
Citation: Ahmad, H.H.; Aboshady,

M.; Mansour, M. The Role of Risk

Factors in System Performance: A

Comprehensive Study with Adaptive

Progressive Type-II Censoring.

Mathematics 2024, 12, 1763.

https://doi.org/10.3390/

math12111763

Academic Editors: Ioannis S.

Triantafyllou and Alex Karagrigoriou

Received: 10 April 2024

Revised: 30 May 2024

Accepted: 1 June 2024

Published: 5 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

The Role of Risk Factors in System Performance:
A Comprehensive Study with Adaptive Progressive
Type-II Censoring
Hanan Haj Ahmad 1,2,* , Mohamed Aboshady 3 and Mahmoud Mansour 3

1 Department of Basic Science, The General Administration of Preparatory Year, King Faisal University,
Hofuf 31982, Al-Ahsa, Saudi Arabia

2 Department of Mathematics and Statistics, College of Science, King Faisal University,
Hofuf 31982, Al-Ahsa, Saudi Arabia

3 Department of Basic Science, Faculty of Engineering, The British University in Egypt,
El Sherook City P.O. Box 43, Cairo, Egypt; mohamed.aboshady@bue.edu.eg (M.A.);
mahmoud.mansour@bue.edu.eg (M.M.)

* Correspondence: hhajahmed@kfu.edu.sa

Abstract: The quality performance of many vital systems depends on how long the units are per-
forming; hence, research works started focusing on increasing the reliability of systems while taking
into consideration that many factors may cause the failures of operating systems. In this study, the
combination of a parametric generalized linear failure rate distribution model and an adaptive pro-
gressive Type-II censoring scheme for practical purposes is explored. A comprehensive investigation
is performed on the risk factors that cause failure and determines which of the factors has a more
harmful effect on the units. A lifetime experiment is performed under the condition of an adaptive
progressive Type-II censoring scheme to obtain observations as a result of the competing factors of
failures. The obtained observations are assumed to follow a three-parameter generalized linear failure
rate distribution and are assumed to be competing to cause failure. Two statistical inference methods
are employed for estimating this model’s parameters: the frequentist maximum likelihood method
and the Bayesian approach. Our model’s validity is demonstrated through extensive simulations and
real data applications in the medical and electrical engineering fields.

Keywords: generalized linear failure rate; adaptive progressive censoring; competing risk models;
Markov chain Monte Carlo; survival analysis; hazard rate; simulation

MSC: 62E10; 62F15; 62N05; 60E05; 62P30

1. Introduction

The competing risk model represents a critical framework for analyzing scenarios
where multiple potential events of interest might prevent the observation of each other. This
model is especially pivotal in biomedical research, reliability engineering, and demographic
studies, where it is crucial to understand when events occur and which of several possible
outcomes happens first. The inception of competing risk models dates back to the mid-20th
century, emerging from the need to address the complexities in survival analysis and
time-to-event data that traditional models could not adequately explain. Early work in this
area sought to account for the fact that, in many real-world situations, the occurrence of one
type of event (e.g., death due to a specific cause) precludes the occurrence of another (e.g.,
death due to an alternative cause), thus necessitating a more nuanced analytical approach.
For more details, see [1–5].

In many technical and technological applications, such as power transmission, en-
ergy storage systems, and electronic devices, electrodes are essential, and the stability
and longevity of these electrodes are important research issues. Researchers are testing
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electrodes’ voltage endurance life to understand their behavior and enhance performance
to address this issue. Investigating how various electrode materials and designs fare during
extended exposure to a certain voltage is the goal of this research.

Researchers may imitate real-world situations where such electrodes are employed,
such as in power energy systems, by subjecting electrodes to extremely harsh electrical
conditions. The goal is to pinpoint the constraints, failure sources, and ideal design
adjustments required to improve the electrodes’ overall performance and dependability.
Engineers hope to increase electrical device safety, decrease downtime due to electrode
failure, and improve the system efficiency. The resolution of this scientific issue will
significantly impact numerous businesses that rely on electrodes, resulting in technical
improvements and sustainable energy solutions.

The application in medicine relates to Multiple Myeloma, a type of blood cancer that
affects plasma cells, which are important components of the immune system in the body.
The need for novel medical applications to manage, treat, and possibly cure Multiple
Myeloma is highlighted by the fact that there are now several therapy choices available
but the disease is still incurable. Researchers are looking into many medical applications to
address this significant scientific topic. Finding trustworthy Multiple Myeloma diagnostic
and prognostic markers, developing customized treatment regimens, and investigating
state-of-the-art therapies are all necessary to achieve this.

It is necessary to compare the causes of risk model failure to understand the suitable
elements, influence risk management, and make an appropriate decision. A pair comprising
a failure cause and a failure time must be expressed in competing risk models for each
observed failure. In addition to different causes of failures, reliability tests often require
filtering systems due to various factors such as time and budget constraints.

Because filtering samples significantly affects reliability analysis results, analysis of
various censoring methods under competing risks has gained popularity in recent years.
Censoring schemes have been introduced to solve the lack of information in lifetime
experiments, saving time and cost. Type-I censoring has a predetermined time, while
Type-II censoring has predetermined failure units. The progressive censoring scheme has
been studied by many researchers; see [6–9]. The estimation problem of lifetime models
under progressively censored data has also been investigated [10,11]. To control the total
experimental time, an adaptive progressive censoring scheme (APCS) was explored by
Ng et al. [12], which allows the test time to continue beyond the initial time determined
earlier. The adaptive progressive Type-II scheme allows the experimenter to control the
termination time of the experiment as much as possible to obtain more observations at a
suitable time with a minimum experimental cost.

