ) as follows:

β̃ = β̃(λ̃) =
q1[

G−1
(

1
4 + 3

4 G(−λ̃)
)
+ λ̃

]1/α̃(λ̃)
and α̃ = α̃(λ̃) =

log
(

G−1( 3
4+

1
4 G(−λ̃))+λ̃

G−1( 1
4+

3
4 G(−λ̃))+λ̃

)
log
(

q3
q1

) ,
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whereas λ̃ is obtained from the non-linear equation

β̃(λ̃)

[
G−1

(
1
2
+

1
2

G(−λ̃)

)
+ λ̃

]1/α̃(λ̃)

= q2.

Therefore, the initial point based on this method is given by θquart =
(

β̃, λ̃, α̃
)

.

3.3. Observed Fisher Information Matrix

The asymptotic variance of the ML estimators, say θ̂ = (β̂, λ̂, α̂), can be estimated from
the observed Fisher information matrix defined as I(θ) = −E

[
∂2ℓ(θ)/∂θ∂θ⊤

]
, with ℓ(θ)

given in Equation (8). Under regularity conditions,

I(θ)−1/2
(

θ̂− θ
) D→ N3(03, I3), as n → +∞, (12)

where D stands for convergence in distribution, and N3(03, I3) denotes the standard tri-
variate normal distribution (see Wang et al. [21]). Moreover, I(θ) can be estimated from
the matrix −∂2ℓ(θ)/∂θ∂θ⊤, whose elements are given by Iββ = −∂2ℓ(θ)/∂β2, Iβλ =

−∂2ℓ(θ)/∂β∂λ, and so on. Explicitly, we have that

Iββ = −nα

β2 +
(α + 1)α

β2

n

∑
i=1

(
zi
β

)α

(1 − exp(−vi)) +
α2

β2(α+1)

n

∑
i=1

z2α
i exp(−vi),

Iβλ =
α

βα+1

n

∑
i=1

zα
i exp (−vi),

Iβα =
n
β
+

n

∑
i=1

zα
i

βα+1 [1 − exp (−vi)]

[
1 + α log

(
zi
β

)]
− α

βα+1

n

∑
i=1

zα
i

(
zi
β

)α

log
(

zi
β

)
exp (−vi)

Iλλ =
ng2(−λ)

(1 − G(−λ))2 − ng(−λ)(1 − exp(−λ))

1 − G(−λ)
+

n

∑
i=1

exp(−vi),

Iλα = −
n

∑
i=1

(
zi
β

)α

log
(

zi
β

)
exp(−vi),

Iαα =
n
α2 −

n

∑
i=1

log2
(

zi
β

)(
zi
β

)α

[exp (−vi)− 1] +
n

∑
i=1

log2
(

zi
β

)(
zi
β

)2α

exp (−vi),

where vi =
(

zi
β

)
− λ.

4. GTG Quantile Regression Model

For the GTG model, the mean has a complicated form, and then, it is not recom-
mendable to consider a mean-parameterized version of the model. On the other hand,
and thinking in a context of heterogeneous observations, quantile regression is a more
appropriate tool for analyzing data in presence of covariates because they allow for a com-
plete description of the distribution of the response variable (not just a particular measure
as is the case when regression on the mean is conducted).

Specifically, for the GTG model and considering that τ represents the pth quantile of
the distribution, we obtain the equation τ = Q(p; β, α, λ), τ ∈ (0, ∞). By solving such an
equation, we obtain

β = τ(h(λ, p))−1/α,

where h(λ, p) = λ + G−1[p(1 − G(−λ)) + G(−λ)].
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Thus, we can reparameterize the pdf and cdf of the GTG model as

f (z; τ, λ, α) =
αzα−1h(λ, p)

τα(1 − G(−λ))
g
(( z

τ

)α
h(λ, p)− λ

)
(13)

and

F(z; τ, λ, α) =
G
(( z

τ

)α
h(λ, p)− λ

)
− G(−λ)

1 − G(−λ)
,

respectively, where z > 0, α > 0, τ ∈ (0, ∞), and 0 < p < 1 is fixed. We refer to this model
as the reparameterized GTG (RGTG) model.

The consideration of z⊤i = (zi1, zi2, . . . , ziq) as a set of q known covariates related to
the p-th quantil of the i-th individual can be introduced in the model as follows:

ψ(τi(p)) = z⊤i β(p), (14)

where β(p) = (β1(p), β2(p), . . . , βq(p))⊤ is a q-dimensional vector of unknown regres-
sion parameters (q < n), and ψ(·) is a link function, which is continuous, invertible
and at least twice differentiable. A natural choice in this context is the logarithm link,
i.e., ψ(u) = log(u).

With this framework, the corresponding log-likelihood function for the RGTG quantile
regression model is given by

ℓ(θ(p)) = kn(p) + (α(p)− 1)
n

∑
i=1

log(zi)− α(p)
n

∑
i=1

log(τi(p))− h(λ(p), p)
n

∑
i=1

(
zi

τi(p)

)α(p)

+
n

∑
i=1

exp

(
−
(

zi
τi(p)

)α(p)
h(λ(p), p) + λ(p)

)
, (15)

where kn(p) = n(log(α(p)) + h(λ(p), p)− log(1 − G(−λ(p))) + λ(p)). The estimation of
the regression parameters is obtained by directly maximizing this function.

5. Simulation Study

In this section, we present two simulation studies related to assessing the performances
of the ML estimators for the GTG model and the RGTG quantile regression model.

5.1. Without Covariates

In this study, we carried out a simulation study to evaluate the performances of the
ML estimators given in Section 3.1. We generated random values from the GTG(β, λ, α)
distribution with Algorithm 1.

Algorithm 1 Simulating values from the GTG(β, λ, α) distribution

1: Simulate U ∼ Uni f orm(0, 1)

2: Compute Z = β
(
λ + G−1[U(1 − G(−λ)) + G(−λ)]

) 1
α

We used the following sequence to perform a simulation study to evaluate the behavior
in finite samples of the MLEs of the GTG model. For β, we fixed three values: 1, 2 and
3; for λ, we fixed two values: 2 and 3; for α, we fixed two values: 1 and 2; and for the
sample size n we fixed four values: 150, 300, 600 and 1000. For each combination of β, λ,
α and n, we simulated 1000 replicates of that size and calculated ML estimators and their
standard errors. Table 3 summarizes the mean of the estimated biases (bias), the mean of
the estimated standard errors (SE), and the squared root of the estimated mean squared
errors (RMSE), and each estimated coverage probability (CP) was obtained by taking into
account the asymptotic distribution of the ML estimator using a 95% confidence level. Note
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that as the sample size increases, the bias, SE and RMSE decrease, which suggests that
the ML estimators of the GTG model have an acceptable behavior even in finite samples.
Moreover, the SE and RMSE terms tend to become closer as the sample size increases,
suggesting that the variance of the estimators is well estimated. Finally, the CP terms come
closer to the nominal value as n increases, which suggests that the asymptotic approach to
the normal of the ML estimators of the GTG model is reasonable, even in finite samples.

5.2. With Covariates

Under this condition, we generated 3000 random samples with a sample size rang-
ing from n ∈ {100, 150, . . . , 1000} from the RGTG quantile regression model using three
different values for p : {0.1, 0.5, 0.9}. The structure of the scenarios is defined as follows:

log (ρi(p)) = 2.071 + 0.013z1i + 0.034z2i, λ(p) = 3.881 and log(α(p)) = 1.220, (16)

where z1ip ∼ Logis(0, 1) and z2ip ∼ Bern(0.6). Here, Logis and Bern denote the standard
logistic distribution and the Bernoulli distribution, respectively. The code for reproducing
the simulations is available from the following repository https://github.com/isaaccortes1
989/RGTG/tree/main/Simulation%20Study (accessed on 5 April 2024).

Figures A1–A5 in Appendix A.1 display the standard deviation (SD), mean of SE,
RMSE, mean of the relative bias (RB) and CP of the 95% asymptotic confidence intervals
of the estimates, under different sample sizes. It can be observed in Figures A1–A4 that
the first four measures decrease as the sample size n increases, as expected in standard
asymptotic theory. Finally, the CPs in Figure A5 indicate convergence to the nominal values.

https://github.com/isaaccortes1989/RGTG/tree/main/Simulation%20Study
https://github.com/isaaccortes1989/RGTG/tree/main/Simulation%20Study
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Table 3. Estimated bias, SE, RMSE and CP for ML estimators in finite samples from the GTG model.