The APCS assumes that, during the life test, when the ith failure is obtained, Ri units
are randomly eliminated from the experiment. Let Xi:m:n, i = 1, 2, . . . , m represent the
lifetime of the m failed observations. If the mth time of failure happens earlier than time T
( Xm:m:n < T), then the experiment stops at time Xm:m:n, with progressive censored items
described as (R1, R2, . . . , Rm) such that Rm = n − m − ∑m−1

i=1 Ri. If the Jth failure time
happens before time T, i.e., XJ:m:n < T < XJ+1:m:n, (1 ≤ J ≤ m − 1), where X0:m:n = 0
and Xm+1:m:n = ∞, then we adjust the number of progressively withdrawn items of the
experiment at the time of failures by setting RJ+1 = RJ+2 = . . . = Rm−1 = 0, whereas, at
the time Xm:m:n, all the operating items Rm are discarded, where Rm = n − m − ∑J

i=1 Ri.
So, at this stage, an APCS is described as (R1, R2, . . . , RJ , 0, . . . , 0, n − m − ∑J

i=1 Ri),
J = max j : Xj:m:n < T. This suggests that the initial failure time recorded is overlying
the prefixed overall duration T. In other words, as long as the failures occur earlier
than time T, the required progressive scheme is considered. After going through time
T, no unit is eliminated, while, at the time of mth failure, the remaining operating units
are discarded. This decision terminates the experiment whenever the failure (J + 1)th
time exceeds T and the total experimental time is near the time T. In the rare event that
T = 0, the system reduces to the conventional Type-II censoring scheme; otherwise, a basic



Mathematics 2024, 12, 1763 3 of 21

progressive Type-II censoring scheme is seen if T −→ ∞. This illustrates how to conduct a
well-controlled experiment.

One of the limitations of the adaptive progressive Type-II censoring system is the sam-
ple size. The plan might call for a greater number of samples than other censoring methods,
which would increase the cost and resources required for data collection. Furthermore,
assessing data from an adaptive progressive Type-II censoring scheme may be compu-
tationally demanding, requiring the use of advanced statistical methods. Although the
adaptive progressive Type-II censoring scheme is flexible and efficient, it is also complex.
This complexity might lead to difficulties in ensuring the correct application of the method
across different scenarios.

Recent dialogues regarding the APCS, as depicted in Figure 1, have investigated its
application across different statistical models such as the exponentiated Weibull, inverse
Weibull, and log-logistic distributions, to name a few. In these investigations, the Bayesian
and the maximum likelihood estimation methods are applied to deduce the model’s
parameters, reliability function, and hazard rates. The Weibull distribution’s ability to take
on the characteristics of other distributions makes it exceptionally flexible for practical
applications. It can effectively model the lifetime of mechanical components, biological
organisms, and complex systems under many conditions. This adaptability is useful in
failure data analysis. The GLFR distribution, a generalization of the exponential and
Weibull distributions, offers even greater flexibility by including an additional parameter
to adjust the failure rate over time. For more details, refer to [13–18].

Figure 1. Illustration of APCS.

One of the foundational aspects of the competing risk model is its reliance on a
censoring scheme, which is critical for handling incomplete observations. In the context of
competing risks, censoring occurs when the event of interest is not observed either because
a different event precludes it or due to the end of the study period. This necessitates
sophisticated statistical techniques to estimate the probability of each competing event
accurately. The progressively Type-II censoring technique in the context of competing risks
has been the subject of several studies, such as [19–32].

We provide an adaptive progressive Type-II censoring scheme that operates within the
framework of independent competing risk variables. This method increases the accuracy
and dependability of event time forecasts while also improving the efficiency and cost
effectiveness of data collection. Our method, in contrast to current models, dynamically
modifies the observed data to enable more accurate and fast interventions. The APCS tech-
nique explored in this study has two independent competing risk variables, and component
lifespans follow a three-parameter generalized linear failure rate (GLFR) model. Known for
its flexible hazard function, the GLFR model extends several key lifetime models, including
the Rayleigh, generalized Rayleigh, exponential, and generalized exponential distributions,
and can handle a broad variety of real-world data. This technique works especially well
when examining data that have been gradually filtered, such as in reliability studies, electri-
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cal engineering, and other domains where test volunteers may be dropped mid-experiment.
It is also assumed here that different independent risk factors follow the GLFR model.
The reliability function is estimated using numerical techniques. This work’s key objective
is to investigate an adaptive progressive Type-II censoring strategy that improves the preci-
sion and adaptability of competing risk models. By enabling dynamic modifications based
on real-time data, this approach seeks to increase the effectiveness of statistical models in
domains that demand precise time analysis. Evaluating the effectiveness of the recently
created filtering scheme in various contexts, such as reliability engineering and medical
applications, is another important goal. In order to make sure the scheme can effectively
handle the complexities of the actual world, it must be tested under a variety of scenarios
in order to evaluate its robustness, dependability, and applicability.

We adopt an adaptive progressive Type-II censoring strategy under the GLFR dis-
tribution in the context of a competing risks model, which makes our study novel and
a considerable contribution. In comparison to other uses (electrical and medicinal), this
is comparatively rarely researched in the literature. Using the observed data, the APCS
allows for a dynamic modification of the experiment that improves both the quality and
efficiency of data gathering when gathering data on the lifetime of patients or components.
In addition to saving money and time and enhancing reliability estimates, this approach is
especially novel since it can change according to the data as it happens. Significant value is
added to this research by the application and implementation of the GLFR model in a new
censoring scheme. Because of its adaptability to representing a variety of data, the GLFR
model is well suited for complicated data types that may not fit well to other conventional
models. Our study adds to the collection of knowledge by shedding light on the practical
applications of this model inside an APCS framework.

The paper is structured as follows: In Section 2, we define the model. The maximum
likelihood estimation (MLE) of the unknown parameters is covered in Section 3. Section 4
describes and illustrates the procedure for finding the parameters’ Bayes estimators. To em-
phasize each proposed inference technique, we provide a numerical real data example
in Section 5. Simulation analysis is performed in Section 6. Some resulting remarks are
presented in Section 7.

2. Model Description

The GLFR is a continuous lifetime distribution that generalizes some well-known dis-
tributions such as the linear failure rate, the exponential, the generalized exponential, and
the Rayleigh and generalized Rayleigh distributions. The GLFR distribution is sometimes
a better fit for statistical inference than the Weibull distribution for several reasons. One
reason in its favor is that it is capable of modeling non-monotonic failure rates, which are
outside the scope of the Weibull distribution. In certain cases, this flexibility in modeling
various failure behaviors can result in more precise and trustworthy statistical inference
outcomes. It was first studied by Sarhan and Kundu [33]. This new generalized distribution
overlaps the shortage and limitation of other sub-models. In [33], it was shown that GLFR
distribution can be decreasing or unimodal, and the hazard function can be increasing,
decreasing, or bathtub shaped. This indicates the flexibility of this distribution and its
ability to fit different kinds of real-life data in many fields of science.

The following are the assumptions of the proposed model: The lifetime experiment is
performed with n identically distributed and independent random variables X1, . . . , Xn.
Two independent failure factors cause units to fail, with Xki, k = 1, 2 denoting the latent
failure times of the ith unit due to the kth failure reason. The model assumes also a third
unknown factor competing with the other two factors.