True Value n = 150 n = 300 n = 600 n = 1000
β λ α Estimator bias SE RMSE CP bias SE RMSE CP bias SE RMSE CP bias SE RMSE CP

1

2

1
β̂ 0.0037 0.2919 0.3391 0.940 0.0072 0.2009 0.2236 0.947 −0.0006 0.1381 0.1451 0.940 −0.0012 0.1062 0.1072 0.956
λ̂ −0.0199 0.4139 11.213 0.992 0.0027 0.2479 0.5446 0.974 0.0123 0.1647 0.1746 0.952 0.0065 0.1255 0.1272 0.962
α̂ 0.0160 0.1669 0.2052 0.952 0.0110 0.1128 0.1290 0.952 0.0021 0.0765 0.0796 0.950 0.0003 0.0586 0.0587 0.950

2
β̂ −0.0073 0.1499 0.1587 0.972 −0.0085 0.1013 0.1068 0.962 −0.0020 0.0695 0.0720 0.952 −0.0013 0.0532 0.0541 0.950
λ̂ −0.0191 0.4371 10.033 0.995 0.0089 0.2605 0.5956 0.976 0.0095 0.1650 0.1716 0.959 0.0057 0.1254 0.1283 0.955
α̂ 0.0344 0.3351 0.3904 0.962 0.0049 0.2226 0.2500 0.962 0.0070 0.1536 0.1622 0.939 0.0035 0.1173 0.1184 0.950

3

1
β̂ −0.0012 0.4218 0.4101 0.928 −0.0243 0.3005 0.2890 0.942 −0.0294 0.2138 0.2170 0.935 −0.0059 0.1659 0.1705 0.943
λ̂ 0.1398 0.7379 0.8553 0.955 0.1023 0.4818 0.4865 0.965 0.0765 0.3289 0.3461 0.957 0.0296 0.2454 0.2577 0.946
α̂ 0.0089 0.2096 0.2148 0.969 −0.0076 0.1436 0.1390 0.966 −0.0115 0.1005 0.1014 0.947 −0.0014 0.0776 0.0798 0.943

2
β̂ −0.0344 0.2294 0.2225 0.946 −0.0221 0.1582 0.1651 0.942 −0.0150 0.1103 0.1094 0.954 −0.0019 0.0838 0.0862 0.931
λ̂ 0.1880 0.7545 0.7776 0.958 0.1042 0.4859 0.5398 0.955 0.0599 0.3258 0.3287 0.965 0.0187 0.2433 0.2525 0.935
α̂ −0.0027 0.4186 0.3975 0.963 −0.0097 0.2879 0.2913 0.951 −0.0116 0.2015 0.1968 0.954 0.0085 0.1554 0.1608 0.931

2

2

1
β̂ −0.0249 0.5893 0.7102 0.939 −0.0043 0.4028 0.4603 0.939 0.0001 0.2765 0.2915 0.948 −0.0018 0.2115 0.2021 0.947
λ̂ −0.0104 0.5128 11.682 0.995 0.0018 0.2526 0.6524 0.971 0.0131 0.1649 0.1731 0.955 0.0061 0.1250 0.1195 0.963
α̂ 0.0068 0.1681 0.2191 0.949 0.0054 0.1127 0.1346 0.952 0.0032 0.0767 0.0807 0.951 0.0016 0.0585 0.0550 0.959

2
β̂ −0.0167 0.3002 0.3378 0.965 −0.0104 0.2012 0.2031 0.971 −0.0096 0.1391 0.1437 0.954 −0.0027 0.1066 0.1079 0.949
λ̂ −0.0277 0.5436 11.101 0.994 0.0184 0.2422 0.2441 0.984 0.0155 0.1650 0.1708 0.964 0.0066 0.1256 0.1290 0.949
α̂ 0.0461 0.3383 0.4160 0.953 0.0113 0.2232 0.2278 0.966 0.0007 0.1529 0.1576 0.940 0.0026 0.1174 0.1177 0.947

3

1
β̂ −0.0513 0.8424 0.8094 0.920 −0.0578 0.6030 0.5686 0.947 −0.0114 0.4286 0.4123 0.958 −0.0226 0.3320 0.3224 0.951
λ̂ 0.1962 0.7572 0.7638 0.955 0.1102 0.4844 0.4806 0.962 0.0411 0.3219 0.3260 0.969 0.0351 0.2459 0.2421 0.963
α̂ −0.0031 0.2100 0.2015 0.964 −0.0092 0.1440 0.1358 0.960 −0.0007 0.1008 0.0962 0.962 −0.0037 0.0775 0.0755 0.954

2
β̂ −0.0862 0.4612 0.4674 0.953 −0.0450 0.3183 0.3148 0.949 −0.0302 0.2206 0.2241 0.955 −0.0199 0.1692 0.1693 0.950
λ̂ 0.2177 0.7721 0.8310 0.962 0.1053 0.4860 0.4969 0.956 0.0586 0.3257 0.3395 0.959 0.0353 0.2462 0.2493 0.949
α̂ −0.0163 0.4175 0.4128 0.960 −0.0090 0.2898 0.2828 0.949 −0.0130 0.2011 0.2005 0.951 −0.0104 0.1550 0.1552 0.955
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Table 3. Cont.

True Value n = 150 n = 300 n = 600 n = 1000
β λ α Estimator bias SE RMSE CP bias SE RMSE CP bias SE RMSE CP bias SE RMSE CP

3

2

1
β̂ 0.0808 0.8935 11.177 0.943 0.0266 0.6027 0.6492 0.956 0.0062 0.4146 0.4351 0.949 0.0107 0.3187 0.3427 0.944
λ̂ −0.0649 0.5179 11.678 0.992 0.0032 0.2556 0.4053 0.984 0.0101 0.1646 0.1735 0.954 0.0028 0.1255 0.1337 0.945
α̂ 0.0292 0.1709 0.2297 0.960 0.0116 0.1128 0.1260 0.966 0.0044 0.0767 0.0817 0.942 0.0038 0.0588 0.0634 0.945

2
β̂ −0.0374 0.4571 0.5153 0.968 −0.0152 0.3038 0.2985 0.970 −0.0122 0.2094 0.2142 0.957 −0.0018 0.1592 0.1612 0.957
λ̂ −0.0420 0.4607 12.509 0.991 0.0195 0.2431 0.2444 0.985 0.0147 0.1655 0.1694 0.966 0.0038 0.1252 0.1288 0.952
α̂ 0.0285 0.3397 0.4235 0.955 0.0065 0.2233 0.2179 0.965 0.0012 0.1535 0.1561 0.954 0.0051 0.1171 0.1184 0.947

3

1
β̂ −0.0653 12.566 12.462 0.920 −0.0268 0.9029 0.8671 0.948 −0.0290 0.6415 0.6335 0.945 −0.0172 0.4986 0.5085 0.934
λ̂ 0.1842 0.7509 0.7566 0.960 0.0814 0.4759 0.4728 0.971 0.0492 0.3230 0.3345 0.962 0.0279 0.2455 0.2551 0.943
α̂ −0.0032 0.2085 0.2064 0.964 −0.0002 0.1440 0.1380 0.959 −0.0029 0.1005 0.0998 0.952 −0.0015 0.0777 0.0787 0.941

2
β̂ −0.0838 0.6846 0.6706 0.942 −0.0934 0.4791 0.4828 0.956 −0.0305 0.3282 0.3320 0.951 −0.0131 0.2523 0.2404 0.966
λ̂ 0.1653 0.7470 0.7741 0.949 0.1290 0.4913 0.5176 0.964 0.0435 0.3220 0.3313 0.955 0.0229 0.2440 0.2362 0.962
α̂ 0.0090 0.4190 0.4055 0.973 −0.0257 0.2879 0.2821 0.954 −0.0026 0.2011 0.2018 0.945 0.0012 0.1553 0.1468 0.967
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6. Applications

In this section, we present two applications to real datasets to illustrate the performance
of the GTG model and RGTG quantile regression model. The first application is related to
the beta-carotene levels in a certain sample of persons. The second application involves
explaining Mexican American individuals’ body mass index (BMI) in terms of their waist
circumference and sex. The BMI is calculated by dividing a person’s weight in kilograms
by the square of their height in meters, Kg/m2. Furthermore, it is a tool that health
organizations use to monitor and plan public health programs.