Let Xi = min{X1i, X2i}, i = 1, . . . , n. Assume Xki, k = 1, 2 follow the GLFR distribution.
Then, the cumulative distribution function (CDF) and the probability density function
(pdf) are

F(x, α, β, θ) =

[
1 − e−

(
αx+ β

2 x2
)]θ

, x > 0, α, β, θ > 0, (1)
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and

f (x, α, β, θ) = θ(α + βx)
[

1 − e−
(

αx+ β
2 x2

)]θ−1

e−
(

αx+ β
2 x2

)
, x > 0, α, β, θ > 0, (2)

respectively, where θk is a shape parameter.
In competing risk situations with an APCS, the data are described as

(X1:m:n, δ1, R1), . . . , (XJ:m:n, δJ , RJ), (XJ+1:m:n, δJ+1, 0), . . . , (Xm−1:m:n, δm−1, 0), (Xm:m:n, δm, Rm),

where J = max{j : Xj:m:n < T}, Rm = n − m −
m
∑

i=1
Ri, and δi ∈ {1, 2, ∗}. If δi = 1 or 2, it

means that the unit fails at time Xi:m:n according to 1 or 2, respectively, while if δi = ∗, it
means failure happened with unknown cause.

Let I(℘) be an indicator of ℘. Then, m1 =
m
∑

i=1
I(δi = 1) and m2 =

m
∑

i=1
I(δi = 2) are

the number of failures caused, respectively, by the first and the second reasons of failure.

Additionally, m3 =
m
∑

i=1
I(δi = ∗) represents the number of failures with unknown causes;

hence, m1 + m2 + m3 = m.
Classical and Bayesian estimation methods are constructed in this work to estimate

the unknown parameters for the GLFR distribution with an APCS of two competing risk
factors. Furthermore, we aim to assess the reliability of this model and its suitability to fit
and describe the trend of medical and electrical data.

3. Maximum Likelihood Estimation

Referring to the APCS with two competing risk factors, the following is the expression
of the likelihood function for the data that were observed (x1, δ1), . . . , (xm, δm):

L(Φ; x) =Aj

m

∏
i=1

{[ f1(xi)F̄2(xi)]
I(δi=1) [ f2(xi)F̄1(xi)]

I(δi=2) [ f1(xi)F̄2(xi) + f2(xi)F̄1(xi)]
I(δi=∗)}

×
j

∏
i=1

{[F̄1(xi)F̄2(xi)]
Ri} × [F̄1(xm)F̄2(xm)]

R∗
,

(3)

where Aj =
m
∏
i=1

[n − i + 1 −
max{i−1,j}

∑
j=1

Rj], R∗ = n − m −
j

∑
i=1

Ri, Φ = (α1, α2, β1, β2, θ1, θ2).

Let ui(α, β) = 1 − e−(αxi+
β
2 x2

i ). Then, by using the CDF and pdf of the GLFR distribu-
tion in Equations (1) and (2), and substituting in the likelihood Equation (3), we obtain

L(Φ; x) = Aj

m

∏
i=1

[
θ1(α1 + β1xi)[ui(α1, β1)]

θ1−1(1 − ui(α1, β1))

(
1 − [ui(α2, β2)]

θ2

)]I(δi=1)

×
[

θ2(α2 + β2xi)[ui(α2, β2)]
θ2−1(1 − ui(α2, β2))

(
1 − [ui(α1, β1)]

θ1
)]I(δi=2)

×
[
(α1 + β1xi)(1 − ui(α1, β1))θ1[ui(α1, β1)]

θ1−1(1 − [ui(α2, β2)]
θ2
)

+ (α2 + β2xi)(1 − ui(α2, β2))θ2[ui(α2, β2)]
θ2−1[1 − [ui(α1, β1)]

θ1

]I(δi=∗)

×
j

∏
i=1

[(
(1 − [ui(α1, β1)]

θ1

)(
1 − [ui(α2, β2)]

θ2

)]Ri

∏
[(

1 − [um(α1, β1)]
θ1
)(

1 − [um(α2, β2)]
θ2
)]R∗

.

(4)

The log-likelihood function is then
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ℓ(Φ; x) ∝ m1 log(θ1) + m2 log(θ2)

+
m

∑
i=1

I(δi=1) log(α1 + β1xi) +
m

∑
i=1

I(δi=2) log(α2 + β2xi)

+
m

∑
i=1

I(δi=1)

[
(θ1 − 1) log[ui(α1, β1)] + log[1 − ui(α1, β1)] + log

(
1 − [ui(α2, β2)]

θ2
)]

+
m

∑
i=1

I(δi=2)

[
(θ2 − 1) log[ui(α2, β2)] + log[1 − ui(α2, β2)] + log

(
1 − [ui(α1, β1)]

θ1
)]

+
m

∑
i=1

I(δi=∗)

[
log
[
θ1(α1 + β1xi)[ui(α1, β1)]

θ1−1(1 − [ui(α1, β1)])(1 − [ui(α2, β2)]
θ2)

+ θ2(α2 + β2xi)[ui(α2, β2)]
θ2−1(1 − [ui(α2, β2)])(1 − [ui(α1, β1)]

θ1)
]]

+
j

∑
i=1

Ri

[
log
(

1 −
[
ui(α1, β1)

]θ1
)
+ log

(
1 −

[
ui(α2, β2)

]θ2
)]

+ R∗
[

log
(

1 −
[
um(α1, β1)

]θ1
)
+ log

(
1 −

[
um(α2, β2)

]θ2
)]

,

The partial derivatives with respect to α1, α2, β1, β2, θ1, and θ2 are as follows:

∂ℓ

∂αk
=

m

∑
i=1

I(δi=k)

[
1

αk + βkxi
+ xi(

θk − 1
ui(αk, βk)

− θk)

]
−

m

∑
i=1

I(δi=3−k)
θkxiu

θk−1
i (αk, βk)(1 − ui(αk, βk))

1 − uθk
i (αk, βk)

+
m

∑
i=1

I(δi=∗)
W(Φ)

θk(1 − ui(αk, βk))

[
− xi(αk + βkxi)u

θk−1
i (αk, βk)(1 − uθ3−k

i (α3−k, β3−k))

+ (1 − uθ3−k
i (α3−k, β3−k))

(
(θk − 1)(αk + βkxi)xiu

θk−2
i (αk, βk)(1 − ui(αk, βk)) + uθk−1

i (αk, βk)
)

− uθk−1
i (αk, βk)xiθ3−k(α3−k + β3−kxi)u

θ3−k
i (α3−k, β3−k)(1 − ui(α3−k, β3−k))

]
−

j

∑
i=1

Ri
θkxiu

θk−1
i (αk, βk)(1 − ui(αk, βk))

1 − uθk
i (αk, βk)

− R∗ θkxmuθk−1
m (αk, βk)(1 − um(αk, βk))

1 − uθk
m (αk, βk)

.