6.1. Without Covariates

We considered the retinol plasma database available at http://lib.stat.cmu.edu/
datasets/Plasma_Retinol (accessed on 5 April 2024), which focuses on understanding the
determinants of the plasma levels of retinol, beta-carotene and other carotenoids. The main
variable of interest is BETADIET, which represents the amount of beta-carotene consumed
daily by each individual in micrograms (mcg). The importance of analyzing this variable
lies in its direct relationship with the plasma levels of beta-carotene (BETAPLASMA), a key
nutrient with antioxidant properties and a precursor of vitamin A. Table 4 presents a
summary statistics of BETADIET, in addition to the skewness (

√
b1) and kurtosis (b2).

Table 4. Descriptive statistics of the amount of beta-carotene consumed daily by each individual in
micrograms (BETADIET).

Dataset n X S2 √
b1 b2

BETADIET 315 2186 2,172,342 1.606 6.399

It can be seen from Figure 5 that the GTG has a better fit compared to the GT, Weibull
and Slash truncation positive normal (STPN) (see Gómez et al. [22]) models, in addition
to a good behavior of the fitted GTG cdf compared to the empirical cdf. Based on the
Akaike information criterion (AIC) (see Akaike [23]) and Bayesian information criterion
(BIC) (see Schwarz [24]) given in Table 5, we also see that the GTG model is preferred
(among the fitted models) for this dataset.
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Figure 5. (a) GTG, TG, Weibull and STPN models adjusted using the maximum likelihood method
for BETADIET. (b) Empirical (black) and fitted GTG (blue) cdf for the BETADIET dataset.

http://lib.stat.cmu.edu/datasets/Plasma_Retinol
http://lib.stat.cmu.edu/datasets/Plasma_Retinol
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Table 5. Estimated parameters and their standard errors (in parentheses) for the GTG, TG, Weibull,
and STPN models for the BETADIET dataset. The AIC and BIC criteria are also presented.

Parameters GTG (SE) TG (SE) WEI (SE) STPN (SE)

β̂ 290.83 (126.04) 1041.09 (56.53) 1.61 (0.07) 660.57 (95.37)
λ̂ 2.61 (0.34) 1.46 (0.10) 2454.96 (91.19) 1.97 (0.22)
α̂ 0.60 (0.08) - - 2.46 ( 0.35)

LLF −2672.896 −2682.618 −2686.675 −2685.109
AIC 5351.792 5369.236 5377.351 5376.219
BIC 5357.297 5376.742 5384.856 5387.476

6.2. With Covariates

In this application, we fit the quantile regression model to a dataset provided by
Cortés et al. [25]. The dataset comprises the body mass index (BMI) measured in Kg/m2,
waist circumference (Waist) in centimeters, age in years and Sex (1 for female and 0 for
male) of 1743 individuals who self-identified as Mexican American in the National Health
and Nutrition Examination Survey (NHANES) conducted between 2017 and 2018.

Here, we assumed that the BMI follows an RGTG distribution, denoted as Zi ∼
RGTG(p; ρip, αp, λp). Accordingly, we propose the following structure for modeling:

log (ρi(p)) = β1(p) + β2(p)Waisti + β3(p)Genderi and log (α(p)) = ν(p), (17)

where β1(p), β2(p), β3(p), λ(p) and ν(p) are the parameters used for the estimation,
for i = 1, . . . , 1743 and p ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

The parameter estimates and their corresponding standard errors are presented in
Table 6, where it is observed that all estimates are statistically significant at all quantiles p.
In relation to the interpretations of the regression coefficients, we can consider the following
interpretations. We will present the interpretations in relation to the median, but for this
problem, they are also valid for the other quantiles considered:

• The estimated median BMI for females, assuming a waist circumference of 0, is
exp(2.076) ≈ 7.973.

• As exp(β̂2(p)) = exp(0.013) ≈ 1.013, then for a given gender the estimated median,
the BMI is increased by 1.013% for each unit that increases the waist circumference.

• As exp(β̂3(p)) = exp(0.035) ≈ 1.036, then for a given waist circumference, the esti-
mated median BMI for females is increased by approximately 1.036 times in compari-
son with that for males.

• λ̂(p) = 3.504 and exp (ν̂(p)) = exp (1.309) ≈ 3.702 are the estimates of the shape
parameters associates with the median BMI.

Additionally, to assess the model’s adequacy, we calculated the normalized quantile
residuals (NQRs) along with their respective envelopes; see Dunn and Smyth [26]. These
can be observed graphically in Figure A6 of Appendix A.2, where observation #1267 is
highlighted as atypical. Also, we obtained the measures of a generalized Cook’s distance
and likelihood displacement for p = 0.9; see Figure 6. Here, we highlight that the potentially
influential observations are #264, #486, #516, #1267 and #1299.