(5)

∂ℓ

∂βk
=

m

∑
i=1

I(δi=k)

[
xi

αk + βkxi
+

x2
i

2
(

θk − 1
ui(αk, βk)

− θk)

]

−
m

∑
i=1

I(δi=3−k)
x2

i
2

θkuθk−1
i (αk, βk)(1 − ui(αk, βk))

1 − uθk
i (αk, βk)

+
m

∑
i=1

I(δi=∗)
W(Φ)

θk(1 − ui(αk, βk)

[
−

x2
i

2
(αk + βkxi)u

θk−1
i (αk, βk)(1 − uθ3−k

i (α3−k, β3−k))

+ (1 − uθ3−k
i (α3−k, β3−k))

(
(θk − 1)(αk + βkxi)

x2
i

2
uθk−2

i (αk, βk)(1 − ui(αk, βk)) + xiu
θk−1
i (αk, βk)

)

− uθk−1
i (αk, βk)

x2
i

2
θ3−k(α3−k + β3−kxi)u

θ(3−k)−1
i (α3−k, β3−k)(1 − ui(α3−k, β3−k))

]
−

j

∑
i=1

Ri
x2

i
2

θkuθk−1
i (αk, βk)(1 − ui(αk, βk))

1 − uθk
i (αk, βk)

− R∗ x2
m
2

θkuθk−1
m (αk, βk)(1 − um(αk, βk))

1 − uθk
m (αk, βk)

(6)
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∂ℓ

∂θk
=

mk
θk

+
mk

∑
i=1

log[ui(α, β)]− [ui(α, β)]θk log[ui(α, β)]

1 − [ui(α, β)]θk
−

j

∑
i=1

Ri
[ui(α, β)]θk log[ui(α, β)]

1 − [ui(α, β)]θk

+ R∗ [um(α, β)]θk log[um(α, β)]

1 − [um(α, β)]θk
,

(7)

where

W(Φ) = θk(αk + βkxi)u
θk−1
i (αk, βk)(1 − ui(αk, βk))(1 − uθ3−k

i (α3−k, β3−k))

+θ3−k(α3−k + β3−kxi)u
θ(3−k)−1
i (α3−k, β3−k)(1 − ui(α3−k, β3−k))(1 − uθk

i (αk, βk)),

and k = 1, 2.
To address the system of nonlinear equations presented in Equations (5)–(7), numerical

approaches are essential. Various numerical methods have been applied in the existing
research. In this instance, we employ the Newton–Raphson method. The outcomes of this
application are detailed in Section 6.

Confidence interval estimation is a fundamental statistical method used to indicate the
reliability of an estimate. The concept is central in inferential statistics and serves numerous
applications across various fields such as engineering, economics, medicine, and social
sciences. Among its key properties, the asymptotic interval is notable for its reliance on
large sample sizes, where the distribution of the estimate approaches a normal distribution,
making it increasingly accurate as the sample size grows. For constructing asymptotic
confidence intervals (ACI), we must first define Fisher’s information matrix.

The MLEs (α̂1, α̂2, β̂1, β̂2, θ̂1, θ̂2) are approximately normal with a mean
(α̂1, α̂2, β̂1, β̂2, θ̂1, θ̂2) and a variance–covariance matrix I−1(α̂1, α̂2, β̂1, β̂2, θ̂1, θ̂2). Here, the
Fisher information matrix I(Φ) can be obtained based on the second partial derivatives
of the likelihood function for the parameters. Consequently, the estimated asymptotic
variance–covariance matrix for the MLEs is obtained by taking the inverse of the observed
information matrix; hence, its elements can be described as diagonal elements representing
the variances of the estimated parameters as V̂ar(α̂1), V̂ar(α̂2), V̂ar

(
β̂1
)
, V̂ar

(
β̂2
)
, V̂ar

(
θ̂1
)
,

and V̂ar
(
θ̂2
)
. In contrast, the off-diagonal elements represent the covariance between the

estimated parameters.
The 100(1 − ζ)% two-sided confidence interval can be written as

α̂k ± Z ζ
2

√
V̂ar(α̂k), β̂k ± Z ζ

2

√
V̂ar

(
β̂k
)
, and θ̂k ± Z ζ

2

√
V̂ar

(
θ̂k
)
. (8)

The standard normal distribution’s percentile, denoted by Z ζ
2
, has a right-side proba-

bility of ζ
2 , and k = 1, 2.

In addition to estimating the unknown parameters of the proposed model, we aim
to give estimates for the survival and the hazard rate functions. At this point, we use
a statistical approach called the Delta method. This method is used to approximate the
distribution of a function of a random variable, particularly when the variance of that
random variable is known or can be estimated. This method is especially useful in con-
structing confidence intervals for complex functions of parameters, such as the hazard
rate function and reliability function in survival analysis or reliability engineering, where
direct analytical solutions may not be straightforward. The following summarizes the
Delta algorithm:

• Find the MLE for the parameters (Φ̂);
• Linearize the hazard rate and the survival function around the estimated parameter

using a first-order Taylor series expansion;
• Estimate the variance of the linearized hazard and survival function. The variance can

be approximated by using the gradient of the function and the covariance matrix of
the parameter estimates;
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• Construct the confidence interval for the function by using its estimated value and
variance.