Table 7 presents a classification (https://www.nhlbi.nih.gov/health/educational/
lose_wt/BMI/bmi_dis.htm (accessed on 5 April 2024)) of overweight and obesity by sex,
BMI, waist circumference, and risk of diseases (type 2 diabetes, hypertension, and car-
diovascular disease) for the highlighted observations in the residuals, generalized Cook’s
distance and likelihood displacement, considering p = 0.9 (obese individuals). We ob-
serve from the table that observations #264 and #1267 indicate a very poor health status,
emphasizing the importance of their detection.

https://www.nhlbi.nih.gov/health/educational/lose_wt/BMI/bmi_dis.htm
https://www.nhlbi.nih.gov/health/educational/lose_wt/BMI/bmi_dis.htm
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Table 6. ML estimates of the parameters and their corresponding standard errors (in parentheses) for
the RGTG quantile regression model.

p β̂1(p) β̂2(p) β̂3(p) λ̂(p) ν̂(p)

0.1 1.975 (0.0082) 0.013 (0.0001) 0.035 (0.0039) 3.504 (0.2444) 1.309 (0.0675)
0.2 2.009 (0.0081) 0.013 (0.0001) 0.035 (0.0039) 3.504 (0.2444) 1.309 (0.0675)
0.3 2.034 (0.0081) 0.013 (0.0001) 0.035 (0.0039) 3.504 (0.2444) 1.309 (0.0675)
0.4 2.055 (0.0081) 0.013 (0.0001) 0.035 (0.0039) 3.504 (0.2444) 1.309 (0.0675)
0.5 2.076 (0.0081) 0.013 (0.0001) 0.035 (0.0039) 3.504 (0.2444) 1.309 (0.0675)
0.6 2.096 (0.0081) 0.013 (0.0001) 0.035 (0.0039) 3.504 (0.2444) 1.309 (0.0675)
0.7 2.118 (0.0081) 0.013 (0.0001) 0.035 (0.0039) 3.504 (0.2444) 1.309 (0.0675)
0.8 2.145 (0.0082) 0.013 (0.0001) 0.035 (0.0039) 3.504 (0.2444) 1.309 (0.0675)
0.9 2.183 (0.0084) 0.013 (0.0001) 0.035 (0.0039) 3.504 (0.2444) 1.309 (0.0675)
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Figure 6. (a) Generalized Cook’s distance and (b) likelihood displacement for the NHANES dataset.

Table 7. Classification of overweight and obesity by BMI, waist circumference and associated
disease risks.

Case Sex BMI Classification Obesity Waist Disease
of Overweight Class Risk

264 Female 48.45 Extreme obesity III 115.8 Extremely high
486 Female 37.21 Obesity II 97.8 Very high
516 Female 18.04 Underweight - 79.8 -
1267 Female 71.72 Extreme obesity III 132.3 Extremely high
1299 Male 23.33 Normal - 101.8 -

7. Final Discussion

In this work, we proposed a new distribution called generalized truncated Gumbel.
The model has quite a few interesting properties, mainly associated with having a cu-
mulative distribution function and a quantile function in closed form. For this reason,
an extension of the model was proposed to be used in the context of quantile regression.
Future extensions of the model are directed in the context of random effects.
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Appendix A

Appendix A.1. Behaviors of SD, SE, RMSE, RB and CP
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Figure A1. SDs of the 3000 estimates of ρq, λq and αq obtained in the RGTG quantile regression model
under different sample sizes.
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Figure A2. Means of the asymptotic SE on the 3000 estimates of ρq, λq and αq obtained in the RGTG
quantile regression model under different sample sizes.
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Figure A3. RMSEs of the 3000 estimates of ρq, λq and αq obtained in the RGTG quantile regression
model under different sample sizes.
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Figure A4. Means of the RB on the 3000 estimates of ρq, λq and αq obtained in the RGTG quantile
regression under different sample sizes.
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Figure A5. 95% CPs of the ρq, λq and αq obtained in the RGTG quantile regression model under
different sample sizes.

Appendix A.2. QQ-Plots
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Figure A6. QQ-plots with envelopes for the NQRs under the model from Equation (16) at different
probabilities p.
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