Hence, the 100(1 − ζ)% confidence intervals for the hazard function h(t) and the
survival function S(t) can be written, respectively, as

h(Φ̂)± Z ζ
2

√
Var(h(Φ̂)) and S(Φ̂)± Z ζ

2

√
Var(S(Φ̂)) (9)

4. Bayesian Estimation

Bayesian estimation plays an important role in statistical inference; it permits the
incorporation for integration of prior knowledge or beliefs into the estimation process. This
is a useful feature when there is a lack of data or when predictions need to be made in the
face of uncertainty. By using Bayesian statistics, researchers can update their assumptions
in response to the latest data, producing estimates that are more reliable and accurate.
Moreover, the Bayesian approach provides an organized means of measuring uncertainty,
a crucial component of well-informed decision-making. Overall, Bayesian estimation
presents a more adaptable and resilient approach to statistical inference than traditional
frequentist methods; see [34–36]. The Bayesian technique assumes that the parameters of
the model are random variables following a distribution known as the prior distribution.
In this study, we opt for an exponential conjugate prior distribution for α1, α2, β1, β2, θ1,
and θ2 as follows:

α1 ∼ Exp(a1) ⇒ π1(α1) = a1e−α1a1 , α1 > 0,

α2 ∼ Exp(a2) ⇒ π2(α2) = a2e−α2a2 , α2 > 0,

β1 ∼ Exp(a3) ⇒ π3(β1) = a3e−β1a3 , β1 > 0,

β2 ∼ Exp(a4) ⇒ π4(β2) = a4e−β2a4 , β2 > 0,

θ1 ∼ Exp(a5) ⇒ π5(θ1) = a5e−θ1a5 , θ1 > 0,

θ2 ∼ Exp(a6) ⇒ π6(θ2) = a6e−θ2a6 , θ2 > 0.

(10)

Our application of Bayesian inference using exponential priors is necessary in the
competing risks model focusing on specific applications in electrical engineering and
medical research. While Bayesian methods are well known in the statistical literature, their
application in the censored reliability data involving competing risks represents a significant
extension of existing methodologies. This results in a more robust and reliable statistical
inference in complex real-world scenarios where traditional methods may fall short.

The joint prior distribution is then

p(α1, α2, β1, β2, θ1, θ2) ∝ e−(α1a1+α2a2+β1a3+β2a4+θ1a5+θ2a6),

and the joint posterior density is given by

p∗(α1, α2, β1, β2, θ1, θ2 | data) =
L(Φ; x) p(α1, α2, β1, β2, θ1, θ2)∫

α1

∫
α2

∫
β1

∫
β2

∫
θ1

∫
θ2

L(Φ; x) p(α1, α2, β1, β2, θ1θ2) dα1dα2dβ1dβ2dθ1dθ2
, (11)

or simply p∗(α1, α2, β1, β2θ1, θ2 | data) = 1
k L(Φ; x) p(α1, α2, β1, β2, θ1, θ2), where L(Φ; x) is

the likelihood function of the GLFR distribution under an APCS in Equation (4). The full
conditional posterior densities of α1, α2, β1, β2, θ1 θ2, and the data is given by
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π∗
αk
(αk | α3−k, β1, β2, θ1, θ2; data) ∝ e−αka1

m

∏
i=1

[
(αk + βkxi)[ui(αk, βk)]

θk−1e−αkxi

]I(δi=k)

×
[

1 − [ui(αk, βk)]
θk

]I(δi=3−k)
[

θk(αk + βkxi)(1 − ui(αk, βk))[ui(αk, βk)]
θk−1(1 − [ui(α3−k, β3−k)]

θ3−k )

+ θ3−k(α3−k + β3−kxi)(1 − ui(α3−k, β3−k))[ui(α3−k, β3−k)]
θ3−k−1[1 − [ui(αk, βk)]

θk
]]I(δi=∗)

×
j

∏
i=1

(
1 − [ui(αk, βk)]

θk

)Ri(
1 − [um(αk, βk)]

θk

)R∗

π∗
βk
(βk | α1, α2, β3−k, θ1, θ2; data) ∝ e−βka3

m

∏
i=1

[
(αk + βkxi)[ui(αk, βk)]

θk−1e−
βk
2 x2

i

]I(δi=k)

×
[

1 − [ui(αk, βk)]
θk

]I(δi=3−k)
[

θk(αk + βkxi)(1 − ui(αk, βk))[ui(αk, βk)]
θk−1[1 − [ui(α3−k, β3−k)]

θ3−k]

+ θ3−k(α3−k + β3−kxi)(1 − ui(α3−k, β3−k))[ui(α3−k, β3−k)]
θ3−k−1[1 − [ui(αk, βk)]

θk
]]I(δi=∗)

×
j

∏
i=1

(
1 − [ui(αk, βk)]

θk

)Ri(
1 − [um(αk, βk)]

θk

)R∗

π∗
θk
(θk | α1, α2, β1, β2, θ3−k; data) ∝ e−θka5

m

∏
i=1

[
θk[ui(αk, βk)]

θk

]I(δi=k)
[

1 − [ui(αk, βk)]
θk

]I(δi=3−k)

×
[

θk(αk + βkxi)(1 − ui(αk, βk))[ui(αk, βk)]
θk−1[1 − [ui(α3−k, β3−k)]

θ3−k ]

+ θ3−k(α3−k + β3−kxi)(1 − ui(α3−k, β3−k))[ui(α3−k, β3−k)]
θ3−k−1[1 − [ui(αk, βk)]

θk
]]I(δi=∗)

×
j

∏
i=1

(
1 − [ui(αk, βk)]

θk

)Ri(
1 − [um(αk, βk)]

θk

)R∗

,

where k = 1, 2.
Under various symmetric and asymmetric loss functions, the Bayes estimators of any

function of α1, α2, β1, β2, θ1, and θ2, that is, g(α1, α2, β1, β2, θ1, θ2), can be obtained. Two
distinct loss functions are used, namely, the general entropy loss (GEL) and the squared
error loss (SEL) functions.

The conditional density function for α1, α2, β1, β2, θ1, and θ2 is hard to obtain. Thus,
the normal proposal distribution is used to apply the Metropolis–Hasting (M-H) method,
which was proposed by Metropolis et al. [37], to generate random samples from the
posterior density of α1, α2, β1, β2, θ1, and θ2. The description of the Gibbs sampling
algorithm is explored in detail in [24,38–40].

5. Application to Real-Life Data

In this section, the proposed methods are applied to two real-life data sets, one related
to medical application and the other to an engineering application, to demonstrate the
applicability of the proposed inference methods to actual phenomena. The two data sets’
observations include failure times caused by three failure factors, which may result in
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certain anomalies. The GLFR distribution, which is a parametric model, is fitted to the two
data sets; therefore, the impact of anomalies disappears.

5.1. Data Related to Multiple Myeloma

We analyze a genuine competing risks data set utilizing APCS to represent the ef-
fectiveness of parameter estimation under the underlying GLFR distribution. The data
set includes 35 patients treated at University Hospital Hamburg-Effendorf, Hamburg, at
Germany’s Clinic for Stem Cell Transplantation. The patients exhibit ten instances of
transplant-related mortality as a competing risk and 19 cases of Multiple Myeloma re-
currence. Information on recipients of transplants from donors with type AA, type AB,
or type BB haplotypes was supplied by Donoghoe and Gebski [41]. While applying the
competing risks approach, we focus on deriving statistical implications from these data.
For (xi, di, Ri) with i = 1, 2, . . . , 35, Table 1 lists the times along with the censoring and
event pattern. The times with di = 1 represent the time to relapse, di = 2 represents
transplant-related mortality, and di = 0 represents the censoring time with the removal
Ri = 1. For di = 1 and di = 2, the model efficacy is analyzed using some measures of
fitness such as the Kolmogorov–Smirnov (KS), Anderson–Darling, and Cramér–von Mises
tests. Both distance (statistics) and the p-value are evaluated to assess the suitability of our
model to describe these data. It can be noticed from Table 2 that the p-values of all measures
are greater than 0.05, ensuring the suitability of the proposed model to fit the Myeloma
data. Figures 2 and 3 illustrate the distance between the CDF for the GLFR distribution
and the empirical distribution for the failure data, in addition to the observed probability
distribution against the expected P-P plot and the quantile plot Q-Q for the two cases di = 1
and di = 2, respectively.

Table 1. Survival times according to censoring, relapse, and transplant-related mortality.

di = 0 89.89 56.57 53.55 44.02 46.55 23.79

di = 1 3.45 45.96 41.17 15.74 22.31 80.46 4.57 17.31 9.33 14.72
12.35 5.03 41.17 3.58 9.92 3.81 28.29 4.14 10.68

di = 2 14.82 3.91 0.66 6.21 0.26 1.97 1.81 3.55 6.7 1.94

Table 2. Measures of goodness-of-fit test for Multiple Myeloma data.

Anderson–Darling Cramér–von Mises KS

p-Value Statistics p-Value Statistics p-Value Statistics

di = 1 0.7210 0.5228 0.7207 0.0751 0.7624 0.1457

di = 2 0.9898 0.2043 0.9733 0.0308 0.9613 0.1468

The MLEs of parameters, reliability, and hazard functions based on APCS data are
presented in Table 3. The Bayes estimates relative to the Markov chain Monte Carlo
(MCMC) approach for the parameters α, β, and θ for the two risk factors, as well as the
reliability and hazard functions, are also displayed in Table 3. Table 3 demonstrates that
the survival function for the data related to the time to relapse is greater than that of
the transplant-related mortality. Furthermore, compared to transplant-related mortality,
the hazard rate function for the data related to the time to relapse is lower. This table also
shows that the estimators perform well because the values of the estimates are closely
spaced. Each of the parameters α, β, and θ have their 95% ACI and credible intervals (CR)
calculated, and the results are shown in Table 4.
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Figure 2. Empirical and fitted survival function, P-P, and Q-Q plots for the data set with di = 1 for
Multiple Myeloma.
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Figure 3. Empirical and fitted survival function, P-P, and Q-Q plots for the data set with di = 2 for
Multiple Myeloma.
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Table 3. Different point estimates for parameters and survival and hazard functions.

di = 1 di = 2

MLE
MCMC

MLE
MCMC

SEL q2 = −3 q3 = 3 SEL q2 = −3 q3 = 3

α 0.0401 0.0403 0.0403 0.0402 0.0801 0.0869 0.0871 0.0865
β 0.002 0.0021 0.0022 0.0021 0.0031 0.0018 0.0018 0.0017
θ 1.6001 1.6072 1.6072 1.6072 0.7001 0.7506 0.7507 0.7504

S(t) 0.8079 0.8082 0.8065 0.8064 0.3262 0.3408 0.3089 0.3083

h(t) 0.0398 0.0398 0.0401 0.0402 0.1172 0.1111 0.1212 0.1211

Table 4. 95% ACI and CR for the parameters under the two risk factors.

MLE MCMC

Interval Length Interval Length

α1 {−0.0847,0.1647} 0.249452 {0.0394,0.0414} 0.00199836
α2 {−0.9995,1.1595} 2.15892 {0.0797,0.0926} 0.0129493
β1 {−0.006,0.1005} 0.106493 {0.0019,0.002} 0.000109413
β2 {−1.7755,1.7815} 3.55697 {0.0014,0.0022} 0.00079682
θ1 {−0.6058,3.8058} 4.41154 {1.5974,1.614} 0.0165445
θ2 {−1.0785,2.4785} 3.55697 {0.7304,0.7638} 0.0334217

5.2. Data Related to Electrodes

We employ the real-life test data set published by Doganaksoy et al. [42] to demonstrate
the applicability of the suggested inference processes to actual phenomena. Recently,
Ahmed et al. [31] and Ren and Gui [25] have also examined this data set. The 58 electrodes
that underwent a certain voltage endurance life test are included in the data set. One of two
(modes) causes—Mode E, an insulating defect brought on by a processing issue that usually
arises early in life, and Mode D, which is the deterioration of the organic material that
generally happens later—was identified as the source of the failures. There were a total of
18 and 27 recorded failures attributed to Mode E and D causes, respectively. The remaining
13 vacant electrodes, indicated by the letter “+”, were still operating as a result of the
missing cause. Every observed value in the original data set was divided by 1000 for
computational ease. Table 5 displays the transformed failure times of the insulation voltage
endurance test. In this application, we specifically focus on the observations that were
fully observed from the entire competing risk samples, leaving the running observations
alone. For Modes E and D, the model efficacy is tested using the same measures used in
the previous example. Both distance (statistics) and the p-value are evaluated to assess the
suitability of this model to fit the electrode data. It can be noticed from Table 6 that the
p-values of all measures are greater than 0.05, indicating the suitability of the proposed
model to fit the electrode data. Figures 4 and 5 show the distance between the CDF for
the GLFR distribution and the empirical distribution for the failure data, in addition to the
observed probability distribution, the expected P-P plot, and the quantile plot Q-Q for the
two causes, Mode E and Mode D, respectively.

Table 5. Survival times according to censoring, relapse, and transplant-related mortality.

E 0.002 0.003 0.005 0.008 0.021 0.028 0.031 0.064 0.069 0.076
0.104 0.119 0.144 0.160 0.221 0.236 0.282 0.303

D 0.168 0.191 0.203 0.211 0.226 0.261 0.264 0.278 0.284 0.286
0.298 0.314 0.317 0.318 0.320 0.327 0.328 0.328 0.348 0.350
0.360 0.369 0.377 0.387 0.392 0.412 0.446

+ 0.013 0.031 0.052 0.053 0.067 0.078 0.113 0.135 0.157 0.179
0.241 0.257 0.348
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Figure 4. Empirical and fitted survival function, P-P, and Q-Q plots for the data set with failure cause
Mode E for electrodes data.
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Figure 5. Empirical and fitted survival function, P-P, and Q-Q plots for the data set with failure cause
Mode D for electrodes data.
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Table 6. Measures of goodness-of-fit test for electrodes data.

Data Anderson–Darling Cramér–von Mises KS

p-Value Statistics p-Value Statistics p-Value Statistics

E 0.9518 0.2802 0.9532 0.0358 0.9108 0.1214

D 0.6813 0.5632 0.6184 0.0933 0.5327 0.1523

Table 7 displays the MLEs for the parameters, reliability, and hazard functions based
on APCS data. It is evident that, while the hazard rate function for both modes is nearly
equal, the survival function for the Mode D data is greater than for the Mode E data. Also, it
shows the Bayesian estimates relative to the MCMC approach for the reliability and hazard
functions, as well as the parameters α, β, and θ for the two risk factors. From Table 7, it can
be seen that the estimators perform well since the values of the estimators are relatively
close. The 95% ACI and CR for each of the parameters α, β, and θ are computed, and the
results are displayed in Table 8.

Table 7. Different point estimates for parameters and survival and hazard functions.

Mode E Mode D

MLE
MCMC

MLE
MCMC

SEL q2 = −3 q3 = 3 SEL q2 = −3 q3 = 3

α 1.6905 1.6906 1.6906 1.6906 14.1293 13.9607 13.9608 13.9606
β 8.7303 8.7291 8.7291 8.7292 68.1379 66.9187 66.9191 66.9179
θ 0.6691 0.6691 0.6691 0.6691 86.0027 87.1915 87.1918 87.1905

S(t) 0.9341 0.9341 0.9341 0.9341 0.9997 0.9998 0.9998 0.9999

h(t) 0.0005 0.0001 0.0005 0.0005 0.0005 0.0001 0.0002 0.0001

Table 8. 95% ACI and CR for the parameters under the two risk factors.

MLE MCMC

Interval Length Interval Length

α1 {−2.8612,6.2421} 9.10337 {1.6902,1.6908} 0.00066367
α2 {−847.576,875.835} 1723.41 {13.9256,14.0164} 0.090864
β1 {−21.3068,4652.29} 4673.59 {8.7275,8.7317} 0.00419993
β2 {−6885.18,7021.46} 13906.6 {66.5187,67.4028} 0.884154
θ1 {−0.6058,3.8058} 1.03315 {0.6691,0.6692} 0.0000408301
θ2 {−6867.32,7039.32} 13906.6 {86.6302,87.4632} 0.832986

6. Simulation Study

To exemplify the theoretical conclusions drawn in the earlier sections, we present
the outcomes of simulation research in this section. This simulation is performed by
considering different values of n, m, and T, and by assigning parameter values as α1 = 0.4,
α2 = 0.08, θ1 = 1.6, and θ2 = 0.7, given in all the cases. While the initial values of β1 and
β2 are chosen to be 2 and 3, respectively, the initial values of the parameters are selected to
match the derived point estimates in each of the two case studies. Three distinct censoring
schemes (CS) are employed as follows:

Scheme A : R1 = n − m, Ri = 0 for i ̸= 1.
Scheme B : R m

2
= R m

2 +1 = n−m
2 , Ri = 0 for i ̸= m

2 and i ̸= m
2 + 1.

Scheme C : Rm = n − m, Ri = 0 for i ̸= m.
The MLEs and the Bayes estimators are determined for every case using a thousand

runs using Mathematica 12 software. By calculating their MSEs for k = 1, 2, along with
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(Ω1 = β1, Ω2 = β2), the various approaches to the derived estimators of β1 and β2
are compared.

MSE(Ωk) =
1
M

M

∑
i=1

(
Ω̂(i)

k − Ωk

)2
,

where the total number of generated samples is M = 1000. Comparing confidence intervals
is contrasted concerning the coverage probabilities (CP) and the length average of the
confidence intervals (LACI).

The outcomes of the simulation study in Tables 9–12 clearly show that, for both β1
and β2, scheme A performs better than both scheme B and scheme C for different T values.
Furthermore, it is noted that the average values of estimates for both Bayesian and MLE
improve as the sample size (m) increases. These results demonstrate not just scheme
A’s advantage over the other schemes but also the value of bigger sample numbers in
improving estimation accuracy in statistical analysis.

Table 9. The average and MSE for the estimate of β1 at T = 0.5.

MLE MCMC

(n, m) CS SEL GEL
q = −1 q = 1

(50, 20) A 1.9946
(0.0054)

1.9434
(0.0061)

1.9036
(0.0019)

2.0892
(0.0028)

B 1.9373
(0.0013)

1.8081
(0.0071)

2.1998
(0.0013)

1.8391
(0.0021)

C 1.7396
(0.0020)

2.1073
(0.0047)

2.0753
(0.0038)

1.7016
(0.0014)

(50, 30) A 1.9214
(0.0045)

1.9792
(0.0011)

2.0840
(0.0021)

2.0426
(0.0056)

B 1.9044
(0.0040)

2.1846
(0.0054)

1.8402
(0.0086)

2.1192
(0.0018)

C 2.4018
(0.0065)

2.2322
(0.0066)

2.3569
(0.0019)

1.9151
(0.0023)

Table 10. The average and MSE for the estimate of β1 at T = 0.9.

MLE MCMC

(n, m) CS SEL GEL
q = −1 q = 1

(50, 20) A 2.0053
(0.0058)

2.0056
(0.0015)

1.9557
(0.0073)

2.0181
(0.0026)

B 2.0847
(0.0054)

1.9311
(0.0072)

1.9463
(0.0075)

1.9184
(0.0047)

C 2.0817
(0.0031)

1.8276
(0.0049)

1.9855
(0.0023)

2.1356
(0.0024)

(50, 30) A 1.9732
(0.0027)

1.9772
(0.0037)

2.0277
(0.0081)

2.0041
(0.0031)

B 1.9306
(0.0089)

2.0347
(0.0067)

2.1433
(0.0070)

2.0216
(0.0074)

C 1.7968
(0.0085)

1.9827
(0.0063)

2.0810
(0.0024)

2.1687
(0.0048)



Mathematics 2024, 12, 1763 18 of 21

Table 11. The average and MSE for the estimate of β2 at T = 0.5.

MLE MCMC

(n, m) CS SEL GEL
q = −1 q = 1

(50, 20) A 2.9885
(0.0082)

3.0720
(0.0012)

3.0175
(0.0085)

3.0398
(0.0049)

B 3.1464
(0.0042)

2.8710
(0.0074)

2.8984
(0.0052)

3.1836
(0.0013)

C 2.7598
(0.0036)

3.1583
(0.0016)

3.0394
(0.0068)

3.0782
(0.0068)

(50, 30) A 3.0727
(0.0084)

2.9599
(0.0022)

3.0222
(0.0082)

3.0613
(0.0059)

B 2.8585
(0.0083)

2.8615
(0.0080)

3.2856
(0.0047)

2.8614
(0.0074)

C 2.9948
(0.0039)

2.9293
(0.0027)

3.1676
(0.0068)

2.8513
(0.0045)

Table 12. The average and MSE for the estimate of β2 at T = 0.9.

MLE MCMC

(n, m) CS SEL GEL
q = −1 q = 1

(50, 20) A 2.9801
(0.0087)

3.0420
(0.0063)

2.9731
(0.0029)

2.9654
(0.0087)

B 2.9442
(0.0022)

3.0890
(0.0058)

3.0725
(0.0053)

3.1254
(0.0013)

C 2.8590
(0.0043)

2.9725
(0.0051)

3.0470
(0.0014)

2.8974
(0.0083)

(50, 30) A 2.9546
(0.0024)

3.0207
(0.0064)

3.0113
(0.0015)

3.0301
(0.0080)

B 2.9361
(0.0038)

2.9051
(0.0015)

2.8528
(0.0054)

3.0586
(0.0027)

C 3.0181
(0.0027)

2.9791
(0.0065)

2.8706
(0.0083)

3.0574
(0.0030)

The LACI and the associated CP are shown in Tables 13 and 14. In all cases, the confi-
dence intervals have a confidence level of 0.95. We note that the confidence intervals in
the MLE scenario are larger than those in the Bayesian case. Additionally, we note that, for
various values of T and m, the CP for scheme A is superior to that for schemes B and C for
both estimates β1 and β2.

Table 13. The LACI and CP of 95% ACI for β1 estimate.

T = 0.5 T = 0.9

(n, m) CS Non-Bayesian Bayesian Non-Bayesian Bayesian

(50, 20) A 0.8144
(0.9513)

0.9056
(0.9542)

1.0793
(0.9618)

0.5030
(0.9700)

B 0.8950
(0.9648)

0.9062
(0.9363)

0.8737
(0.9256)

0.8399
(0.9652)

C 0.8005
(0.9590)

0.5962
(0.9688)

0.9160
(0.9566)

0.7555
(0.9321)

(50, 30) A 1.1484
(0.9457)

0.4820
(0.9335)

0.9443
(0.9491)

0.7025
(0.9507)

B 1.1480
(0.9527)

0.7460
(0.9347)

0.9446
(0.9391)

0.8490
(0.9459)

C 0.8431
(0.9279)

0.3609
(0.9595)

1.0624
(0.9636)

0.18140
(0.9483)
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Table 14. The LACI and CP of 95% ACI for β2 estimate.

T = 0.5 T = 0.9

(n, m) CS Non-Bayesian Bayesian Non-Bayesian Bayesian

(50, 20) A 1.1836
(0.9685)

0.7253
(0.9254)

1.0663
(0.9320)

0.3521
(0.9369)

B 0.9544
(0.9682)

0.8411
(0.9475)

1.0426
(0.9568)

0.6931
(0.9566)

C 0.9435
(0.9724)

0.7559
(0.9368)

1.1083
(0.9490)

0.3583
(0.9704)

(50, 30) A 0.9613
(0.9688)

0.3819
(0.9461)

1.1676
(0.9450)

0.5692
(0.9476)

B 1.0171
(0.9380)

0.3602
(0.9470)

1.1609
(0.9419)

0.3558
(0.9428)

C 1.2135
(0.9479)

0.4140
(0.9496)

1.1160
(0.9441)

0.2151
(0.9491)

7. Conclusions

This study investigated the applicability of the adaptive progressive censoring scheme
as an approach to collecting incomplete failure observations, in which the lifespan items
of individual failure causes are independent and assumed to follow the GLFR distribu-
tion, highlighting its relevance and application in both electrical engineering and medical
research, particularly in addressing the competing risk models. The proposed scheme
was applied to some observed data, like medical and engineering data that were collected
under competing factors of failure, as it was assumed that some of these factors are known
and others are unknown. The statistically obtained results contributed to assigning the
factor of failure most causal to the failure. We investigated the maximum likelihood and
Bayesian estimate approaches to achieve our goal. The point and approximate confidence
interval estimations for unknown parameters and the reliability and hazard rate functions
were investigated. In the Bayesian methodology, the Metropolis–Hastings algorithm within
the Gibbs sampler was used to provide Bayesian estimates under the squared error loss
function, as well as the associated credible intervals. Our method’s practicality was vali-
dated by real-world data analysis employing electrode and clinical data sets. Furthermore,
it is clear from Monte Carlo simulation studies that the maximum likelihood estimate
approach is not as good as the Bayesian estimation, which yields more satisfactory results.
The findings suggest that the possibility of transplant-related mortality in medical case
studies is higher than that of disease relapse, while, as demonstrated by the electrode case
study, deterioration of the organic material is less likely to happen than early insulating
defects. The study paves the way for medical researchers, stakeholders, and manufacturers
to draw on the policies of maintenance by giving priority to dealing with the most common
factor of failure. It is important to point out that, although this study focuses on the issue
of two competing risk factors, similar inferential approaches may be readily extended to
many failure factors and alternative censoring schemes.
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Abbreviations
The following abbreviations are used in this manuscript:

APCS adaptive progressive censoring scheme
GLFR generalized linear failure rate
MLE maximum likelihood estimation
CDF cumulative distribution function
pdf probability density function
ACI asymptotic confidence interval
MH Metropolis–Hasting method
KS Kolmogorov Smirnov distance
MCMC Markov chain Monte Carlo
CR credible interval
CP coverage probability
LACI length average of the confidence intervals
CS censoring scheme
SEL square error loss function
GEL general entropy loss function
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